JPH02134993A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPH02134993A
JPH02134993A JP63289430A JP28943088A JPH02134993A JP H02134993 A JPH02134993 A JP H02134993A JP 63289430 A JP63289430 A JP 63289430A JP 28943088 A JP28943088 A JP 28943088A JP H02134993 A JPH02134993 A JP H02134993A
Authority
JP
Japan
Prior art keywords
film
light
aluminum
shielding film
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63289430A
Other languages
Japanese (ja)
Other versions
JPH07101734B2 (en
Inventor
Tadahiro Mito
忠浩 見渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63289430A priority Critical patent/JPH07101734B2/en
Publication of JPH02134993A publication Critical patent/JPH02134993A/en
Publication of JPH07101734B2 publication Critical patent/JPH07101734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To prevent the dispersion of the area of a window caused by the hillock of a light shielding film and to prevent the reflection of 300-400nm ultraviolet rays by composing the structure of the light shielding film of an aluminum film, a hillock preventing film provided for the upper part of the surface of the aluminum film, and a reflection preventing film provided for the further upper part of the reflection preventing film. CONSTITUTION:The structure of a light shielding film 20 is made into the one in which a sputtering silicon oxidized film 7 and a sputtering silicon film 8 are successively formed on the upper part of the surface of an aluminum light shielding film 1. The thickness of the silicon oxidized film 7 is 100-200nm, and the film 7 has an effect to prevent hillock. Further, the thickness of the sputtering silicon film 8 is made into a value to lower the reflectivity of the ultraviolet rays having 300-400nm wavelengths. Thus, the dispersion of sensitivity caused by the hillock of the aluminum film 1 can be suppressed, and the solid- state image pickup device having color sensitivity can be easily obtained using ultraviolet rays transferring technique.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体撮像装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a solid-state imaging device.

〔従来の技術〕[Conventional technology]

従来この種の固体撮像装置は、受光素子とじてP−N接
合によるホトダイオードを用いたものが広く用いられて
いた。
Conventionally, this type of solid-state imaging device has been widely used that uses a photodiode with a PN junction as a light receiving element.

第3図(a)及び(b)は従来の固体撮像装置の一例の
平面図及びA−A’線断面図である。
FIGS. 3(a) and 3(b) are a plan view and a cross-sectional view taken along the line AA' of an example of a conventional solid-state imaging device.

第3図(a)に示すように、アルミニウム遮光膜1を規
則正しくマトリックス状に開口して窓11bが設けられ
ている。
As shown in FIG. 3(a), windows 11b are provided by regularly opening the aluminum light-shielding film 1 in a matrix shape.

第3図(b)に示すように、アルミニウム遮光膜1の窓
11bの下に設けられたホトダイオードPDは、P型シ
リコン基板2とその上層に形成したN型拡散層3とのP
−N接合からなっており、窓11bにより入射した光り
は、シリコン基板1で光電変換された後、ホトダイオー
ドPDに信号電荷として蓄積される。
As shown in FIG. 3(b), the photodiode PD provided under the window 11b of the aluminum light-shielding film 1 is connected to the P-type silicon substrate 2 and the N-type diffusion layer 3 formed on the upper layer.
-N junction, and the light incident through the window 11b is photoelectrically converted by the silicon substrate 1 and then accumulated in the photodiode PD as a signal charge.

各ホトダイオードPDで蓄積された信号電荷は、チャネ
ルストップの高濃度P壁領域4により互いに分離されて
いる。
The signal charges accumulated in each photodiode PD are separated from each other by a high concentration P wall region 4 of a channel stop.

したがって、各ホトダイオードPDに蓄積される信号電
荷の量は、各ホトダイオードPDに入射する光りの光量
に比例するので、入射する光量が・一定の場合、各ホト
ダイオードに蓄積される信号電荷量は、遮光膜の窓11
bの面積に比例することになる。
Therefore, the amount of signal charge accumulated in each photodiode PD is proportional to the amount of light incident on each photodiode PD, so when the amount of incident light is constant, the amount of signal charge accumulated in each photodiode is Membrane window 11
It will be proportional to the area of b.

固体撮像装置においては、−機先を入射した場合に各ホ
トダイオードPDに蓄積される電荷量は等しくなること
が望ましい。
In a solid-state imaging device, it is desirable that the amount of charge accumulated in each photodiode PD be equal when the negative side is incident.

したがって遮光膜の特性としては、光を透過しないこと
及び窓11bの面積がばらつかないように精度良く加工
することが要求される。
Therefore, the characteristics of the light-shielding film are required to not transmit light and to be processed with high precision so that the area of the window 11b does not vary.

従来、この2点の要求を満足する膜としてアルミニウム
遮光膜1が用いられていた。
Conventionally, the aluminum light-shielding film 1 has been used as a film that satisfies these two requirements.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の固体撮像装置は、アルミニウム遮光膜を
用いるため下記に示す2つの欠点があった。
The conventional solid-state imaging device described above uses an aluminum light-shielding film, and therefore has the following two drawbacks.

第1の欠点は、アルミニウム膜は300〜450°Cの
熱処理でヒロックと呼ばれる突起物が表面に生じること
である。
The first drawback is that when an aluminum film is heat-treated at 300 to 450°C, protrusions called hillocks are formed on the surface.

固体撮像装置の製造においては、遮光膜を精度良く加工
な後半導体基板の表面準位を消去するなめに水素雰囲気
で300〜450℃のアニールを施す必要があった。
In the manufacture of solid-state imaging devices, it is necessary to perform annealing at 300 to 450° C. in a hydrogen atmosphere in order to erase the surface states of the semiconductor substrate after processing the light shielding film with high precision.

しかし、前述したように、アルミニウム遮光膜はこのア
ニールのときにヒロックを生じるので遮光膜の側壁及び
表面が部分的に突出し、窓の面積のバラツキを生じた。
However, as described above, hillocks occur in the aluminum light-shielding film during this annealing, so that the side walls and surface of the light-shielding film partially protrude, resulting in variations in the area of the windows.

第2の欠点は、アルミニウム遮光膜の光の反射率が非常
に高いことである。
The second drawback is that the aluminum light-shielding film has a very high light reflectance.

第3図に示した従来の固体撮像装置では、各受光素子上
をゼラチン又はカゼイン等の乳剤を塗布して選択的にパ
ターニングし、さらに所望の分光特性を持つように染色
すれば、色感度を持つ固体撮像装置を実現できる。
In the conventional solid-state imaging device shown in Figure 3, color sensitivity can be improved by coating each light-receiving element with an emulsion such as gelatin or casein, selectively patterning it, and dyeing it to have desired spectral characteristics. It is possible to realize a solid-state imaging device with

しかし、パターニング方法として300〜4゜Onm波
長の紫外線を用いてパターンを転写する紫外線転写技術
が用いられるため、遮光膜上にあるパターンエツジは遮
光膜の反射率が高いと紫外線の乱反射により正確なパタ
ーニングが困難になった。
However, as the patterning method uses ultraviolet transfer technology that transfers patterns using ultraviolet light with a wavelength of 300 to 4 Onm, the pattern edges on the light shielding film may not be accurate due to diffuse reflection of the ultraviolet light if the light shielding film has a high reflectance. Patterning became difficult.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の固体撮像装置は、半導体基板の一主面に周期的
に近接して配列されかつそれぞれが遮光膜によって分離
されて設けられた複数の受光素子を有する固体撮像装置
において、前記遮光膜がアルミニウム膜と該アルミニウ
ム膜の表面上部に設けられたヒロック防止膜とさらに該
ヒロック防止膜の表面上部に設けられた反射防止膜を有
して構成されている。
A solid-state imaging device of the present invention includes a plurality of light-receiving elements arranged periodically close to one principal surface of a semiconductor substrate and separated from each other by a light-shielding film, wherein the light-shielding film is The device includes an aluminum film, an anti-hillock film provided on the top surface of the aluminum film, and an anti-reflection film provided on the top surface of the hillock prevention film.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例の断面図である。FIG. 1 is a sectional view of a first embodiment of the invention.

第1図は、第3図(b)の断面図と対応している。FIG. 1 corresponds to the cross-sectional view of FIG. 3(b).

固体撮像装置は、遮光膜20が第3図(b)のアルミニ
ウム遮光膜1の表面上部にスパッタシリコン酸化膜7と
、スパッタシリコン膜8とを順次形成したことが異る魚
具外は従来の固体撮像装置と同一である。
The solid-state imaging device is different from the conventional one except for the fact that the light-shielding film 20 is formed by sequentially forming a sputtered silicon oxide film 7 and a sputtered silicon film 8 on the upper surface of the aluminum light-shielding film 1 shown in FIG. 3(b). It is the same as a solid-state imaging device.

シリコン酸化膜7の厚さは100〜200 nmでヒロ
ック防止の効果がある。
The silicon oxide film 7 has a thickness of 100 to 200 nm and is effective in preventing hillocks.

さらにその表面のスパッタシリコン膜8の厚さは波長が
300〜400nmの紫外線の反射率を下げるような値
を用いる。
Further, the thickness of the sputtered silicon film 8 on the surface thereof is set to a value that reduces the reflectance of ultraviolet rays having a wavelength of 300 to 400 nm.

本実施例による固体撮像装置の遮光膜2oは、次の方法
で形成することができる。
The light shielding film 2o of the solid-state imaging device according to this embodiment can be formed by the following method.

まずスパッタ法によりアルミニウム膜、シリコン酸化膜
及びシリコン膜を順次所望の膜厚で形成する。
First, an aluminum film, a silicon oxide film, and a silicon film are sequentially formed to a desired thickness by sputtering.

次に、半導体の製造で一般的になっている写真蝕刻技術
法によりアルミニウム、シリコン酸化膜及びシリコン膜
に窓11を加工する。
Next, a window 11 is formed in the aluminum, silicon oxide film, and silicon film by photolithography, which is common in semiconductor manufacturing.

この後、300〜450°Cの水素雰囲気中でのアニー
ルを施すが、アルミニウム遮光膜1とスパッタシリコン
膜8の間には、スパッタシリコン酸化膜7が存在するの
で、その形成時に生じたアルミニウム膜1間のアルミナ
と共にアルミニウム膜1のヒロックを防止し、かつアル
ミニウム膜1とスパッタシリコン膜8との反応も防止す
る効果がある。
After this, annealing is performed in a hydrogen atmosphere at 300 to 450°C, but since the sputtered silicon oxide film 7 exists between the aluminum light shielding film 1 and the sputtered silicon film 8, the aluminum film formed during its formation This has the effect of preventing hillocks of the aluminum film 1 together with the alumina between 1 and 2, and also of preventing reactions between the aluminum film 1 and the sputtered silicon film 8.

従って窓11の加工精度がよい。Therefore, the processing accuracy of the window 11 is good.

第2図は本発明の第2の実施例の断面図である。FIG. 2 is a sectional view of a second embodiment of the invention.

固体撮像装置の遮光膜20.は、アルミニウム遮光膜1
8の表面上部を高融点金属であるタングステン膜って覆
ってヒロックを防止している。
Light-shielding film 20 for solid-state imaging device. is aluminum light shielding film 1
The upper surface of 8 is covered with a tungsten film, which is a high melting point metal, to prevent hillocks.

タングステン膜9の上部はタングステンとシリコンの化
合物であるタングステンシリサイド膜10で覆い反射防
止効果を高めている。
The upper part of the tungsten film 9 is covered with a tungsten silicide film 10, which is a compound of tungsten and silicon, to enhance the antireflection effect.

さらにこの実施例ではアルミニウム遮光膜1aの上部を
高融点金属で覆っているので、熱によるストレスマイグ
レーションに強くなっている。
Furthermore, in this embodiment, since the upper part of the aluminum light-shielding film 1a is covered with a high-melting point metal, it is resistant to stress migration due to heat.

したがって、アルミニウム遮光膜1aを第1の実施例の
アルミニウム遮光膜1よりも薄くしても300〜450
℃の熱処理で生じるストレスマイグレーションによるピ
ンホールが発生しない。
Therefore, even if the aluminum light-shielding film 1a is made thinner than the aluminum light-shielding film 1 of the first embodiment, it has a thickness of 300 to 450%.
Pinholes do not occur due to stress migration caused by heat treatment at ℃.

つまり、高融点金属てアルミニウム遮光膜1aの上部を
被覆すれは、アルミニウム遮光膜1aを800 nmか
ら400nmに薄くしても、遮光膜としての効果を充分
に果たすことができる。
In other words, if the upper part of the aluminum light shielding film 1a is coated with a high melting point metal, it can sufficiently function as a light shielding film even if the aluminum light shielding film 1a is thinned from 800 nm to 400 nm.

一般に固体撮像装置では、遮光膜の側壁で入射した光が
反射するために、各受光素子の感度のバラツキや、遮光
膜下への光の漏れこみにより生ずるスミアが発生する。
Generally, in a solid-state imaging device, incident light is reflected by the side wall of a light-shielding film, resulting in variations in sensitivity of each light-receiving element and smear caused by light leaking under the light-shielding film.

従って遮光膜の膜厚を薄くすれば、側壁の反射によって
生ずる感度のバラツキやスミアを減少することができる
Therefore, by reducing the thickness of the light-shielding film, it is possible to reduce variations in sensitivity and smear caused by reflection on the sidewalls.

本実施例の固体撮像装置において、アルミニウム遮光膜
1aの側壁を従来の半分の400 nmにすることによ
って感度バラツキを30%、スミアを15%低減するこ
とができた。
In the solid-state imaging device of this example, by reducing the side wall thickness of the aluminum light-shielding film 1a to 400 nm, which is half of the conventional thickness, it was possible to reduce sensitivity variations by 30% and smear by 15%.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、遮光膜をアルミニウム膜
とアルミニウム膜の表面上部に設けられたヒロック防止
用膜とさらにその上部に設けられた反射防止用膜とから
なる構造にすることにより、遮光膜のヒロックによる窓
の面積のバラツキ及び300〜400 nmの紫外線の
反射を防止することができる。
As explained above, the present invention provides a structure in which the light shielding film is made up of an aluminum film, a hillock prevention film provided on the upper surface of the aluminum film, and an antireflection film provided above the light shielding film. Variation in window area due to film hillocks and reflection of ultraviolet rays of 300 to 400 nm can be prevented.

したがって、本発明による遮光膜を用いれば、アルミニ
ウム膜のヒロックによる感度バラツキを抑制し、紫外線
転写技術を用いて色感度を持つ固体撮像装置を容易に製
造することができる。
Therefore, by using the light-shielding film according to the present invention, it is possible to suppress variations in sensitivity due to hillocks of the aluminum film, and to easily manufacture a solid-state imaging device with color sensitivity using ultraviolet transfer technology.

従って、本発明の効果は、遮光膜の開口面積の小さい固
体撮像装置、つまり撮像面積の小さくかつ高解像度な固
体撮像装置に対して顕著である。
Therefore, the effects of the present invention are remarkable for solid-state imaging devices in which the aperture area of the light-shielding film is small, that is, solid-state imaging devices with a small imaging area and high resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の断面図、第2図は本発
明の第2の実施例の断面図、第3図(a)及び(b)は
従来の固体撮像装置の一例の平面図及びA−A’線断面
図である。 1.1a・・・アルミニウム遮光膜、2・・・P型シリ
コン基板、3・・・N型拡散層、7・・・スパッタシリ
コン酸化膜、8・・・スパッタシリコン膜、9・・・タ
ングステン膜、タングステンシリサイド膜、20゜20
、・・・遮光膜、PD・・・ホトダイオード。
FIG. 1 is a sectional view of a first embodiment of the present invention, FIG. 2 is a sectional view of a second embodiment of the present invention, and FIGS. 3(a) and (b) are examples of conventional solid-state imaging devices. FIG. 2 is a plan view and a sectional view taken along the line AA'. 1.1a... Aluminum light shielding film, 2... P-type silicon substrate, 3... N-type diffusion layer, 7... Sputtered silicon oxide film, 8... Sputtered silicon film, 9... Tungsten Film, tungsten silicide film, 20°20
,...light-shielding film, PD...photodiode.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の一主面に周期的に近接して配列されかつそ
れぞれが遮光膜によって分離されて設けられた複数の受
光素子を有する固体撮像装置において、前記遮光膜がア
ルミニウム膜と該アルミニウム膜の表面上部に設けられ
たヒロック防止膜とさらに該ヒロック防止膜の表面上部
に設けられた反射防止膜を有することを特徴とする固体
撮像装置。
In a solid-state imaging device having a plurality of light receiving elements arranged periodically close to one main surface of a semiconductor substrate and separated from each other by a light shielding film, the light shielding film includes an aluminum film and a surface of the aluminum film. A solid-state imaging device characterized by having an anti-hillock film provided on the top and an anti-reflection film further provided on the upper surface of the anti-hillock film.
JP63289430A 1988-11-15 1988-11-15 Method of manufacturing solid-state imaging device Expired - Lifetime JPH07101734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63289430A JPH07101734B2 (en) 1988-11-15 1988-11-15 Method of manufacturing solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63289430A JPH07101734B2 (en) 1988-11-15 1988-11-15 Method of manufacturing solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH02134993A true JPH02134993A (en) 1990-05-23
JPH07101734B2 JPH07101734B2 (en) 1995-11-01

Family

ID=17743143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63289430A Expired - Lifetime JPH07101734B2 (en) 1988-11-15 1988-11-15 Method of manufacturing solid-state imaging device

Country Status (1)

Country Link
JP (1) JPH07101734B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199876A (en) * 1990-11-29 1992-07-21 Nec Corp Solid state image sensing device and manufacture thereof
JPH04225565A (en) * 1990-12-27 1992-08-14 Matsushita Electron Corp Solid state image sensor
US9947714B2 (en) 2016-07-13 2018-04-17 Samsung Electronics Co., Ltd. Methods of manufacturing image sensors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868377A (en) * 1981-10-19 1983-04-23 Matsushita Electric Ind Co Ltd Solid-state image pickup element
JPS6028247A (en) * 1983-07-27 1985-02-13 Hitachi Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868377A (en) * 1981-10-19 1983-04-23 Matsushita Electric Ind Co Ltd Solid-state image pickup element
JPS6028247A (en) * 1983-07-27 1985-02-13 Hitachi Ltd Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199876A (en) * 1990-11-29 1992-07-21 Nec Corp Solid state image sensing device and manufacture thereof
JPH04225565A (en) * 1990-12-27 1992-08-14 Matsushita Electron Corp Solid state image sensor
US9947714B2 (en) 2016-07-13 2018-04-17 Samsung Electronics Co., Ltd. Methods of manufacturing image sensors

Also Published As

Publication number Publication date
JPH07101734B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
US6849476B2 (en) Method of manufacturing a solid-state imaging device
US6136481A (en) Color filter manufacturing method capable of assuring a high alignment accuracy of color filter and alignment mark therefor
KR100194841B1 (en) Solid state phase detection device manufacturing method
US6518639B2 (en) Solid state imaging device
JPH04196167A (en) Solid state image sensing element
JP3079567B2 (en) Solid-state imaging device
JPH02134993A (en) Solid-state image pickup device
JPH06342896A (en) Solid-state image sensor and manufacture thereof
JP2001352051A (en) Solid-state image pickup device and its manufacturing method
JPH04212459A (en) Solid image pick-up element
JP2871831B2 (en) Solid-state imaging device
JP2630407B2 (en) Charge-coupled device
JP3358375B2 (en) Solid-state imaging device and method of manufacturing the same
JPH02244761A (en) Solid image pickup element and manufacture thereof
JPH0992813A (en) Solid state image pickup device and its manufacture
JPH11121728A (en) Solid-state image pick-up device
JPH0395968A (en) Solid-state image pick-up element
JPS5868377A (en) Solid-state image pickup element
JPH02156670A (en) Solid-state image pickup element
EP0515025A1 (en) Enhanced long wavelength response for thinned CCD devices
JPH07112051B2 (en) Color-solid-state image sensor manufacturing method
JPH01194464A (en) Solid state image sensor
JPS63285969A (en) Solid-state image pick-up element
JPH06125071A (en) Solid-state image sensing element and manufacture thereof
JP2002184966A (en) Solid state image sensor