JPH04212459A - Solid image pick-up element - Google Patents
Solid image pick-up elementInfo
- Publication number
- JPH04212459A JPH04212459A JP3011354A JP1135491A JPH04212459A JP H04212459 A JPH04212459 A JP H04212459A JP 3011354 A JP3011354 A JP 3011354A JP 1135491 A JP1135491 A JP 1135491A JP H04212459 A JPH04212459 A JP H04212459A
- Authority
- JP
- Japan
- Prior art keywords
- charge transfer
- electrode wiring
- film
- light receiving
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007787 solid Substances 0.000 title abstract 2
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 229910018125 Al-Si Inorganic materials 0.000 claims abstract description 12
- 229910018520 Al—Si Inorganic materials 0.000 claims abstract description 12
- 230000001681 protective effect Effects 0.000 claims description 20
- 238000003384 imaging method Methods 0.000 claims description 10
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 abstract description 25
- 239000000463 material Substances 0.000 abstract description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 10
- 239000010936 titanium Substances 0.000 abstract description 10
- 229910052719 titanium Inorganic materials 0.000 abstract description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 229910052710 silicon Inorganic materials 0.000 abstract description 6
- 239000010703 silicon Substances 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 5
- 230000002950 deficient Effects 0.000 abstract 2
- 230000003449 preventive effect Effects 0.000 abstract 2
- 238000005266 casting Methods 0.000 abstract 1
- 239000007772 electrode material Substances 0.000 abstract 1
- 150000004767 nitrides Chemical class 0.000 abstract 1
- 230000007547 defect Effects 0.000 description 15
- 238000004544 sputter deposition Methods 0.000 description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 8
- 239000007789 gas Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000003667 anti-reflective effect Effects 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、固体撮像素子に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image sensing device.
【0002】0002
【従来の技術】図6は従来のCCD(電荷結合素子)固
体撮像素子の断面図である。この図6において、1はシ
リコン基板、2は受光部、3は電荷転送領域、4は酸化
膜、5は電荷転送用ポリシリコン電極、6は遮光メタル
を兼ねる電極配線、7はSiO2 膜又はSiN膜の透
明の保護膜である。2. Description of the Related Art FIG. 6 is a sectional view of a conventional CCD (charge coupled device) solid-state imaging device. In FIG. 6, 1 is a silicon substrate, 2 is a light receiving section, 3 is a charge transfer region, 4 is an oxide film, 5 is a polysilicon electrode for charge transfer, 6 is an electrode wiring that also serves as a light-shielding metal, and 7 is an SiO2 film or SiN It is a transparent protective film for the membrane.
【0003】図7はこの固体撮像素子の製造工程を示す
断面図である。ここで図7(a)は電極配線材料6がシ
リコン基板1上の全面に形成された状態を示す。この状
態から次に図7(b)に示すようにポジ系レジスト8を
塗布した後、矢印で示すようにガラスマスクにより受光
部2とフィールド部9の一部を選択露光する。その後レ
ジスト8の現象を行った状態を図7(c)に示す。図7
(d)は未露光部のレジスト8をエッチングマスクとし
て電極配線材料6がエッチングされた状態である。次に
、レジスト8を除去した後、図7(e)に示すように保
護膜7を形成する。そして、図7(f)に示すように、
ワイヤーボンディングを行う為にボンディングパッド部
10の開孔を行う。この工程は保護膜7上にポジレジス
トを形成し、工程(b),(c),(d)のように、露
光,現像,エッチングおよびレジスト除去の処理により
行うことができる。FIG. 7 is a cross-sectional view showing the manufacturing process of this solid-state image sensor. Here, FIG. 7(a) shows a state in which the electrode wiring material 6 is formed on the entire surface of the silicon substrate 1. As shown in FIG. From this state, a positive resist 8 is applied as shown in FIG. 7B, and then the light receiving section 2 and a part of the field section 9 are selectively exposed using a glass mask as shown by the arrow. FIG. 7C shows a state in which the phenomenon of resist 8 is performed after that. Figure 7
(d) shows a state in which the electrode wiring material 6 has been etched using the unexposed portion of the resist 8 as an etching mask. Next, after removing the resist 8, a protective film 7 is formed as shown in FIG. 7(e). Then, as shown in FIG. 7(f),
A hole is made in the bonding pad portion 10 in order to perform wire bonding. This step can be performed by forming a positive resist on the protective film 7, and performing exposure, development, etching, and resist removal as in steps (b), (c), and (d).
【0004】0004
【発明が解決しようとする課題】ところで、上記従来の
固体撮像素子は、電極配線6の材料としてAl又はAl
−Si(1%)が用いられ、出力10kw以上,真空度
10mmTorr 以下の条件でスパッタリングにより
形成されるが、これらは反射率の高い金属であるため、
透明の保護膜7を通って電極配線6上に入射した光はほ
とんど反射される。また、電極配線6は微結晶の集合で
あり、その表面は平坦ではない上に、電極配線形成前の
下地表面には、電極5等によるそれまでの製造工程によ
り形成された凹凸が存在するため、電極配線6の上面の
形状もその凹凸を継承している。このため、電極配線表
面での反射光は乱反射となり、その一部は受光部2に入
射する。この乱反射による受光部2への入射光は信号光
線以外の光線であるためスミア不良の原因となる。また
、受光部2の上方に、シアン,マゼンタ,イエロー,グ
リーンのカラーフィルタが形成されたカラー用固体撮像
素子の場合でも同様のことがいえる。[Problems to be Solved by the Invention] By the way, the conventional solid-state image sensing device described above uses Al or Al as the material for the electrode wiring 6.
-Si (1%) is used and is formed by sputtering under conditions of an output of 10 kW or more and a vacuum of 10 mm Torr or less, but since these are metals with high reflectance,
Most of the light incident on the electrode wiring 6 through the transparent protective film 7 is reflected. In addition, the electrode wiring 6 is a collection of microcrystals, and its surface is not flat, and the underlying surface before the electrode wiring is formed has unevenness formed by the previous manufacturing process of the electrode 5, etc. The shape of the upper surface of the electrode wiring 6 also inherits the unevenness. Therefore, the reflected light on the surface of the electrode wiring becomes diffusely reflected, and a part of it enters the light receiving section 2. The light incident on the light receiving section 2 due to this diffused reflection is a light beam other than the signal light beam, and therefore causes smear failure. Further, the same can be said of a color solid-state image sensor in which cyan, magenta, yellow, and green color filters are formed above the light receiving section 2.
【0005】そこで、この発明の目的は、電極配線表面
での乱反射が少なく、スミア不良を生じない固体撮像素
子を提供することにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a solid-state image sensing device that has less diffused reflection on the surface of electrode wiring and does not cause smear defects.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
、第1の発明は、複数の受光部と上記各受光部に隣接し
た電荷転送領域を形成した基板上の上記各電荷転送領域
の上に電荷転送用電極を形成すると共に上記電荷転送用
電極と上記受光部を覆うように絶縁層を形成し、上記各
電荷転送用電極の上の絶縁層の上に電極配線を形成し、
更にその上に保護膜を形成した固体撮像素子において、
上記電極配線の上面に上記電極配線の反射率よりも小さ
い反射率の反射防止膜を形成したことを特徴としている
。[Means for Solving the Problems] In order to achieve the above object, the first invention provides a method for forming a plurality of light receiving sections and a charge transfer region adjacent to each of the light receiving sections on a substrate. forming a charge transfer electrode on and forming an insulating layer to cover the charge transfer electrode and the light receiving section; forming an electrode wiring on the insulating layer on each of the charge transfer electrodes;
Furthermore, in a solid-state image sensor with a protective film formed thereon,
The present invention is characterized in that an antireflection film having a reflectance smaller than that of the electrode wiring is formed on the upper surface of the electrode wiring.
【0007】また、第2の発明は、複数の受光部と上記
各受光部に隣接した電荷転送領域を形成した基板上の上
記電荷転送領域の上に電荷転送用電極を形成すると共に
上記電荷転送用電極と上記受光部を覆うように絶縁層を
形成し、上記各電荷転送用電極の上の絶縁層の上に電極
配線を形成し、更にその上に保護膜を形成した固体撮像
素子において、上記電極配線の上面と側面に上記電極配
線の反射率よりも小さい反射率の反射防止膜を形成した
ことを特徴としている。In a second aspect of the invention, a charge transfer electrode is formed on the charge transfer region on a substrate on which a plurality of light receiving portions and a charge transfer region adjacent to each of the light receiving portions are formed, and a charge transfer electrode is formed on the charge transfer region. In a solid-state imaging device, an insulating layer is formed to cover the charge transfer electrode and the light receiving part, electrode wiring is formed on the insulating layer on each of the charge transfer electrodes, and a protective film is further formed thereon, The present invention is characterized in that an antireflection film having a reflectance smaller than that of the electrode wiring is formed on the upper and side surfaces of the electrode wiring.
【0008】さらに、第3の発明は、複数の受光部と上
記各受光部に隣接した電荷転送領域を形成した基板上の
上記各電荷転送領域の上に電荷転送用電極を形成すると
共に上記電荷転送用電極と上記受光部を覆うように絶縁
層を形成し、上記各電荷転送用電極の上の絶縁層の上に
電極配線を形成し、更にその上に保護膜を形成した固体
撮像素子において、上記電極配線が、表面が低反射率と
なる形成条件で形成されたAl−Si膜から成ることを
特徴としている。Further, in a third aspect of the present invention, a charge transfer electrode is formed on each of the charge transfer regions on the substrate on which a plurality of light receiving sections and a charge transfer region adjacent to each of the light receiving sections are formed, and a charge transfer electrode is formed on each of the charge transfer regions. In a solid-state imaging device, an insulating layer is formed to cover the transfer electrode and the light receiving section, electrode wiring is formed on the insulating layer on each of the charge transfer electrodes, and a protective film is further formed on the insulating layer. , the electrode wiring is made of an Al--Si film formed under conditions such that the surface has a low reflectance.
【0009】また、上記第1の発明及び第2の発明共、
上記反射防止膜として、窒化チタン膜若しくは金属酸化
物膜、又は、従来よりも、スパッタ条件において、出力
を低くし、真空度を上げることにより形成されたAl−
Si膜(以下「低反射Al−Si膜」という)を用いる
ことができる。さらに、上記金属酸化物がチタン酸化物
またはチタンナイトライド酸化物であることができる。[0009] Furthermore, both the first invention and the second invention,
The anti-reflection film may be a titanium nitride film or a metal oxide film, or an Al-
A Si film (hereinafter referred to as "low reflection Al-Si film") can be used. Furthermore, the metal oxide can be titanium oxide or titanium nitride oxide.
【0010】また、上記第3の発明の電極配線として、
従来よりも、スパッタ条件において、出力を低くし、真
空度を上げることにより形成された低反射Al−Si電
極配線を用いることができる。[0010] Furthermore, as the electrode wiring of the third invention,
It is possible to use low-reflection Al--Si electrode wiring formed by lowering the output and increasing the degree of vacuum under sputtering conditions than in the past.
【0011】[0011]
【作用】第1の発明においては、電極配線の上面にその
電極配線の反射率よりも小さい反射率の反射防止膜を形
成しているので、保護膜を通って上記電極配線の上面に
入射した光は上記反射防止膜で殆ど反射されないために
、受光部に入射する反射光は殆どなく、スミア不良の発
生を防止することができる。[Operation] In the first invention, since an anti-reflection film having a reflectance smaller than that of the electrode wiring is formed on the upper surface of the electrode wiring, light that is incident on the upper surface of the electrode wiring through the protective film is formed on the upper surface of the electrode wiring. Since almost no light is reflected by the anti-reflection film, almost no reflected light enters the light receiving section, making it possible to prevent smear defects from occurring.
【0012】また、第2の発明においては、電極配線の
上面と側面にその電極配線の反射率よりも小さい反射率
の反射防止膜を形成しているので、保護膜を通って上記
電極配線の上面および側面に入射した光は上記反射防止
膜で殆ど反射されないために、受光部に入射する反射光
は第1の発明に比べて更に少なく、スミア不良の発生を
一層防止することができる。Furthermore, in the second aspect of the invention, an antireflection film having a reflectance smaller than that of the electrode wiring is formed on the top and side surfaces of the electrode wiring. Since almost no light incident on the top surface and side surfaces is reflected by the antireflection film, the amount of reflected light incident on the light receiving portion is even smaller than in the first invention, and the occurrence of smear defects can be further prevented.
【0013】さらに、第3の発明においては、保護膜を
通って上記電極配線の上面に入射した光は該電極配線で
殆ど反射されないために、受光部に入射する反射光は殆
どなく、スミア不良の発生を防止することができる。Furthermore, in the third invention, since almost no light that has passed through the protective film and entered the upper surface of the electrode wiring is reflected by the electrode wiring, almost no reflected light enters the light receiving section, resulting in smear defects. can be prevented from occurring.
【0014】[0014]
【実施例】以下、この発明を図示の実施例により詳細に
説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below with reference to illustrated embodiments.
【0015】
第1の発明の実施例
図1は第1の発明の一実施例のCCD撮像素子の製造工
程を示す断面図である。Embodiment of the First Invention FIG. 1 is a sectional view showing the manufacturing process of a CCD image sensor according to an embodiment of the first invention.
【0016】図1(a)は図7(a)と同様、Alまた
はAl−Si(1%)の電極配線材料6がシリコン基板
1上の全面に形成された状態を示す。この状態から次に
チタン金属を窒素ガス雰囲気中でスパッタリングを行い
、図1(b)に示すように電極配線材料6の上に窒化チ
タンの反射防止膜21を形成する。次に図1(c)にお
いて、図7(b)と同様に、ポジ系レジスト8を塗布し
た後、矢印で示すようにガラスマスクにより受光部2と
フィールド部9の一部を選択露光する。その後レジスト
8の現象を行った状態を図1(d)に示す。図1(e)
は未露光部のレジスト8をエッチングマスクとして、反
射防止膜21および電極配線材料6をエッチングした後
、レジスト8を除去した状態を示す。次に、その上から
保護膜7を形成した後、図1(f)に示すように、ワイ
ヤーボンディングを行う為にボンディングパッド部1の
開孔を行う。この工程は保護膜7上にポジレジストを形
成し、露光,現像,エッチングおよびレジスト除去の処
理により行うことができる。Similar to FIG. 7A, FIG. 1A shows a state in which an electrode wiring material 6 of Al or Al-Si (1%) is formed over the entire surface of a silicon substrate 1. As shown in FIG. From this state, titanium metal is then sputtered in a nitrogen gas atmosphere to form an antireflection film 21 of titanium nitride on the electrode wiring material 6 as shown in FIG. 1(b). Next, in FIG. 1C, similarly to FIG. 7B, after applying a positive resist 8, the light receiving section 2 and a part of the field section 9 are selectively exposed using a glass mask as shown by the arrow. FIG. 1(d) shows the state after the resist 8 phenomenon is performed. Figure 1(e)
2 shows a state in which the antireflection film 21 and the electrode wiring material 6 are etched using the unexposed portion of the resist 8 as an etching mask, and then the resist 8 is removed. Next, after forming a protective film 7 thereon, as shown in FIG. 1(f), a hole is formed in the bonding pad portion 1 for wire bonding. This step can be performed by forming a positive resist on the protective film 7, and performing exposure, development, etching, and resist removal.
【0017】このように製造されたCCD撮像素子は、
電極配線6の上面に形成された窒化チタン膜21の反射
率が非常に小さいため、保護膜7を通って電極配線上に
入射した光は窒化チタン膜21で殆ど反射されないため
、乱反射による受光部2への入射光は従来例の場合に比
べて非常に減少し、スミア不良は大幅に改善される。
そして、このCCD撮像素子をビデオカメラに使用した
場合には、室内等の通常の使用状態では殆ど問題になら
ないことが確認されている。[0017] The CCD image sensor manufactured in this way is as follows:
Since the reflectance of the titanium nitride film 21 formed on the upper surface of the electrode wiring 6 is very low, almost no light incident on the electrode wiring through the protective film 7 is reflected by the titanium nitride film 21. The amount of light incident on 2 is greatly reduced compared to the conventional example, and smear defects are greatly improved. It has been confirmed that when this CCD image sensor is used in a video camera, there is almost no problem under normal usage conditions such as indoors.
【0018】しかしながら、窒化チタンの反射率は十分
小さくないため、上記ビデオカメラを晴天の屋外や強力
なライトのある屋外で使用した場合にスミア不良を生じ
ることがある。However, since the reflectance of titanium nitride is not sufficiently small, smear defects may occur when the video camera is used outdoors on a sunny day or in the presence of strong lights.
【0019】そこで、このような使用の場合でもスミア
不良が生じないようにするためには、上記反射防止膜2
1の材料として、窒化チタンよりも更に反射率の小さい
材料、例えばチタン酸化物(TixOy)あるいはチタ
ンナイトライド酸化物(TixNyOz)を用いればよ
い。Therefore, in order to prevent smear defects even in such a case, the above-mentioned anti-reflection film 2 must be
1 may be a material having a lower reflectance than titanium nitride, such as titanium oxide (TixOy) or titanium nitride oxide (TixNyOz).
【0020】上記チタン酸化物の反射防止膜は、チタン
をアルゴンガスと酸素ガスの混合ガス中でスパッタリン
グすることにより形成され、チタンナイトライド酸化物
の反射防止膜は、チタンをアルゴンガスと酸素ガスと窒
素ガスの混合ガス中でスパッタリングすることにより形
成される。そして、これらは共に黒色であるため、窒化
チタンよりも反射率が小さくスミア不良は改善される。The anti-reflective film of titanium oxide is formed by sputtering titanium in a mixed gas of argon gas and oxygen gas, and the anti-reflective film of titanium nitride oxide is formed by sputtering titanium in a mixed gas of argon gas and oxygen gas. It is formed by sputtering in a mixed gas of and nitrogen gas. Since both of these materials are black, their reflectance is lower than that of titanium nitride, and smear defects are improved.
【0021】また、図4(a),(b)に、それぞれ、
低反射Al−Si膜を反射防止膜として用いた場合の実
施例を示している。図4(a)に示すように、電極配線
材料にAl(100%)を用いた場合、電極配線が形成
された状態から、Al−Siを出力10kw以下、真空
度10mmTorr 以上の条件でスパッタリングを行
い、電極配線6の上に低反射Al−Si膜から成る反射
防止膜33を形成する。[0021] In addition, FIGS. 4(a) and 4(b) show, respectively,
An example is shown in which a low-reflection Al--Si film is used as an antireflection film. As shown in Fig. 4(a), when Al (100%) is used as the electrode wiring material, Al-Si is sputtered under conditions of an output of 10 kW or less and a vacuum of 10 mm Torr or more after the electrode wiring is formed. Then, an antireflection film 33 made of a low-reflection Al--Si film is formed on the electrode wiring 6.
【0022】また、図4(b)に示すように、電極配線
材料にAl−Siを用いた場合、まずAl(100%)
膜34をスパッタリングで遮光膜として形成し、その後
、出力10kw以下,真空度10mmTorr 以上の
条件でスパッタリングを行い、前記Al(100%)膜
34上に低反射Al−Si膜から成る反射防止膜を形成
する。例えば、7kwの出力,20mmTorr の真
空度の条件でAl−Siをスパッタリングする場合、従
来の場合の約50%の反射率となる。Furthermore, as shown in FIG. 4(b), when Al--Si is used as the electrode wiring material, first Al (100%)
The film 34 is formed as a light-shielding film by sputtering, and then sputtering is performed under conditions of an output of 10 kW or less and a vacuum of 10 mm Torr or more to form an antireflection film made of a low-reflection Al-Si film on the Al (100%) film 34. Form. For example, when sputtering Al-Si under conditions of an output of 7 kW and a degree of vacuum of 20 mm Torr, the reflectance is about 50% of that in the conventional case.
【0023】上記チタン酸化物やチタンナイトライド酸
化物の反射防止膜を形成する方法としては、上述した方
法の他に図2に示す方法がある。In addition to the method described above, there is a method shown in FIG. 2 as a method for forming the antireflection film of titanium oxide or titanium nitride oxide.
【0024】図2(a)は図1(a)と同様、電極配線
材料6がシリコン基板1上の全面に形成された状態を示
す。この状態から、次にチタンまたはチタンナイトライ
ドの膜31をスパッタリングにより、図2(b)に示す
ように電極配線材料6の上に形成する。図2(c)は上
記膜31の上にポジ系レジスト8を塗布した後、ガラス
マスクにより受光部2とフィールド部9の一部を選択露
光し、レジスト8の現象を行った状態を示す。図2(d
)は未露光部のレジスト8をエッチングマスクとして、
反射防止膜31および電極配線材料6をエッチングした
後、レジスト8を除去した状態を示す。次に、酸素雰囲
気中で加熱処理を行い、上記チタンまたはチタンナイト
ライドの膜31を酸化して、図2(e)に示すようなチ
タン酸化物またはチタンナイトライド酸化物の反射防止
膜32を得る。このときの加熱温度は電極配線材料がA
l系材料の場合は500℃以下が望ましい。次に、図2
(f)に示すように、図1(f)と同様の方法で保護膜
7を形成し、ボンディングパッド部10の開孔を行う。
上記チタンまたはチタンナイトライドの加熱処理による
酸化は図2(b)の工程の後で行うようにしてもよい。FIG. 2(a) shows a state in which the electrode wiring material 6 is formed on the entire surface of the silicon substrate 1, similar to FIG. 1(a). From this state, a film 31 of titanium or titanium nitride is then formed on the electrode wiring material 6 by sputtering, as shown in FIG. 2(b). FIG. 2C shows a state in which a positive resist 8 is coated on the film 31, and then the light-receiving part 2 and a part of the field part 9 are selectively exposed using a glass mask to effect the phenomenon of the resist 8. Figure 2 (d
) uses the unexposed part of the resist 8 as an etching mask,
A state in which the resist 8 is removed after etching the antireflection film 31 and the electrode wiring material 6 is shown. Next, heat treatment is performed in an oxygen atmosphere to oxidize the titanium or titanium nitride film 31 to form an antireflection film 32 of titanium oxide or titanium nitride oxide as shown in FIG. 2(e). obtain. The heating temperature at this time is A
In the case of l-based materials, the temperature is preferably 500°C or less. Next, Figure 2
As shown in FIG. 1F, a protective film 7 is formed in the same manner as in FIG. 1F, and holes for bonding pad portions 10 are formed. The oxidation of titanium or titanium nitride by heat treatment may be performed after the step shown in FIG. 2(b).
【0025】
第2の発明の実施例
図3は第2の発明の一実施例のCCD撮像素子の製造工
程を示す断面図である。Embodiment of the Second Invention FIG. 3 is a sectional view showing the manufacturing process of a CCD image sensor according to an embodiment of the second invention.
【0026】本実施例の撮像素子は、図1に示す撮像素
子が電極配線の上面にのみ反射防止膜を形成したもので
あるのに対して、電極配線の上面と側面の両方に反射防
止膜を形成したものであり、その他の構成は図1のもの
と同様である。同一構成品には同一符号を付して説明を
省略する。The image sensor of this example has an anti-reflection film formed only on the top surface of the electrode wire, whereas the image sensor shown in FIG. 1 has an anti-reflection film formed only on the top surface of the electrode wire. The other structure is the same as that of FIG. Identical components are given the same reference numerals and their explanations will be omitted.
【0027】図3(a)は電極配線6のパターニングが
終わった状態を示している。次に、図3(b)に示すよ
うに、チタン金属を窒素ガスの雰囲気中でスパッタリン
グを行って、窒化チタン膜21を基板1上の全面に形成
した後、その上にポジレジスト8を塗布形成し、電極配
線6の上面および側面が窒化チタン膜21で被覆できる
ように選択露光を行う。次に、ポジレジスト8を現像後
、残ったポジレジスト8をエッチングマスクとして窒化
チタン膜21をエッチングし、図3(c)の状態となる
。上記残ったポジレジスト8を除去して図3(d)の状
態とした後、図3(e)に示すように図1(f)と同様
の方法で保護膜7を形成し、ボンディングパッド部10
の開孔を行う。FIG. 3(a) shows a state in which the patterning of the electrode wiring 6 has been completed. Next, as shown in FIG. 3(b), titanium metal is sputtered in a nitrogen gas atmosphere to form a titanium nitride film 21 on the entire surface of the substrate 1, and then a positive resist 8 is applied thereon. selective exposure is performed so that the upper and side surfaces of the electrode wiring 6 are covered with the titanium nitride film 21. Next, after developing the positive resist 8, the titanium nitride film 21 is etched using the remaining positive resist 8 as an etching mask, resulting in the state shown in FIG. 3(c). After removing the remaining positive resist 8 to obtain the state shown in FIG. 3(d), as shown in FIG. 3(e), a protective film 7 is formed in the same manner as in FIG. 1(f), and the bonding pad area is 10
Drill the hole.
【0028】このように窒化チタンの反射防止膜を電極
配線6の上面と側面の両方に形成したので、上記反射防
止膜を電極配線の上面だけに形成した第1の発明の実施
例のものに比べて乱反射が少なくなり、スミア不良を一
層軽減することができる。なお、本実施例においても、
第1の発明の実施例と同様に、窒化チタンの反射防止膜
を形成する代わりに、チタン酸化物若しくはチタンナイ
トライド酸化物,又は低反射Al−Si膜の反射防止膜
を形成することにより、スミア不良を更に軽減させるこ
とができる。なお、低反射Al−Si膜を反射防止膜に
用いた場合、チタン酸化物やチタンナイトライド酸化物
を用いた反射防止膜に比べ、反射率は大きいが、歩留り
は高い。Since the anti-reflection film of titanium nitride was formed on both the top and side surfaces of the electrode wiring 6 in this way, the anti-reflection film was formed only on the top surface of the electrode wiring in the embodiment of the first invention. Compared to this, diffused reflection is reduced, and smear defects can be further reduced. In addition, also in this example,
As in the embodiment of the first invention, instead of forming an anti-reflective film of titanium nitride, an anti-reflective film of titanium oxide, titanium nitride oxide, or a low-reflection Al-Si film is formed. Smear defects can be further reduced. Note that when a low-reflection Al-Si film is used as an antireflection film, the reflectance is higher than that of an antireflection film using titanium oxide or titanium nitride oxide, but the yield is high.
【0029】
第3の発明の実施例
図5に、第3の発明の一実施例のCCD撮像素子の構造
断面図を示す。Embodiment of the Third Invention FIG. 5 shows a structural sectional view of a CCD image sensor according to an embodiment of the third invention.
【0030】電極配線形成において、出力10kw以下
、真空度10mmTorr 以上の条件でスパッタリン
グを行い、エッチングにより、図5に示すような低反射
Al−Si電極配線35が形成される。次に、その上か
ら保護膜7を形成した後、ワイヤーボンディングを行う
為のボンディングパッド部10の開孔を行う。In forming the electrode wiring, sputtering is performed under conditions of an output of 10 kW or less and a vacuum of 10 mm Torr or more, and etching is performed to form a low-reflection Al--Si electrode wiring 35 as shown in FIG. Next, a protective film 7 is formed thereon, and then a bonding pad portion 10 for wire bonding is formed.
【0031】このように低反射Al−Si電極配線35
を形成したので、従来のAl−Si電極配線6に比べ乱
反射は少なくなり、スミア不良を軽減することができる
。In this way, the low reflection Al--Si electrode wiring 35
, the irregular reflection is reduced compared to the conventional Al--Si electrode wiring 6, and smear defects can be reduced.
【0032】[0032]
【発明の効果】以上より明らかなように、第1の発明の
固体撮像素子は、電極配線の上面にその電極配線の反射
率よりも小さい反射率の反射防止膜を形成しているので
、保護膜を通って上記電極配線の上面に入射した光は上
記反射防止膜で殆ど反射されないために、受光部に入射
する反射光は殆どなく、スミア不良の発生を防止するこ
とができる。Effects of the Invention As is clear from the above, the solid-state imaging device of the first invention has an anti-reflection film formed on the upper surface of the electrode wiring with a reflectance smaller than that of the electrode wiring, so that it is protected. Since almost no light entering the upper surface of the electrode wiring through the film is reflected by the anti-reflection film, almost no reflected light enters the light receiving section, making it possible to prevent smear defects from occurring.
【0033】また、第2の発明の固体撮像素子は、電極
配線の上面と側面にその電極配線の反射率よりも小さい
反射率の反射防止膜を形成しているので、保護膜を通っ
て上記電極配線の上面および側面に入射した光は上記反
射防止膜で殆ど反射されないために、受光部に入射する
反射光は第1の発明に比べて更に少なく、スミア不良の
発生を一層防止することができる。Further, in the solid-state imaging device of the second invention, since an anti-reflection film having a reflectance smaller than that of the electrode wiring is formed on the top and side surfaces of the electrode wiring, the above-mentioned Since almost no light incident on the top and side surfaces of the electrode wiring is reflected by the anti-reflection film, the amount of reflected light incident on the light receiving section is even smaller than in the first invention, making it possible to further prevent the occurrence of smear defects. can.
【0034】さらに、第3の発明の固体撮像素子は、低
反射Al−Si膜を用いて電極配線を形成しているので
、保護膜を通って該電極配線に入射した光は、殆ど反射
されないために、受光部に入射する反射光は、従来の反
射防止膜を設けていない電極配線に比べて少なく、スミ
ア不良をより効果的に防止することができる。Furthermore, in the solid-state imaging device of the third invention, since the electrode wiring is formed using a low-reflection Al-Si film, almost no light that enters the electrode wiring through the protective film is reflected. Therefore, the amount of reflected light incident on the light receiving section is smaller than that of conventional electrode wiring not provided with an antireflection film, and smear defects can be more effectively prevented.
【0035】また、上記第1の発明の固体撮像素子およ
び第2の発明の固体撮像素子共、上記反射防止膜を、チ
タン酸化物若しくはチタンナイトライド酸化物などの金
属酸化物又は低反射Al−Si膜の反射防止膜とするこ
とにより、スミア不良をより効果的にすることができる
。Further, in both the solid-state imaging device of the first invention and the solid-state imaging device of the second invention, the antireflection film is made of a metal oxide such as titanium oxide or titanium nitride oxide, or a low-reflection Al- By using a Si film as an antireflection film, smear defects can be more effectively prevented.
【図1】第1の発明の一実施例の製造工程を示す断面図
である。FIG. 1 is a sectional view showing the manufacturing process of an embodiment of the first invention.
【図2】第1の発明の他の実施例の製造工程を示す断面
図である。FIG. 2 is a sectional view showing the manufacturing process of another embodiment of the first invention.
【図3】第2の発明の一実施例の製造工程を示す断面図
である。FIG. 3 is a sectional view showing the manufacturing process of an embodiment of the second invention.
【図4】(a)および(b)は、それぞれ、低反射Al
−Si膜を反射防止膜として用いた場合の第1の発明の
実施例の構造断面図である。FIG. 4 (a) and (b) are low-reflection Al
FIG. 2 is a structural cross-sectional view of an embodiment of the first invention in which a -Si film is used as an antireflection film.
【図5】第3の発明の一実施例の構造断面図である。FIG. 5 is a structural sectional view of an embodiment of the third invention.
【図6】従来例の構造断面図である。FIG. 6 is a structural sectional view of a conventional example.
【図7】従来例の製造工程を示す断面図である。FIG. 7 is a cross-sectional view showing a conventional manufacturing process.
1 シリコン基板
2 受光部
3 電荷転送領域
4 酸化膜
5 電荷転送用電極
6 電極配線
7 保護膜
8 ポジレジスト
9 フィールド部
10 電極パッド部
21 窒化チタン等の反射防止膜
31 チタン等の金属膜
32 チタン酸化物等の金属酸化物の反射防止膜33
低反射Al−Si反射防止膜
34 Al(100%)膜
35 低反射Al−Si電極配線1 Silicon substrate 2 Light receiving section 3 Charge transfer region 4 Oxide film 5 Charge transfer electrode 6 Electrode wiring 7 Protective film 8 Positive resist 9 Field section 10 Electrode pad section 21 Antireflection film such as titanium nitride 31 Metal film such as titanium 32 Titanium Antireflection film 33 of metal oxide such as oxide
Low reflection Al-Si anti-reflection film 34 Al (100%) film 35 Low reflection Al-Si electrode wiring
Claims (3)
た電荷転送領域を形成した基板上の上記各電荷転送領域
の上に電荷転送用電極を形成すると共に上記電荷転送用
電極と上記受光部を覆うように絶縁層を形成し、上記各
電荷転送用電極の上の絶縁層の上に電極配線を形成し、
更にその上に保護膜を形成した固体撮像素子において、
上記電極配線の上面に上記電極配線の反射率よりも小さ
い反射防止膜を形成したことを特徴とする固体撮像素子
。1. A charge transfer electrode is formed on each of the charge transfer regions on a substrate on which a plurality of light receiving portions and a charge transfer region adjacent to each of the light receiving portions are formed, and the charge transfer electrode and the light receiving portion are formed on the substrate. forming an insulating layer so as to cover the charge transfer electrodes, and forming electrode wiring on the insulating layer on each of the charge transfer electrodes;
Furthermore, in a solid-state image sensor with a protective film formed thereon,
A solid-state image sensing device characterized in that an antireflection film having a reflectance smaller than that of the electrode wiring is formed on the upper surface of the electrode wiring.
た電荷転送領域を形成した基板上の上記各電荷転送領域
の上に電荷転送用電極を形成すると共に上記電荷転送用
電極と上記受光部を覆うように絶縁層を形成し、上記各
電荷転送用電極の上の絶縁層の上に電極配線を形成し、
更にその上に保護膜を形成した固体撮像素子において、
上記電極配線の上面と側面に上記電極配線の反射率より
も小さい反射率の反射防止膜を形成したことを特徴とす
る固体撮像素子。2. A charge transfer electrode is formed on each of the charge transfer regions on a substrate on which a plurality of light receiving portions and a charge transfer region adjacent to each of the light receiving portions are formed, and the charge transfer electrode and the light receiving portion are formed on the substrate. forming an insulating layer so as to cover the charge transfer electrodes, and forming electrode wiring on the insulating layer on each of the charge transfer electrodes;
Furthermore, in a solid-state image sensor with a protective film formed thereon,
A solid-state imaging device characterized in that an antireflection film having a reflectance smaller than that of the electrode wiring is formed on the upper and side surfaces of the electrode wiring.
た電荷転送領域を形成した基板上の上記各電荷転送領域
の上に電荷転送用電極を形成すると共に上記電荷転送用
電荷と上記受光部を覆うように絶縁層を形成し、上記各
電荷転送用電極の上の絶縁層の上に電極配線を形成し、
更にその上に保護膜を形成した固体撮像素子において、
上記電極配線が、表面が低反射率となる形成条件で形成
されたAl−Si膜から成ることを特徴とする固体撮像
素子。3. A charge transfer electrode is formed on each of the charge transfer regions on a substrate on which a plurality of light receiving portions and a charge transfer region adjacent to each of the light receiving portions are formed, and the charge transfer electrode and the light receiving portion are connected to each other. forming an insulating layer so as to cover the charge transfer electrodes, and forming electrode wiring on the insulating layer on each of the charge transfer electrodes;
Furthermore, in a solid-state image sensor with a protective film formed thereon,
A solid-state imaging device characterized in that the electrode wiring is made of an Al-Si film formed under conditions such that the surface has a low reflectance.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-274801 | 1990-10-11 | ||
JP27480190 | 1990-10-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04212459A true JPH04212459A (en) | 1992-08-04 |
Family
ID=17546756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3011354A Pending JPH04212459A (en) | 1990-10-11 | 1991-02-01 | Solid image pick-up element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04212459A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002100755A (en) * | 2000-08-18 | 2002-04-05 | Hynix Semiconductor Inc | Cmos image sensor and manufacturing method thereof |
US6960817B2 (en) * | 2000-04-21 | 2005-11-01 | Canon Kabushiki Kaisha | Solid-state imaging device |
US7016089B2 (en) | 1999-12-06 | 2006-03-21 | Canon Kabushiki Kaisha | Amplification-type solid state imaging device with reduced shading |
KR100870347B1 (en) * | 2002-06-29 | 2008-11-25 | 매그나칩 반도체 유한회사 | Method of manufacturing a image device |
US7745834B2 (en) | 2005-08-03 | 2010-06-29 | Panasonic Corporation | Semiconductor image sensor and method for fabricating the same |
WO2021075162A1 (en) * | 2019-10-18 | 2021-04-22 | 富士電機株式会社 | Semiconductor device, and manufacturing method for same |
-
1991
- 1991-02-01 JP JP3011354A patent/JPH04212459A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8248677B2 (en) | 1999-12-06 | 2012-08-21 | Canon Kabushiki Kaisha | Solid-state imaging device |
US7016089B2 (en) | 1999-12-06 | 2006-03-21 | Canon Kabushiki Kaisha | Amplification-type solid state imaging device with reduced shading |
US7616355B2 (en) | 1999-12-06 | 2009-11-10 | Canon Kabushiki Kaisha | Solid-state imaging device |
US7864384B2 (en) | 1999-12-06 | 2011-01-04 | Canon Kabushiki Kaisha | Solid-state imaging device |
US7936487B2 (en) | 1999-12-06 | 2011-05-03 | Canon Kabushiki Kaisha | Solid-state imaging device |
US8416473B2 (en) | 1999-12-06 | 2013-04-09 | Canon Kabushiki Kaisha | Solid-state imaging device |
US6960817B2 (en) * | 2000-04-21 | 2005-11-01 | Canon Kabushiki Kaisha | Solid-state imaging device |
JP2002100755A (en) * | 2000-08-18 | 2002-04-05 | Hynix Semiconductor Inc | Cmos image sensor and manufacturing method thereof |
KR100870347B1 (en) * | 2002-06-29 | 2008-11-25 | 매그나칩 반도체 유한회사 | Method of manufacturing a image device |
US7745834B2 (en) | 2005-08-03 | 2010-06-29 | Panasonic Corporation | Semiconductor image sensor and method for fabricating the same |
US8017418B2 (en) | 2005-08-03 | 2011-09-13 | Panasonic Corporation | Semiconductor image sensor and method for fabricating the same |
WO2021075162A1 (en) * | 2019-10-18 | 2021-04-22 | 富士電機株式会社 | Semiconductor device, and manufacturing method for same |
JPWO2021075162A1 (en) * | 2019-10-18 | 2021-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05134111A (en) | Solid image pick-up apparatus | |
KR20000041461A (en) | Fabrication method of improved image sensor | |
JP3680512B2 (en) | Solid-state image sensor | |
JP2011171328A (en) | Solid-state image pickup element and method of manufacturing the same | |
JPH04212459A (en) | Solid image pick-up element | |
JPH11233750A (en) | Method for manufacturing solid-state image pick-up element | |
JP3402429B2 (en) | Solid-state imaging device and method of manufacturing the same | |
JPS6173033A (en) | Color exposure device | |
US20020102498A1 (en) | Method for forming biconvex microlens of image sensor | |
JPH04259256A (en) | Solid state image sensor | |
JP2002314057A (en) | Manufacturing method of solid-state image sensing device and solid-state image sensing system | |
JPS5842368A (en) | Solid-state image pickup element | |
JP2000156485A (en) | Solid-state image sensing device and manufacture thereof | |
JPH05226624A (en) | Solid-state image pick-up device and its manufacture | |
JPH11214664A (en) | Solid state image sensing element and manufacture thereof | |
JP2630407B2 (en) | Charge-coupled device | |
JP4008126B2 (en) | Method for manufacturing solid-state imaging device | |
JPS5844867A (en) | Solid-state image pickup device and its manufacture | |
JP2006041026A (en) | Solid-state imaging element and manufacturing method thereof | |
JPH10209410A (en) | Manufacture of solid-state image pick up element | |
JPH11121728A (en) | Solid-state image pick-up device | |
JP3413977B2 (en) | Solid-state imaging device and method of manufacturing the same | |
JPH08288490A (en) | Manufacture of solid-state image pickup element | |
JPH09232552A (en) | Solid state image pickup device | |
KR960006201B1 (en) | Manufacturing method of solid state image pick up device |