JPH0395968A - Solid-state image pick-up element - Google Patents

Solid-state image pick-up element

Info

Publication number
JPH0395968A
JPH0395968A JP1232114A JP23211489A JPH0395968A JP H0395968 A JPH0395968 A JP H0395968A JP 1232114 A JP1232114 A JP 1232114A JP 23211489 A JP23211489 A JP 23211489A JP H0395968 A JPH0395968 A JP H0395968A
Authority
JP
Japan
Prior art keywords
light
film
point metal
high melting
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1232114A
Other languages
Japanese (ja)
Inventor
Tadahiro Miwatari
忠浩 見渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1232114A priority Critical patent/JPH0395968A/en
Publication of JPH0395968A publication Critical patent/JPH0395968A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent scattering of the area of a light-receiving window even after going through annealing treatment at 300-450 deg.C and irregular reflection from a ground when forming a pattern of film on the light-receiving window by using a high melting- point metal film as a light-screening film for isolating each light-receiving element and by using the high melting-point metal film and an aluminum film which is placed above it as a means for screening light at a charge transfer region. CONSTITUTION:The title item consists of a high melting-point metal film 9 with a light-receiving window 11 on a light-receiving element and a light-screening aluminum film 1 covering only the area above an n-type diffusion layer 5. An aluminum film is superposed onto the high melting-point metal film at a CCD requiring light-screening property. The high melting-point metal film does not produce any hillock as in an aluminum film even though an annealing process at 300-450 deg.C, thus preventing the area of the light-receiving window from scattering if this high melting-point metal film is used as a film determined the light-receiving window. Use of a high melting- point metal film with lower reflectivity than that of the aluminum film prevents irregular reflection generated due to level difference in the ground on exposure and enables patterning to be made accurately.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は固体撮像素子に関し、特に、電荷結合素子(C
OD)を用いた固体撮像素子に関する.C従来の技術] 従来のこの種撮像素子の平面図を第4図に、そのA−A
’線断面図を第5図に示す。第4図に示されるように、
従来の固体撮像素子においては、半導体基板上には、マ
トリクス状に受光窓11が開口された遮光アルミニウム
膜1aが形成されていた.遮光アルミニウム膜1a下に
は、第5図に示されるように、n型半導体基板8上のp
型ウェル領域2の表面領域内に、チャネルストップ領域
6によって分離されてフォトダイオードのn型拡散層3
と、CCDの電荷転送領域であるn型拡散層5とが形成
されている。また、遮光アルミニウム膜1a下の半導体
基板上には、絶縁M7に囲まれてゲート電f!4が形成
されている.このような固体撮像素子の遮光膜に要求さ
れる特性としては、 ■CODに光が漏れ込まないように十分に遮光する膜で
あること、 ■ 受光窓の面積がばらつかないように精度よく加工で
きる膜であること、 の2点が挙げられる.この2点を満足する膜としてアル
ミニウム膜が広く用いられている.[発明が解決しよう
とする課題〕 上述した従来の固体撮像素子の遮光膜は、アルミニウム
膜を遮光膜として用いるための下記に示す2つの欠点が
あった. 第1に、固体撮像素子の製造工程においては、遮光膜を
加工した後、半導体基板の表面単位を削減するために水
素雰囲気中で300〜450℃のアニール処理を施す必
要があるが、遮光アルミニウム膜には、このアニール処
理によりヒロツクと呼ばれる突起物が表面に生じる.遮
光膜の側壁および表面に部分的に生じるこの突起物によ
り、受光窓の面積にばらつきが生じる. 第2の欠点は、アルミニウム膜の光の反射率が高いこと
である.第4図に示した従来の固体撮像素子において、
各受光窓上にゼラチンまたはカゼイン等の乳剤を塗布し
てこれをバターニングし、さらに所望の分光特性を持つ
ように染色すれば、色感度を持つ固体撮像素子を実現す
ることができる. 而して、バターニングは、300〜400nmの波長の
紫外線を用いてこれを行っているが、パターニングすべ
き膜の下に反射率の高い膜が存在すると、露光時に乱反
射が起こり、精確なパターニングが困難となる. [課題を解決するための手段] 本発明の固体撮像素子は、半導体基板の一生面に、周期
的に配列された複数の受光素子と、各受光素子から信号
を読み出すための電荷転送領域とを設け、遮光膜により
各受光素子を分離しかつ電荷転送領域を完全に遮光した
ものであって、各受光素子を分離する遮光膜として高融
点金属膜(または、高融点金属シリサイド膜〉を用い、
電荷転送領域を遮光する手段として前記高融点金属膜と
その上部に配置されたアルミニウム膜を用いるものであ
る. [実施例] 次に、本発明の実施例について図面を参照して説明する
. 第1図は、本発明の一実施例を示す断面図である。同図
は、第5図と同一の断面部分を示す図であって、第5図
と同一の部分には同一の参照番号が付されている.この
実施例の第5図の従来例と相違する点は、従来例におい
ては遮光アルミニウム膜1aを用いていたのに対し、こ
の実施例においては、これを受光素子上に受光窓11を
有する高融点金属膜9とCCDのn型拡散層5上のみを
覆っている遮光アルミニウム膜1とによって構成した点
であって、その他の点では従来例と変わるところはない
. 第2図に高融点金属膜とアルミニウム膜の各光学波長光
に対する透過率のグラフを示す.高融点金属膜は、アル
ミニウム膜に比べて遮光性において劣る.そのため本発
明においては遮光性の要求されるCCD部では、高融点
金属膜上にアルミニウム膜を重ねる. 一方、高融点金属膜は、300〜450℃のアニール工
程を経ても、アルミニウム膜のようにヒロツクが発生す
ることがないので、受光窓を画定する膜としてこの高融
点金R膜を用いるならば受光窓の面積をばらつかないよ
うにすることができる. また、カラーフィルタ形成工程においては、受光窓付近
の反射が問題となるところ、ここにはアルミニウム膜よ
り反射率が低い高融点金属膜を用いているので、露光時
に下地段差で発生する乱反射を防止することができ、パ
ターニングを精確に行うことができる. 本発明による遮光膜の形成工程においては、遮光アルミ
ニウム膜1をエッチングする際に高融点金属膜9との選
択比が要求されるが、60℃前後のリン酸液を用いれば
容易にこれを達成することができる. 第3図は、本発明の他の実施例を示す断面図である.こ
の実施例では、高融点金属膜9の下にポリシリコン膜1
0を配した構造になっている.このボリシリコン膜10
により、高融点金属M9の密着性が増し、また、遮光膜
の導電性がよくなることから、遮光膜を!極として使用
した場合の信頼性が向上する. なお、上記各実施例において用いられた高融点金属膜に
替えて高融点金属シソサイド膜を用いても、本発明は上
記各実施例と同様の効率を奏することができる. [発明の効果] 以上説明したように、本発明の固体撮像素子においては
、遮光アルミニウム膜をCODの遮光用としてのみ用い
、受光窓を形成した高融点金属膜または高融点金属シリ
サイド膜により各受光素子を分離しているので、本発明
によれば、300〜450℃のアニール処理を経ても受
光窓の面積がばらつくことがなくなり、また、受光窓上
にフィルタ膜のパターンを形成する際に下地からの乱反
射を防止することができて精確なパターンを形成するこ
とができる.
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state image sensor, and particularly to a charge-coupled device (C
Regarding solid-state imaging devices using OD). C. Prior Art] A plan view of a conventional image sensor of this type is shown in FIG.
A line sectional view is shown in Fig. 5. As shown in Figure 4,
In a conventional solid-state image sensor, a light-shielding aluminum film 1a having light-receiving windows 11 opened in a matrix is formed on a semiconductor substrate. Under the light-shielding aluminum film 1a, as shown in FIG.
In the surface area of the type well region 2, an n-type diffusion layer 3 of the photodiode is separated by a channel stop region 6.
and an n-type diffusion layer 5 which is a charge transfer region of the CCD. Further, on the semiconductor substrate under the light-shielding aluminum film 1a, there is a gate voltage f! surrounded by an insulator M7. 4 is formed. The characteristics required of the light-shielding film of such a solid-state image sensor are: ■ The film must be sufficiently light-shielding to prevent light from leaking into the COD, and ■ It must be precisely processed so that the area of the light-receiving window does not vary. There are two points to mention: the membrane is capable of forming Aluminum film is widely used as a film that satisfies these two points. [Problems to be Solved by the Invention] The light-shielding film of the conventional solid-state image sensing device described above has the following two drawbacks due to the use of an aluminum film as the light-shielding film. First, in the manufacturing process of solid-state image sensors, after processing the light-shielding film, it is necessary to perform annealing treatment at 300 to 450°C in a hydrogen atmosphere to reduce the surface unit of the semiconductor substrate. This annealing process produces protrusions called ridges on the surface of the film. These protrusions that partially form on the sidewalls and surface of the light-shielding film cause variations in the area of the light-receiving window. The second drawback is that the aluminum film has a high light reflectance. In the conventional solid-state image sensor shown in FIG.
By coating an emulsion such as gelatin or casein on each light-receiving window, buttering it, and dyeing it to have the desired spectral characteristics, a solid-state imaging device with color sensitivity can be realized. Butterning is carried out using ultraviolet rays with a wavelength of 300 to 400 nm, but if there is a highly reflective film under the film to be patterned, diffuse reflection will occur during exposure, making it difficult to perform accurate patterning. becomes difficult. [Means for Solving the Problems] The solid-state image sensor of the present invention includes a plurality of periodically arranged light receiving elements and a charge transfer region for reading out signals from each light receiving element on the entire surface of a semiconductor substrate. A light-shielding film is provided to separate each light-receiving element and completely shield the charge transfer region from light, using a high-melting point metal film (or a high-melting-point metal silicide film) as the light-shielding film that separates each light-receiving element.
The high melting point metal film and the aluminum film placed on top of the high melting point metal film are used as a means for shielding the charge transfer region from light. [Example] Next, an example of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing one embodiment of the present invention. This figure shows the same cross-sectional portion as FIG. 5, and the same parts as in FIG. 5 are given the same reference numerals. The difference between this embodiment and the conventional example shown in FIG. It is constructed of a melting point metal film 9 and a light-shielding aluminum film 1 covering only the n-type diffusion layer 5 of the CCD, and is otherwise the same as the conventional example. Figure 2 shows a graph of the transmittance of the high-melting point metal film and aluminum film for light at each optical wavelength. High melting point metal films are inferior to aluminum films in terms of light shielding properties. Therefore, in the present invention, in the CCD section where light-shielding properties are required, an aluminum film is layered on a high-melting point metal film. On the other hand, unlike aluminum films, high melting point metal films do not generate hills even after undergoing an annealing process at 300 to 450°C. The area of the light-receiving window can be made uniform. In addition, in the color filter forming process, reflection near the light receiving window is a problem, but since a high melting point metal film with a lower reflectance than an aluminum film is used here, it prevents diffused reflection that occurs at the step of the base during exposure. This allows for accurate patterning. In the process of forming a light shielding film according to the present invention, a selectivity with respect to the high melting point metal film 9 is required when etching the light shielding aluminum film 1, but this can be easily achieved by using a phosphoric acid solution at around 60°C. can do. FIG. 3 is a sectional view showing another embodiment of the present invention. In this embodiment, a polysilicon film 1 is placed under a high melting point metal film 9.
It has a structure in which 0 is arranged. This polysilicon film 10
This increases the adhesion of the high-melting point metal M9 and improves the conductivity of the light-shielding film, so use the light-shielding film! Improves reliability when used as a pole. Note that even if a high melting point metal sisoside film is used in place of the high melting point metal film used in each of the above embodiments, the present invention can achieve the same efficiency as in each of the above embodiments. [Effects of the Invention] As explained above, in the solid-state image sensor of the present invention, the light-shielding aluminum film is used only for shielding light from COD, and the high-melting point metal film or high-melting point metal silicide film forming the light-receiving window allows each light to be received. Since the elements are separated, according to the present invention, the area of the light-receiving window does not vary even after annealing at 300 to 450°C, and when forming a filter film pattern on the light-receiving window, It is possible to prevent diffused reflection from the surface and form accurate patterns.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す断面図、第2図は、
その動作説明図、第3図は、本発明の他の実施例を示す
断面図、第4図は、従来例を示す平面図、第5図は、第
4図のA−A’線断面図である. 1、1a・・・遮光アルミニウム膜、  2・・・p型
ウェル領域、  3・・・n型拡散層(フオトダイオー
ド)、  4・・・ゲート電極、  5・・・n型拡散
層(t荷転送領域)、  6・・・チャネルストップ領
域、  7・・・絶縁膜、 8・・・n型半導体基板、
9・・・高融点金属膜、  10・・・ポリシリコン膜
、11・・・受光窓.
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG. 2 is a sectional view showing an embodiment of the present invention.
3 is a sectional view showing another embodiment of the present invention, FIG. 4 is a plan view showing a conventional example, and FIG. 5 is a sectional view taken along the line AA' in FIG. 4. It is. DESCRIPTION OF SYMBOLS 1, 1a... Light-shielding aluminum film, 2... P-type well region, 3... N-type diffusion layer (photodiode), 4... Gate electrode, 5... N-type diffusion layer (t-type well region),... transfer region), 6... channel stop region, 7... insulating film, 8... n-type semiconductor substrate,
9... High melting point metal film, 10... Polysilicon film, 11... Light receiving window.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の一主面上に規則的に配列された複数の受光
素子と、前記半導体基板の一主面上に形成され前記受光
素子において光電変換された信号電荷を受け取りこれを
転送する電荷転送領域と、前記半導体基板上に絶縁膜を
介して形成された、前記複数の受光素子を分離するとと
もに前記電荷転送領域を遮光する遮光膜とを具備する固
体撮像素子において、前記遮光膜は各受光素子上に開口
を有する高融点金属膜または高融点金属シリサイド膜と
、前記電荷転送領域上に形成されたアルミニウム膜とか
ら構成されていることを特徴とする固体撮像素子。
a plurality of light-receiving elements regularly arranged on one principal surface of a semiconductor substrate; and a charge transfer region formed on one principal surface of the semiconductor substrate for receiving and transferring signal charges photoelectrically converted in the light-receiving elements. and a light-shielding film formed on the semiconductor substrate with an insulating film in between, which separates the plurality of light-receiving elements and blocks light from the charge transfer region, wherein the light-shielding film covers each light-receiving element. 1. A solid-state imaging device comprising a refractory metal film or a refractory metal silicide film having an opening thereon, and an aluminum film formed on the charge transfer region.
JP1232114A 1989-09-07 1989-09-07 Solid-state image pick-up element Pending JPH0395968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1232114A JPH0395968A (en) 1989-09-07 1989-09-07 Solid-state image pick-up element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1232114A JPH0395968A (en) 1989-09-07 1989-09-07 Solid-state image pick-up element

Publications (1)

Publication Number Publication Date
JPH0395968A true JPH0395968A (en) 1991-04-22

Family

ID=16934227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1232114A Pending JPH0395968A (en) 1989-09-07 1989-09-07 Solid-state image pick-up element

Country Status (1)

Country Link
JP (1) JPH0395968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669481A (en) * 1992-08-17 1994-03-11 Matsushita Electron Corp Solid-state image pickup and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669481A (en) * 1992-08-17 1994-03-11 Matsushita Electron Corp Solid-state image pickup and its production

Similar Documents

Publication Publication Date Title
KR100194841B1 (en) Solid state phase detection device manufacturing method
KR20000041461A (en) Fabrication method of improved image sensor
JPH04196167A (en) Solid state image sensing element
JP3308778B2 (en) Method for manufacturing solid-state imaging device
JPH0395968A (en) Solid-state image pick-up element
JPH069229B2 (en) Method of manufacturing solid-state imaging device
JP2871831B2 (en) Solid-state imaging device
JPH031873B2 (en)
JPS5928065B2 (en) Manufacturing method of solid-state image sensor
JPS5972164A (en) Solid-state image-pickup device
KR100410590B1 (en) Image sensor and Method for fabricating image sensor
JPH02244761A (en) Solid image pickup element and manufacture thereof
JP2630407B2 (en) Charge-coupled device
JPH05299625A (en) Solid-state image sensing element and manufacture thereof
JPH07101734B2 (en) Method of manufacturing solid-state imaging device
KR20030001066A (en) Method for fabricating light detecting device
KR20010059238A (en) Image sensor structure to improved photo sensitivity and method for fabricating the same
JPH06125071A (en) Solid-state image sensing element and manufacture thereof
KR100793563B1 (en) The method of fabrication for CMOS image sensor
KR100442294B1 (en) Image Sensor
JPS61287263A (en) Solid-state image pickup device and manufacture thereof
KR20010011607A (en) Solid static pick-up device having microlens and method for manufacturing the same
KR20030042305A (en) The method of fabrication for CMOS image sensor
JPH0338063A (en) Color solid image pick-up element and manufacture thereof
JPH08167725A (en) Micromirror array, manufacture thereof and photoelectric converter