JPH0474825A - Method for controlling temperature of steel sheet in continuous heating furnace - Google Patents

Method for controlling temperature of steel sheet in continuous heating furnace

Info

Publication number
JPH0474825A
JPH0474825A JP18586490A JP18586490A JPH0474825A JP H0474825 A JPH0474825 A JP H0474825A JP 18586490 A JP18586490 A JP 18586490A JP 18586490 A JP18586490 A JP 18586490A JP H0474825 A JPH0474825 A JP H0474825A
Authority
JP
Japan
Prior art keywords
temperature
sheet
plate
temp
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18586490A
Other languages
Japanese (ja)
Inventor
Tadaharu Kobayashi
忠晴 小林
Ichiro Ueda
一郎 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18586490A priority Critical patent/JPH0474825A/en
Publication of JPH0474825A publication Critical patent/JPH0474825A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the deviation of the temp. of a steel sheet as far as possible and to execute sure temp. control by calculating the pass speed to compensate the 'amt. of deviation from a target value' from the predicted deviation of the sheet temp. at the outlet of a heating furnace and continuously changing the pass speed by presetting. CONSTITUTION:A strip 1 formed by welding plural coils of different kinds is passed in a white arrow direction in the continuous heating furnace 2. The specifications and position information of the coils are sent to a sheet temp. controller (model I) 6 at this time. The set value of the furnace temp. and the timing for changing this value, the set value of the pass speed and the timing for changing this value are set and the optimum transition orbit of the sheet temp. is predicted. The flow rate of fuel flowing into radiant tubes 8 is controlled in accordance with this information in the furnace temp. controller 7. Further, the width of the deviation from the target sheet temp. is calculated from the 'predicted transition orbit of the sheet temp.' and the set value of the pass speed is determined in an additional sheet temp. controller (model II) 9. A driving roll 3 is so controlled that the pass speed attains the above- mentioned set value via a speed controller 10.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、例えば“板厚”、“板幅”、“材質”又は
“加熱炉出口の目標温度”等が異なる種々の鋼板を溶接
して連続した鋼板となし、これを加熱炉内へ連続的に通
板して加熱処理する際の“鋼板の温度制御方法”に関す
るものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to welding various steel plates having different "plate thickness", "plate width", "material", or "target temperature at the outlet of a heating furnace", for example. The present invention relates to a "temperature control method for steel plates" when the steel plates are continuously passed through a heating furnace for heat treatment.

〈従来技術とその課題〉 一般に、冷間圧延された調板には所要の特性を付与すべ
く加熱、均熱、冷却等を組合わせた様々な熱処理が加え
られているが、この熱処理は生産性の面から連続的かつ
高速で行われるのが普通である。
<Prior art and its issues> In general, cold-rolled prepared plates are subjected to various heat treatments that combine heating, soaking, cooling, etc. in order to impart the desired properties. From a sexual perspective, it is usually done continuously and at high speed.

しかし、近年、連続熱処理炉(連続焼鈍炉)で処理され
る鋼板は、多品種、小ロットの需要が多くなったことを
反映して板厚、板幅、材質等の異なるコイルを溶接して
−続きとしたものが急増しており、このため熱処理炉の
炉温設定値を頻繁に変更することが必要となっている。
However, in recent years, steel plates processed in continuous heat treatment furnaces (continuous annealing furnaces) have been welded with coils of different plate thicknesses, plate widths, materials, etc., reflecting the increasing demand for a wide variety of products and small lots. - The number of cases where the heat treatment furnace continues is rapidly increasing, and it is therefore necessary to frequently change the furnace temperature setting of the heat treatment furnace.

ところで、加熱炉における加熱方式としては、鋼板の酸
化防止等の面からラジアントチューブ等を用いた間接加
熱方式が広く採用されているが、この方式には、炉温設
定値を変更した際の実績炉温値の追従性が極めて低いと
言う欠点がある。
By the way, as a heating method in a heating furnace, an indirect heating method using a radiant tube, etc. is widely adopted from the viewpoint of preventing oxidation of the steel plate, but this method has a proven track record when changing the furnace temperature setting. The drawback is that the followability of the furnace temperature value is extremely low.

例えば、特開昭57−35640号として提案されてい
る加熱装置での操業に例示される如く、異種鋼板を溶接
接合してから行う綱板の連続加熱処理では、加熱炉に入
る鋼板の溶接点を境とした前後で鋼板温度の制御が必要
となるが、この場合、“炉温設定値の変更量”及び“変
位のタイミングを操業上の諸条件に応じて予め計算によ
り求めておき、その計算結果に基づいて炉温設定値の変
更行うことがなされる。
For example, as exemplified by the operation of a heating device proposed in JP-A No. 57-35640, in continuous heat treatment of steel plates after welding and joining different steel plates, the welding point of the steel plate entering the heating furnace is It is necessary to control the steel plate temperature before and after reaching the boundary, but in this case, the "amount of change in the furnace temperature setting" and the "timing of displacement" should be calculated in advance according to various operating conditions, and then the temperature should be controlled. The furnace temperature setting value is changed based on the calculation result.

第1図は、上記装置による鋼板温度の制御例を示してお
り、“板幅、材質、目標温度が共に等しく板厚のみが異
なる鋼板”同士を溶接した部分での制御方法を説明した
ものであるが、第1図に示すように、炉温の設定値は板
厚変化に対応すべ(破線で示す状態とされる。
Figure 1 shows an example of controlling the temperature of a steel plate using the above device, and explains the control method in a welded section of ``steel plates that have the same width, material, and target temperature, but differ only in thickness.'' However, as shown in Fig. 1, the set value of the furnace temperature should correspond to the change in plate thickness (the state shown by the broken line).

しかしながら、炉温の実績値は追従性の低さのため実線
で示されるような変化経過をたどる。従って、鋼板温度
は、目標温度に対し溶接点の前後でハンチングにて示す
領域が外れる結果となる。
However, the actual value of the furnace temperature follows a change course as shown by the solid line due to poor followability. Therefore, the steel plate temperature will deviate from the range shown by hunting before and after the welding point with respect to the target temperature.

そして、このように綱板温度が目標温度から外れると鋼
板の“焼き不足”又は“焼き過ぎ”を招き、製品として
の歩留りを低下させることになる。
If the steel sheet temperature deviates from the target temperature in this way, the steel sheet will be "under-baked" or "over-baked" and the yield as a product will be reduced.

そこで、このような“目標温度外れ”が解消されるよう
に、上記“炉温設定値の変更”に加えて“鋼板の通板速
度を変更する制御”を併用した方法が、特開昭61−1
90026号として提案された。この方法においては、
加熱炉出口における鋼板温度(以降、単に“板温”と記
す)と炉温、燃料流量、板厚、板幅及び通板速度との関
係を動的に表現する板温制御モデルを設けると共に、将
来の板厚、板幅又は目標板温値の変更(以降、“セット
替”と記す)に際してはこのモデルを用いて“板温の最
適推移軌道”と“最適通板速度変更量”及び“速度変更
開始の最適タイミングを計算し、その結果に基づく “
1回のみ不連続で行われる通板速度の変更を含む制御”
を実施することがポイントとされている。
Therefore, in order to eliminate such "deviation from the target temperature", a method that uses "control to change the steel plate threading speed" in addition to the above-mentioned "change of the furnace temperature setting" is proposed in JP-A-61. -1
It was proposed as No. 90026. In this method,
In addition to providing a plate temperature control model that dynamically expresses the relationship between the steel plate temperature at the outlet of the heating furnace (hereinafter simply referred to as "plate temperature"), furnace temperature, fuel flow rate, plate thickness, plate width, and strip threading speed, When changing the plate thickness, plate width, or target plate temperature value in the future (hereinafter referred to as "set change"), use this model to determine the "optimum transition trajectory of plate temperature," the "optimum amount of change in plate threading speed," and " Calculates the optimal timing to start changing speed and based on the results “
"Control that includes changing the threading speed only once discontinuously"
The key point is to implement the following.

しかしながら、特開昭61−190026号として提案
された前記方法によっても、セント暫時における板厚、
板幅或いは目標板温値の変更量が大きい場合には、板温
の最適推移軌道を実現したとしても比較的長い区間にお
いて板温がその目標値から外れてしまうと言う問題を完
全に解消することができなかった。
However, even with the method proposed in JP-A-61-190026, the plate thickness at the time of cent.
To completely eliminate the problem that when the amount of change in the plate width or target plate temperature value is large, the plate temperature deviates from the target value over a relatively long period even if the optimum transition trajectory of plate temperature is achieved. I couldn't.

即ち、第2図の砂地模様部で示したように、各鋼板には
そのグレード等によって決まる板温の目標外れ許容範囲
が存在するが(以後、板温の目標外れ許容範囲を単に“
許容範囲”と記す)、上記特開昭61−190026号
に係る方法においてもセット替の前後で第2図にハツチ
ングで示す“板温外れ(許容範囲からの板温の逸脱)“
が生じ、依然として銅板の°焼き過ぎ”或いは“焼き不
足”が懸念されたのである。
In other words, as shown in the sand pattern area in Figure 2, each steel plate has a tolerance range for the plate temperature to be off target, which is determined by its grade, etc. (hereinafter, the tolerance range for the plate temperature to be off target is simply referred to as
In the method disclosed in JP-A No. 61-190026, there is also a "plate temperature deviation (deviation of the plate temperature from the permissible range)" shown by hatching in FIG. 2 before and after the set change.
There was still concern that the copper plate would be overcooked or undercooked.

このようなことから、本発明が目的としたのは、セット
替時における板温の最適推移軌道が板温外れを生じるこ
とが予想される場合であっても、これに的確に対処して
板温外れを効果的に回避し得る“連続加熱炉での板温制
御方法”を確立することであった。
For this reason, the purpose of the present invention is to accurately deal with this even when it is expected that the optimum transition trajectory of the plate temperature at the time of set change will cause the plate temperature to deviate. The objective was to establish a ``plate temperature control method in a continuous heating furnace'' that could effectively avoid overheating.

く課題を解決するための手段〉 本発明者等は、上記目的を達成すべく鋭意研究を重ねた
結果、次に示すような知見を得ることができた。即ち、 (al”板厚”、“板幅”或いは“加熱炉出口での目標
板温”が異なる異種の鋼板を溶接して連続した−続きの
鋼板となし、これを加熱炉内へ連続的に通板して加熱処
理するに際して、まず、熱収支理論により導き出される
ところの、プロセス制御分野においては公知(例えば前
記特開昭61−190026号公報参照)の[板温と加
熱炉内温度(以降、単に“炉温″と記す)との動的な関
係jを表わす第3図で示されるような板温制御モデル(
即ち、板温と炉温。
Means for Solving the Problems> As a result of intensive research to achieve the above object, the inventors were able to obtain the following knowledge. That is, different types of steel plates with different (al) plate thicknesses, plate widths, or target plate temperatures at the outlet of the heating furnace are welded to form continuous steel plates, which are continuously fed into the heating furnace. When heat-treating the plate by passing it through the plate, first, the plate temperature and heating furnace temperature (plate temperature and heating furnace temperature ( Hereinafter, the plate temperature control model (hereinafter simply referred to as “furnace temperature”) is shown in Fig. 3, which represents the dynamic relationship j with
Namely, plate temperature and furnace temperature.

板厚、板幅及び通板速度との関係を動的に表現する板温
制御モデルで、以降“モデルI”と称す)を用いれば、
将来のセント替に際しての「板温の最適推移軌道(この
段階では1回の不連続的な速度変更しか考慮されていな
いため、この“最適推移軌道”とは1回の不連続的な速
度変更をした場合での最適軌道である)Jと[通板速度
変更量J及び「速度変更開始タイミングJ とを前もっ
て求めることができ、更には目標値からの板温外れ量(
加熱炉出口での板温変化量)を予測することもできる。
If you use the plate temperature control model (hereinafter referred to as "Model I") that dynamically expresses the relationship between plate thickness, plate width, and threading speed,
When changing cents in the future, the optimal transition trajectory for plate temperature (at this stage, only one discontinuous speed change is considered, so this "optimum transition trajectory" is defined as one discontinuous speed change) J, which is the optimal trajectory when
It is also possible to predict the amount of change in plate temperature at the outlet of the heating furnace.

(b)シかも、上記“目標値からの板温外れ量”とモデ
ル■から求められる幾つかのその他のデータから、該“
目標値からの板温外れ量”を的確に補償し得る「鋼板の
溶接点前後での最適通板速度」を予測することができる (C1従って、上記の板温外れを適切な通板速度調整に
よって補償する板温制御モデル(以降“モデル■”と称
す)を作成しておき、モデル■にモデル■を付加し、こ
れに従いセント替前後において通板速度を連続的に変更
・調整するように図れば、板温外れ量の極めて少ない優
れた温度制御が可能となる。
(b) From the above “deviation amount of plate temperature from the target value” and some other data obtained from model
It is possible to predict the ``optimum threading speed before and after the welding point of the steel plate'' that can accurately compensate for the deviation of the plate temperature from the target value (C1). Create a sheet temperature control model (hereinafter referred to as "model ■") that compensates by If this is achieved, excellent temperature control with extremely small plate temperature deviations will be possible.

本発明は、上記知見事項等に基づいてなされたもので、 [異種の鋼板を溶接して成る“連続した鋼板″の連続加
熱に際し、連続加熱炉出口までの綱板温度の推移軌道を
前もって予測すると共に、予測した加熱炉出口での鋼板
温度が目標値から外れる場合に炉温と通板速度を操作量
としたプリセント制御でこれを補償する板温制御方法に
おいて、予測される前記“目標値からの外れ量”からそ
れを補償する通板速度を算出し、この算出値に対応させ
て通板速度をプリセットで連続的に変更することにより
、連続加熱炉における鋼板の板温外れを極力抑制して的
確な温度制御を実施し得るようにした点」 に特徴を有している。
The present invention has been made based on the above-mentioned findings, etc., and is based on the following: [Predicting in advance the transition trajectory of the steel plate temperature up to the exit of the continuous heating furnace during continuous heating of "continuous steel plates" made by welding different types of steel plates. At the same time, in the plate temperature control method that compensates for the predicted temperature of the steel plate at the outlet of the heating furnace by pre-cent control using the furnace temperature and strip threading speed as manipulated variables when the predicted steel plate temperature at the outlet of the heating furnace deviates from the target value, the predicted ``target value'' By calculating the threading speed to compensate for the amount of deviation from the temperature and continuously changing the threading speed using a preset setting in accordance with this calculated value, the temperature deviation of the steel plate in a continuous heating furnace is minimized. It is characterized by the fact that it allows accurate temperature control to be carried out by

なお、本発明法は、例えば“鋼板の溶接点を検出する溶
接点検出器”、“鋼板の通板速度を検出する速度検出器
”、“加熱炉の温度を検出する炉温検出器”並びに“加
熱炉出口における鋼板の温度を検出する板温検出器”を
具備した「検出器群」と、上記溶接点検出器及び速度検
出器からの出力信号に応じて鋼板の溶接点を追跡する「
トラッキング手段」と、将来のセント替に際して板温の
最適推移軌道と通板速度変更量と速度変更タイミングと
を算出する公知の[板温制御モデル(モデルI)Jと、
上記板温軌道から板温の目標外れを予測し通板速度を連
続的に変更してこれを補償する「板温制御モデル(モデ
ルII)Jと、通板速度を上記モデルによって算出され
た値に制御する「速度制御手段」を具備する制御装置の
適用によって実施されるが、その手順は以下の通りであ
る。
The method of the present invention can be applied to, for example, "a welding point detector that detects the welding point of a steel plate,""a speed detector that detects the threading speed of a steel plate,""a furnace temperature detector that detects the temperature of a heating furnace," and A "detector group" equipped with a "plate temperature detector that detects the temperature of the steel plate at the exit of the heating furnace" and a "detector group" that tracks the welding point of the steel plate according to the output signals from the welding point detector and speed detector.
A well-known sheet temperature control model (Model I) J that calculates the optimal transition trajectory of sheet temperature, the amount of change in sheet threading speed, and the timing of speed change when changing sheets in the future.
The plate temperature control model (Model II) J predicts deviation of the plate temperature from the target from the plate temperature trajectory and continuously changes the plate threading speed to compensate for this, and the plate temperature control model (Model II) J calculates the plate threading speed to the value calculated by the above model. The procedure is as follows.

即ち、本発明に係る板温制御方法では、まず、モデル■
によって板温の推移軌道と通板速度変更量及び変更タイ
ミングを決定する。なお、モデルIによって決定された
板温の推移軌道は、前述したように、通板速度をセット
暫時に1回だけ不連続的に変更する場合を想定して最適
化されたものである。
That is, in the plate temperature control method according to the present invention, first, the model
The change trajectory of sheet temperature, amount of change in sheet threading speed, and change timing are determined by: Note that, as described above, the sheet temperature transition trajectory determined by Model I has been optimized on the assumption that the sheet threading speed is discontinuously changed only once during setting.

ここで、前記第3図からも明らかなように、板温か目標
外れ許容範囲から上方に外れた時は通板速度をモデルI
によって設定された値よりも高くしくこのようにすると
鋼板の加熱炉滞在時間が短縮されるので板温を下げるこ
とができる)、一方、板温か下方に外れた時は設定値よ
りも低く通板速度を設定することで、板温外れ部分を小
さくすることが可能となる。
As is clear from FIG. 3, when the sheet temperature deviates upward from the target deviation tolerance range, the sheet threading speed is
(If you do this, the time the steel plate stays in the heating furnace will be shortened, and the plate temperature can be lowered.) On the other hand, if the plate temperature deviates downward, the plate temperature will be lower than the set value. By setting the speed, it is possible to reduce the area where the plate temperature deviates.

また、モデル■は、モデルIにより予測された板温の推
移軌道から算出される“板温の目標外れ量”を基に下記
計算法で“板温の目標外れ量を補償する通板速度”を計
算し、プリセットで連続的に通板速度を制御するための
もので、これを付加すると、例えば第3図で示した制御
状態は第4図で示す如くに改善される。
In addition, model ■ calculates the "threading speed that compensates for the amount of deviation from the target sheet temperature" using the following calculation method based on the "amount of deviation from the target sheet temperature" calculated from the trajectory of the sheet temperature predicted by model I. This is to calculate and continuously control the sheet threading speed with a preset setting. When this is added, the control state shown in FIG. 3, for example, is improved as shown in FIG. 4.

゛板゛束庁最゛化計  法 ■ ステップI モデル■によって、将来のセット暫時の板温推移軌道と
通板速度変更量及び速度変更タイミングを求める。
Step I Using the model, the trajectory of the change in plate temperature, the amount of change in the threading speed, and the timing of the change in the speed are determined.

この時、前記第3図にも示したように、hl:先行材板
厚、h2:後行材板厚。
At this time, as shown in FIG. 3 above, hl: thickness of the preceding material, h2: thickness of the succeeding material.

tI:炉温設定値変更時刻。tI: Furnace temperature set value change time.

t2:炉温か定常状態に達する時刻。t2: Time when the furnace temperature reaches a steady state.

t3:速度変更タイミング。t3: Speed change timing.

t4:加熱炉出口において板厚が変化する時刻。t4: Time at which the plate thickness changes at the outlet of the heating furnace.

TFI:先行材定常状態における炉温設定値。TFI: Furnace temperature set point in steady state of preceding material.

TF2 :後行材定常状態における炉温設定値び、:先
行材定常状態における通板速度。
TF2: Furnace temperature setting value in a steady state of the succeeding material; : Threading speed in a steady state of the preceding material.

v2:後行材定常状態における通板速度。v2: Threading speed in steady state of trailing material.

ΔT、:先行材尾端における板温の目標外れ幅。ΔT: The width of deviation from the target plate temperature at the tail end of the preceding material.

ΔT2:後2:先端における板温の目標外れ幅。ΔT2: Back 2: Width of deviation from target plate temperature at the tip.

(なお、板温に関しては目標板温に対して上方に外れた
場合はΔT〉0.下方に外れれた場合はΔT<0とし、
先行材、後行材の板幅は同じでWとする) と定義する。
(As for the plate temperature, if it deviates upward from the target plate temperature, ΔT>0. If it deviates downward, ΔT<0,
The plate widths of the preceding material and the succeeding material are the same and are defined as W).

■ ステップ■ 溶接によって−続きとされた鋼板内の先行材。■ Step■ Preceding material in a steel plate that is continued by welding.

後行材の各々について、以下に定義する影響係数ε1及
びε2を算出する。
Influence coefficients ε1 and ε2 defined below are calculated for each trailing material.

a)先行材の影響係数ε、の定義 炉温T□の加熱炉へ先行材を速度び、で定常的(炉温か
一定で、板温も一定である状態)に通板している状態を
仮定し、 この定常状態において通板速度をΔびだけ変更した(実
際にはΔびはび、の3〜5χ程度が良い)とすると板温
は第5図の如く変化するが、この速度変更による板温の
変化幅をΔT、とした場合に表わされる ε1− (ΔT、)/  (Δび) を先行材の影響係数ε1と定義する(なお、ΔT8とΔ
びは異符号であるためε、〈0となる)。
a) Definition of the influence coefficient ε of the preceding material The preceding material is speeded into the heating furnace at the furnace temperature T Assuming that in this steady state, if the strip threading speed is changed by Δ (actually, a Δ spread of 3 to 5χ is good), the strip temperature will change as shown in Figure 5. When the range of change in plate temperature due to
and have different signs, so ε, <0).

b)後行材の影響係数62の定義 上記先行材における場合と同様の手順で、後行材の影響
係数82を定義する。
b) Defining the influence coefficient 62 of the succeeding material The influence coefficient 82 of the succeeding material is defined using the same procedure as for the preceding material.

■ ステップ■ 第6図で示したように、ステップIで算出された通板速
度を以下の手順で補正する。
■Step■ As shown in FIG. 6, the sheet passing speed calculated in step I is corrected in the following procedure.

i)時刻tが t≦1.の時点では、通板速度Vを び
=び、に設定する。
i) Time t is t≦1. At the time point, the sheet threading speed V is set to .

ii)時刻tが 1=14−Δt の時点では、通板速
度びを t7=27.−β(ΔT、)/ε1 に設定する。
ii) At the time t is 1=14-Δt, the sheet threading speed is set to t7=27. −β(ΔT,)/ε1.

ここで、Δtとは次のような時間を指す。Here, Δt refers to the following time.

即ち、セント替に際しては通板速度を不連続的に変更す
る点が生じるが、これに要する時間をゼロにするのは設
備上不可能であり、この所要時間をΔtとする。
That is, when changing cents, the threading speed may be changed discontinuously, but it is impossible to reduce the time required for this to zero due to the equipment, and this time is defined as Δt.

iii )時刻tがtl<t<t4−Δt の時点では
、通板速度Vを に設定する。
iii) When the time t is tl<t<t4-Δt, the sheet passing speed V is set to .

iv)時刻tが 1=14の時点では、通板速度びを び=v2−β(ΔT2)/ε2゜ に設定する。iv) When time t is 1=14, the threading speed is = v2-β(ΔT2)/ε2゜ Set to .

■)時刻tがi4<t<tzの時点では、通板速度Vを に設定する。■) When time t is i4<t<tz, the threading speed V is Set to .

vi)時刻tがtzt2の時点では、通板速度びを び
−び2に設定する。
vi) When time t is tzt2, the plate threading speed is set to speed 2.

なお、このように通板速度を直線的に変化させるのでは
なくて曲線的に変更する方法も考えられるが、炉内ハー
スロールの熱慣性のために両者の効果に大差はなく、従
って炉内の鋼板にかかる張力等の影響を考慮し、ここで
は前者(直線的に変化させる方法)の例について説明し
た。
Note that it is also possible to change the threading speed in a curved manner instead of linearly, but due to the thermal inertia of the hearth rolls in the furnace, there is not much difference in the effect of the two, and therefore In consideration of the influence of the tension applied to the steel plate, etc., an example of the former method (method of linearly changing it) has been described here.

ところで、加熱炉内の鋼板のパスは有限長であり、しか
も加熱炉内ハースロールの熱慣性も影響するので板温の
目標外れを完全にゼロとすることは物理的に不可能であ
るが、本発明の板温制御方法を適用することによって板
温外れは大幅に低減され、鋼板品質が顕著に向上するこ
とは特筆すべきことである。
By the way, the path of the steel plate in the heating furnace has a finite length, and it is also affected by the thermal inertia of the hearth rolls in the heating furnace, so it is physically impossible to completely eliminate the deviation of the plate temperature from the target. It is noteworthy that by applying the sheet temperature control method of the present invention, sheet temperature deviation is significantly reduced and steel sheet quality is significantly improved.

次いで、実施例の説明図に基づき本発明をより具体的に
説明する。
Next, the present invention will be described in more detail based on explanatory drawings of examples.

〈実施例〉 第7図は、本発明に係る“連続加熱炉における綱板の温
度制御装置”の構成を示す模式図である。
<Example> FIG. 7 is a schematic diagram showing the configuration of a "temperature control device for a steel plate in a continuous heating furnace" according to the present invention.

板厚、板幅、目標板温又は材質の異なる複数のコイルが
溶接されて成るストリップ(11は、連続加熱炉(2)
を通って駆動ロール(3)により白矢印方向へ通板され
る。
A strip formed by welding a plurality of coils with different plate thicknesses, plate widths, target plate temperatures, or materials (11 is a continuous heating furnace (2)
The sheet is passed through by the drive roll (3) in the direction of the white arrow.

この際、鋼板仕様設定器(4)よりコイルの板厚。At this time, determine the coil plate thickness using the steel plate specification setting device (4).

板幅、放射率及び目標板温の仕様が、そしてトラッキン
グ装置(5)よりコイルの位置情報がそれぞれ従来の板
温制御装置(モデルI)(6)に送られる。そして、こ
の従来の板温制御装置(モデルI)(61にて炉温の設
定値とその変更タイミング、通板速度の設定値とその変
更タイミングが決定され、板温の最適推移軌道が予測さ
れる。ここで決定された炉温の設定値とその変更タイミ
ングは炉温制御装置(7)に送られるが、この炉温制御
装置(7)では前記情報に基づいてラジアントチューブ
(8)に流入する燃料流量を制御する。
The specifications of the plate width, emissivity, and target plate temperature, as well as the coil position information are sent from the tracking device (5) to the conventional plate temperature control device (Model I) (6). Then, in this conventional plate temperature control device (model I) (61), the set value of the furnace temperature and its change timing, the set value of the sheet threading speed and its change timing are determined, and the optimum transition trajectory of the plate temperature is predicted. The set value of the furnace temperature determined here and its change timing are sent to the furnace temperature control device (7), which controls the flow into the radiant tube (8) based on the information. control the fuel flow rate.

ここで、上記従来の板温制御装置(モデルI)(6)で
予測した板温の推移軌道は、通板速度を不連続的にしか
変更していないために前記第3図で示した如く長い範囲
にわたって板温外れを生じる。そこで、本発明例では付
加的な板温制御装置(モデルIt)(8)を付与してお
り、これによって前記“板温の予測推移軌道”から目標
板温外れ幅を計算し、先に示した通板速度最適化計算法
によって通板速度の設定値を決定する。
Here, the plate temperature transition trajectory predicted by the conventional plate temperature control device (Model I) (6) described above is as shown in Fig. 3 because the plate threading speed is only changed discontinuously. Temperature deviation occurs over a long period of time. Therefore, in the example of the present invention, an additional plate temperature control device (model It) (8) is provided, which calculates the target plate temperature deviation width from the "predicted plate temperature transition trajectory" and The set value of the sheet threading speed is determined by the sheet threading speed optimization calculation method.

なお、通板速度には設備上或いは操業上の制約から許容
範囲が存在するが、前記の算出した設定値がこの許容範
囲を超える場合には、設定値として許容上限値(或いは
上限値に安全係数α=0.9〜0.95を乗じた値)を
保持するようにする。
Note that there is a permissible range for the threading speed due to equipment or operational constraints, but if the set value calculated above exceeds this permissible range, the set value may be set to the permissible upper limit (or the upper limit is safely set). (a value multiplied by a coefficient α=0.9 to 0.95).

モデル■(9)によって決定された速度設定値は速度制
御装置αωに送られ、速度制御装置α@は通板速度が上
記設定値になるように駆動ロール(3)を制御する。
The speed setting value determined by the model (9) is sent to the speed control device αω, and the speed control device α@ controls the drive roll (3) so that the sheet passing speed becomes the above setting value.

さて、前記第3図に示した従来の板温制御状態に対し、
本発明に係る板温制御方法を適用すると第4図のような
制御状態が得られ、板温外れは大幅に低減される。
Now, with respect to the conventional plate temperature control state shown in FIG. 3,
When the plate temperature control method according to the present invention is applied, a control state as shown in FIG. 4 is obtained, and deviations in plate temperature are significantly reduced.

〈効果の総括〉 以上に説明した如く、本発明によれば、異種鋼板を溶接
したストリップの連続加熱処理に際し、溶接点前後の長
い範囲に亘って生じていた目標温度からの外れ幅を大幅
に減少することができ、品質の優れた鋼板を高歩留りで
製造することが可能となるなど、産業上極めて有用な効
果がもたらされる。
<Summary of Effects> As explained above, according to the present invention, the width of deviation from the target temperature that occurs over a long range before and after the welding point can be significantly reduced during continuous heat treatment of a strip made by welding dissimilar steel plates. This brings about extremely useful effects industrially, such as making it possible to produce steel plates of excellent quality at a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は、それぞれ従来の方法による鋼板温
度の制御状態を示したグラフである。 第4図は、本発明法の概念と鋼板温度の制御状態を示し
たグラフである。 第5図は、影響係数の定義を説明するためのグラフであ
る。 第6図は、本発明法による鋼板温度の制御状態を示すグ
ラフである。 第7図は、連続加熱炉での本発明に係る鋼板の温度制御
装置の構成例を示した模式図である。 図面において、 1・・・ストリップ、    2・・・連続加熱炉。 3・・・駆動ロール、    4・・・鋼板仕様設定器
。 5・・・トラッキング装置。 6・・・従来の板温制御装置(モデルI)。 7・・・炉温制御装置。 8・・・ラジアントチューブ。 9・・・付加的な板温制御装置(モデル■)。 10・・・速度制御装置。
FIGS. 1 to 3 are graphs showing the state of control of the steel plate temperature by conventional methods, respectively. FIG. 4 is a graph showing the concept of the method of the present invention and the control state of the steel plate temperature. FIG. 5 is a graph for explaining the definition of the influence coefficient. FIG. 6 is a graph showing the control state of the steel plate temperature according to the method of the present invention. FIG. 7 is a schematic diagram showing a configuration example of a temperature control device for a steel plate according to the present invention in a continuous heating furnace. In the drawings: 1...Strip, 2...Continuous heating furnace. 3... Drive roll, 4... Steel plate specification setting device. 5...Tracking device. 6... Conventional plate temperature control device (Model I). 7... Furnace temperature control device. 8...Radiant tube. 9...Additional plate temperature control device (model ■). 10... Speed control device.

Claims (1)

【特許請求の範囲】[Claims] 異種の鋼板を溶接して成る“連続した鋼板”の連続加熱
に際し、連続加熱炉出口までの鋼板温度の推移軌道を前
もって予測すると共に、予測した加熱炉出口での鋼板温
度が目標値から外れる場合に炉温と通板速度を操作量と
したプリセット制御でこれを補償する板温制御方法にお
いて、予測される前記“目標値からの外れ量”からそれ
を補償する通板速度を算出し、この算出値に対応させて
通板速度をプリセットで連続的に変更することを特徴と
する、連続加熱炉における鋼板の温度制御方法。
When continuously heating a "continuous steel plate" made by welding different types of steel plates, the trajectory of the steel plate temperature up to the exit of the continuous heating furnace is predicted in advance, and if the predicted steel plate temperature at the exit of the heating furnace deviates from the target value. In the sheet temperature control method that compensates for this by preset control using the furnace temperature and sheet threading speed as manipulated variables, the sheet threading speed that compensates for it is calculated from the predicted "deviation amount from the target value" and this A method for controlling the temperature of a steel plate in a continuous heating furnace, characterized by continuously changing a preset threading speed in accordance with a calculated value.
JP18586490A 1990-07-13 1990-07-13 Method for controlling temperature of steel sheet in continuous heating furnace Pending JPH0474825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18586490A JPH0474825A (en) 1990-07-13 1990-07-13 Method for controlling temperature of steel sheet in continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18586490A JPH0474825A (en) 1990-07-13 1990-07-13 Method for controlling temperature of steel sheet in continuous heating furnace

Publications (1)

Publication Number Publication Date
JPH0474825A true JPH0474825A (en) 1992-03-10

Family

ID=16178220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18586490A Pending JPH0474825A (en) 1990-07-13 1990-07-13 Method for controlling temperature of steel sheet in continuous heating furnace

Country Status (1)

Country Link
JP (1) JPH0474825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263147A (en) * 1992-03-19 1993-10-12 Kawasaki Steel Corp Method for controlling strip temperature in continuous annealing furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263147A (en) * 1992-03-19 1993-10-12 Kawasaki Steel Corp Method for controlling strip temperature in continuous annealing furnace

Similar Documents

Publication Publication Date Title
JPH02166235A (en) Method for controlling sheet temperature in metallic sheet heating furnace
JPH0474825A (en) Method for controlling temperature of steel sheet in continuous heating furnace
US4725321A (en) Method for cooling a steel strip in a continuous annealing furnace
US4724014A (en) Method for cooling a steel strip in a continuous annealing furnace
EP0128734B1 (en) Method for cooling a steel strip in a continuous-annealing furnace
JPS61201735A (en) Method and apparatus for annealing steel strip continuously
JPH04323324A (en) Method for controlling temperature of steel sheet in continuous heating furnace
JPH0192322A (en) Method for controlling sheet temperature in continuous annealing furnace
JPH0192323A (en) Method for controlling sheet temperature in continuous annealing furnace
JPH02112818A (en) Method and device for heating stainless steel strip and method for controlling heating temperature of stainless steel strip
JPS6345454B2 (en)
JPH0791590B2 (en) Velocity changing method in plate temperature control of continuous annealing furnace
JPS6334210B2 (en)
JP7052671B2 (en) Metal band temperature control method and temperature control device
JPH0754055A (en) Method for controlling temperature of steel strip in continuous annealing furnace
JPH06287643A (en) Device for controlling strip temperature of continuous steel strip heat treatment line
JPH02163325A (en) Method for controlling temperature of metallic sheet in continuous annealing furnace
JP2005232482A (en) Method for continuously heat-treating hot-rolled steel plate
JPH04323325A (en) Method for controlling temperature of steel sheet in continuous annealing furnace
JPH09125155A (en) Method for preventing meandering of passing steel sheet in continuous heat treatment furnace
JPH04235268A (en) Production of alloying galvannealed steel sheet
JPH09256073A (en) Method for controlling temperature of continuous annealing furnace
JP2004027256A (en) Method for controlling sheet temperature in heating zone and soaking zone in continuous annealing furnace for steel sheet
JPS591639A (en) Controlling method of plate temperature
JP2003119516A (en) Apparatus and method for heat-treating steel plate