JPH05263147A - Method for controlling strip temperature in continuous annealing furnace - Google Patents

Method for controlling strip temperature in continuous annealing furnace

Info

Publication number
JPH05263147A
JPH05263147A JP6400992A JP6400992A JPH05263147A JP H05263147 A JPH05263147 A JP H05263147A JP 6400992 A JP6400992 A JP 6400992A JP 6400992 A JP6400992 A JP 6400992A JP H05263147 A JPH05263147 A JP H05263147A
Authority
JP
Japan
Prior art keywords
temperature
furnace
plate
strip
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6400992A
Other languages
Japanese (ja)
Other versions
JP2809925B2 (en
Inventor
Kazuhiro Yahiro
和広 八尋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4064009A priority Critical patent/JP2809925B2/en
Publication of JPH05263147A publication Critical patent/JPH05263147A/en
Application granted granted Critical
Publication of JP2809925B2 publication Critical patent/JP2809925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To provide a control method of strip temp. in a continuous annealing furnace, by which the response characteristic is good and the strip temp. can be controlled at high accuracy and the aimed strip temp. at the outlet side can stably be achieved in the aimed strip passing speed. CONSTITUTION:The setting furnace temp. value TFO for which the strip temp. TS at the outlet side becomes the aimed strip temp. TSO at the outlet side at the time of passing the strip in the aimed strip passing velocity VSO, is decided according to a physical model procedures (S1-S5). By considering the response delay time of the furnace temp. produced attending with the switch of the setting value, the furnace temp. switching timing tFO is decided (S6-S8). Correcting strip passing velocity VS for controlling the strip temp. TS at the outlet side in the heating furnace in the permissible range of the aimed strip temp. TSO at the outlet side at the time of passing the strip at the actual furnace temp. TF detected as the result, is decided according to the physical model procedures (S9-S14). By considering the time necessary for the change of the strip temp. at the outlet side generated attending to the change of the setting, strip passing velocity setting switching timing tSO is decided (S15-S17). Then, in this control method, the physical parameters included in the model procedures are corrected by the learning control.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、板厚、板幅或いは加熱
炉出側における目標板温が異なるような鋼帯を、加熱炉
内に連続的に通板して連続焼鈍を行う連続焼鈍炉におい
て、加熱炉出側の鋼帯の板温を制御する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to continuous annealing in which steel strips having different plate thicknesses, plate widths or target plate temperatures on the exit side of the heating furnace are continuously passed through the heating furnace for continuous annealing. The present invention relates to a method for controlling the plate temperature of a steel strip on the outlet side of a heating furnace in a furnace.

【0002】[0002]

【従来の技術】特に冷間圧延された鋼帯は、冶金的組
織、機械的強度、内部歪み等が大きく変化しているた
め、これを焼鈍してこれらの変化要素を除去する必要が
あり、その必要性は昨今注目されている極低炭素鋼帯に
おいて特に大きい。これら板厚、板幅或いは加熱炉出側
における目標出側板温が異なる鋼帯は溶接工程等によっ
て一連のストリップとなし、これを連続焼鈍炉の加熱炉
内に通板して連続焼鈍を行うのが一般である。
2. Description of the Related Art In particular, a cold-rolled steel strip has large changes in metallurgical structure, mechanical strength, internal strain, etc., and it is necessary to anneal this to remove these changing elements. The need is particularly great in ultra-low carbon steel strips, which have recently been receiving attention. Steel strips with different plate thickness, plate width or target outlet side plate temperature on the outlet side of the heating furnace are made into a series of strips by the welding process, etc., and this is passed through the heating furnace of the continuous annealing furnace for continuous annealing. Is common.

【0003】一方、前記加熱炉出側の板温は製造される
鋼板の機械的性質に大きな影響を及ぼすので、仕様の異
なる各鋼帯毎に加熱炉出側における板温の目標値及びこ
の目標値を含む許容範囲を設定しておき、各鋼帯の板温
が夫々設定された目標出側板温の許容範囲内に納まるよ
うに制御する必要がある。連続焼鈍炉におけるこのよう
な板温制御方法としては、鋼帯の板厚、板幅等を含む仕
様に合わせて、加熱炉の温度(炉温)及び通板速度を設
定することが一般的である。ところが加熱炉の炉温設定
変更に対する実績炉温の応答性が極めて遅く、しかも比
較的不安定であるため、特に仕様が異なる鋼帯の溶接点
(仮段)近傍では実績板温と板温の目標値との偏差が大
きくなって非定常域となり易く、鋼帯の板温が許容範囲
からはずれ、歩留りが低下するという問題点があった。
On the other hand, the plate temperature on the outlet side of the heating furnace has a great influence on the mechanical properties of the steel sheet to be manufactured. Therefore, the target value of the plate temperature on the outlet side of the heating furnace and this target for each steel strip having different specifications It is necessary to set a permissible range including values and control so that the strip temperature of each steel strip falls within the set permissible range of the target delivery side strip temperature. As such a plate temperature control method in a continuous annealing furnace, it is common to set the temperature of the heating furnace (furnace temperature) and the plate passing speed according to the specifications including the plate thickness and plate width of the steel strip. is there. However, the responsiveness of the actual furnace temperature to changes in the furnace temperature setting of the heating furnace is extremely slow and relatively unstable, so that the actual plate temperature and the plate temperature are There is a problem that the deviation from the target value becomes large and the temperature tends to be in an unsteady region, the plate temperature of the steel strip deviates from the allowable range, and the yield decreases.

【0004】このような問題点を解決するための板温制
御方法の一つとして、特開昭61−190026号公報
に記載のものが提案されている。この板温制御方法は、
非定常域における板温の理論的最適推移軌道を算出し、
この算出した軌道に板温が沿うように加熱炉への燃料供
給量を制御するものである。また、もう一つの方法とし
ては特開平2−258933号公報に記載される板温制
御方法がある。この板温制御方法は、加熱炉の設定炉温
値の変更量と、該変更量に対する加熱炉の炉温の応答変
化量及び鋼帯の通板方向における板温変化量とを推定
し、この推定された板温変化量と目標出側板温との偏差
が許容範囲内である場合には予め設定されている通板速
度で加熱炉の炉温を制御し、前記推定された板温変化量
と目標出側板温との偏差が許容範囲外である場合には通
板速度の修正制御を合わせて行うものである。
As one of the plate temperature control methods for solving such a problem, a method described in Japanese Patent Application Laid-Open No. 61-190026 has been proposed. This plate temperature control method is
Calculate the theoretical optimum transition trajectory of the plate temperature in the unsteady region,
The fuel supply amount to the heating furnace is controlled so that the plate temperature follows the calculated orbit. Further, as another method, there is a plate temperature control method described in JP-A-2-258933. This plate temperature control method estimates the change amount of the set furnace temperature value of the heating furnace, the response change amount of the furnace temperature of the heating furnace with respect to the changed amount, and the plate temperature change amount in the strip running direction of the steel strip. When the deviation between the estimated plate temperature change amount and the target outlet side plate temperature is within the allowable range, the furnace temperature of the heating furnace is controlled at a preset plate passing speed, and the estimated plate temperature change amount is set. If the deviation between the target delivery side plate temperature and the target output side plate temperature is outside the permissible range, correction control of the plate passing speed is also performed.

【0005】[0005]

【発明が解決しようとする課題】これらの連続焼鈍炉の
板温制御方法のうち、前者の場合は鋼帯の仮段、非定常
域において実績板温が許容範囲から外れることをある程
度抑制することは可能である。しかしながら、本質的な
炉温の応答遅れに伴う実績板温応答の悪さが改善されて
いないので、実績板温が許容範囲から外れる可能性は未
だ十分に解決されていない。
Among these methods for controlling the plate temperature of the continuous annealing furnace, in the former case, it is possible to suppress the actual plate temperature from deviating from the permissible range to some extent in the temporary and unsteady regions of the steel strip. Is possible. However, since the poor response of the actual plate temperature due to the essential response delay of the furnace temperature has not been improved, the possibility that the actual plate temperature deviates from the allowable range has not been sufficiently solved.

【0006】一方、後者の場合は、前記本質的な炉温の
応答遅れに伴う実績板温応答の悪さを、それらよりも遙
かに応答特性の良好な通板速度を制御することにより改
善しているため、上記の如き問題はない。しかしなが
ら、炉温変化量及び板温変化量を推定し、これらの推定
値に基づいて通板速度の修正制御を行っているため、例
えば炉温に不安定な変化が生じたときなどのように推定
精度が悪い条件が発生した場合には、実績板温精度が低
下するという問題がある。また、この発明には、実績板
温変化量にて速度修正をすることも開示されているが、
実績板温のフィードバックでは、前記通板速度の修正制
御に対する板温の応答遅れが介在するため、高精度の板
温制御は期待できない。
On the other hand, in the latter case, the poor response of the actual plate temperature due to the delay in the response of the essential furnace temperature is improved by controlling the strip running speed having a response characteristic far better than those. Therefore, there is no problem as described above. However, since the furnace temperature change amount and the plate temperature change amount are estimated and the plate passing speed is corrected and controlled based on these estimated values, it is possible to change the furnace temperature, for example, when an unstable change occurs. If a condition with poor estimation accuracy occurs, there is a problem that the actual plate temperature accuracy decreases. Further, although the present invention discloses that the speed is corrected by the actual plate temperature change amount,
Since feedback of the actual plate temperature causes a delay in the plate temperature response to the correction control of the plate passing speed, highly accurate plate temperature control cannot be expected.

【0007】本発明はこれらの諸問題に鑑みて開発され
たものであり、炉温を所定条件に合わせて制御すると共
に、この制御された実績炉温を用いて所定条件を満足す
るように通板速度を制御することにより、応答特性が良
好で、板温を高精度に制御できる連続焼鈍炉の板温制御
方法を提供することを目的とするものである。
The present invention has been developed in view of these problems, and controls the furnace temperature according to a predetermined condition, and uses the controlled actual furnace temperature to satisfy the predetermined condition. An object of the present invention is to provide a plate temperature control method for a continuous annealing furnace, which has good response characteristics and can control the plate temperature with high accuracy by controlling the plate speed.

【0008】[0008]

【課題を解決するための手段】本発明者は前記諸問題を
解決すべく鋭意検討を重ねた結果、以下の知見を得た。
即ち、炉温の応答時間は、通板速度や鋼帯のサイズ(板
厚、板幅等)に依存するが、凡そ10〜20分程度であ
る。一方、通板速度の応答時間は、設備能力等に伴う加
減速度に依存するが、一般に10〜40mpm/sec.程
度であり、凡そ板温制御上は殆ど無視できる程度に十分
に高応答値である。また通板速度変更に対する出側板温
の変化は通板速度と加熱炉長に依存している。即ち、変
更した通板速度に到達した後で加熱炉に進入した鋼帯が
加熱炉から出るまでの間に出側板温は変化することにな
るが、その所要時間は2〜3分程度である。
As a result of intensive studies to solve the above problems, the present inventor has obtained the following findings.
That is, the response time of the furnace temperature is about 10 to 20 minutes, although it depends on the stripping speed and the size of the steel strip (plate thickness, strip width, etc.). On the other hand, the response time of the strip running speed depends on the acceleration / deceleration associated with the facility capacity, etc., but is generally about 10-40 mpm / sec., Which is a sufficiently high response value that can be almost ignored in the plate temperature control. is there. Also, the change of the outlet side plate temperature due to the change of the strip passing speed depends on the strip passing speed and the heating furnace length. That is, the exit side plate temperature will change until the steel strip that has entered the heating furnace exits the heating furnace after reaching the changed strip passing speed, but the required time is about 2 to 3 minutes. ..

【0009】このように通板速度変更に対する出側板温
の応答は炉温の応答に対して十分に早いので、加熱炉入
側から出側までの炉温変化量を無視して、現在炉温で出
側板温を目標出側板温に達成するための通板速度を求め
ることができる。そして、炉温の設定と通板速度の修正
とを同じモデル式を用いて決定し、実績炉温と実績板温
とにより該モデル式のパラメータを修正することによ
り、制御を連続するうちに修正通板速度と目標通板速度
との格差が小さくなることにも着目した。本発明はこれ
らの知見に基づいて開発されたものである。
As described above, the response of the outlet side plate temperature to the change of the strip passing speed is sufficiently quicker than the response of the furnace temperature. Therefore, the amount of change in the furnace temperature from the inlet side to the outlet side of the heating furnace is ignored and the current furnace temperature is ignored. Thus, it is possible to obtain the strip running speed for achieving the output side plate temperature to the target output side plate temperature. Then, the setting of the furnace temperature and the correction of the strip passing speed are determined using the same model formula, and the parameters of the model formula are corrected by the actual furnace temperature and the actual plate temperature, so that the correction is made while the control is continuously performed. We also paid attention to the fact that the gap between the strip running speed and the target strip running speed becomes smaller. The present invention was developed based on these findings.

【0010】即ち、本発明のうち請求項1に係る連続焼
鈍炉の板温制御方法は、板厚、板幅或いは加熱炉の出側
での目標出側板温が異なる鋼帯を、加熱炉に連続的に通
板して連続焼鈍を行う連続焼鈍炉にあって、加熱炉の設
定炉温値及び通板速度を制御することにより加熱炉の出
側板温を制御する連続焼鈍炉の板温制御方法において、
炉内の通板及び鋼帯の焼鈍が安定して行われる定常状態
の通板速度を目標通板速度とし、この目標通板速度で通
板したときに加熱炉の出側板温が前記目標出側板温にな
る設定炉温値を所定条件に従って決定すると共に、この
設定炉温値から算出される炉温の応答遅れ時間を考慮し
て炉温設定替タイミングを決定し、この設定炉温値及び
炉温設定替タイミングで制御された結果の実績炉温を検
出し、その実績炉温で通板したときに前記加熱炉出側板
温を目標出側板温に対して所定の範囲内に制御するため
の修正通板速度を所定条件に従って決定すると共に、こ
の修正通板速度から算出される出側板温の変化所要時間
を考慮して通板速度設定替タイミングを決定することを
特徴とするものである。
That is, in the plate temperature control method for a continuous annealing furnace according to claim 1 of the present invention, a steel strip having a different plate thickness, plate width, or target outlet plate temperature on the outlet side of the heating furnace is used as a heating furnace. In a continuous annealing furnace that performs continuous sheet passing and continuous annealing, the plate temperature control of the continuous annealing furnace that controls the exit side plate temperature of the heating furnace by controlling the set furnace temperature value of the heating furnace and the plate passing speed In the method
The target strip running speed is defined as the steady strip running speed at which the strips and steel strips in the furnace are stably annealed, and when the strip is run at this target strip running speed, the exit side strip temperature of the heating furnace is set to the target output. While determining the set furnace temperature value that becomes the side plate temperature according to a predetermined condition, the furnace temperature setting change timing is determined in consideration of the response delay time of the furnace temperature calculated from the set furnace temperature value, and the set furnace temperature value and To detect the actual furnace temperature as a result of control at the furnace temperature setting change timing and to control the heating furnace exit side plate temperature within a predetermined range with respect to the target exit side plate temperature when the plate is passed at the actual furnace temperature. The modified strip passing speed is determined according to a predetermined condition, and the strip running speed setting change timing is determined in consideration of the time required to change the delivery side plate temperature calculated from the corrected strip running speed. ..

【0011】本発明のうち請求項2に係る連続焼鈍炉の
板温制御方法は、前記炉温設定値と前記修正通板速度と
を同一の所定のモデル式に従って算出し、このモデル式
に含まれる物理的パラメータを学習制御によって修正す
るようにしたことを特徴とするものである。
A plate temperature control method for a continuous annealing furnace according to a second aspect of the present invention calculates the furnace temperature set value and the corrected plate passing speed according to the same predetermined model formula, and is included in this model formula. It is characterized in that the physical parameters to be corrected are modified by learning control.

【0012】[0012]

【作用】本発明の連続焼鈍炉の板温制御方法では、炉内
の通板及び鋼帯の焼鈍が安定して行われる定常状態の通
板速度を目標通板速度とし、この目標通板速度で通板し
たときに加熱炉の出側板温が前記目標出側板温になる設
定炉温値を所定条件に従って決定すると共に、この設定
炉温値から算出される炉温の応答遅れ時間を考慮して炉
温設定替タイミングを決定し、この設定炉温値及び炉温
設定替タイミングで制御された結果の実績炉温を検出
し、その実績炉温で通板したときに前記加熱炉出側板温
を目標出側板温に対して所定の範囲内に制御するための
修正通板速度を所定条件に従って決定すると共に、この
修正通板速度から算出される出側板温の変化所要時間を
考慮して通板速度設定替タイミングを決定するために、
実績炉温が何らかの不安定要素によって設定炉温を満足
しない場合にも、この実績炉温で実績出側板温を目標出
側板温の許容範囲内に抑制することができ、しかも通板
速度の設定変更に対する応答特性は極めて良好であるた
め、検出された実績炉温に対して殆どリアルタイムに通
板速度を修正制御することができ、高精度の板温制御が
可能となる。
In the plate temperature control method for the continuous annealing furnace of the present invention, the plate passing speed in a steady state in which annealing of the plate and the steel strip in the furnace is stably performed is set as the target plate passing speed. In addition to determining the set furnace temperature value at which the outlet side plate temperature of the heating furnace becomes the target outlet side plate temperature when passing the plate according to a predetermined condition, considering the response delay time of the furnace temperature calculated from the set furnace temperature value. The furnace temperature setting change timing is determined according to the set temperature, and the actual furnace temperature as a result of control at the set furnace temperature value and the furnace temperature setting change timing is detected, and when the plate is passed at the actual furnace temperature, the heating furnace exit side plate temperature is detected. The corrected strip running speed for controlling the target strip temperature within the predetermined range with respect to the target strip temperature is determined in accordance with the predetermined conditions, and the time required for the change of the strip temperature calculated from the corrected strip speed is taken into consideration. In order to determine the plate speed setting change timing,
Even if the actual furnace temperature does not satisfy the set furnace temperature due to some unstable factors, the actual furnace temperature can be suppressed within the allowable range of the target outlet plate temperature by the actual furnace temperature, and the strip speed can be set. Since the response characteristic to the change is extremely good, the strip speed can be corrected and controlled almost in real time with respect to the detected actual furnace temperature, and the strip temperature can be controlled with high accuracy.

【0013】また、本発明の連続焼鈍炉の板温制御方法
では、前述の如く設定炉温値は目標出側板温と目標通板
速度とを成立するように決定されると共に、前記設定炉
温値と前記修正通板速度とを同一の所定のモデル式に従
って算出し、このモデル式に含まれる物理的パラメータ
を学習制御によって修正するようにしたために、この制
御方法を用いて連続焼鈍を続けるうちに、前記修正通板
速度は漸近的に目標通板速度に近接し、所望の目標通板
速度にて目標出側板温を満足する操業が可能となる。
Further, in the plate temperature control method for the continuous annealing furnace of the present invention, the set furnace temperature value is determined so as to satisfy the target exit side plate temperature and the target plate passing speed as described above, and the set furnace temperature is set. The value and the corrected strip running speed were calculated according to the same predetermined model formula, and the physical parameters contained in this model formula were modified by learning control.Therefore, while continuing continuous annealing using this control method, In addition, the corrected strip running speed asymptotically approaches the target strip running speed, and it becomes possible to operate at the desired target strip running speed to satisfy the target delivery side strip temperature.

【0014】[0014]

【実施例】図1は本発明の連続焼鈍炉の板温制御方法を
実施化した装置の一例を示すものである。同図に示すス
トリップ1は、板厚、板幅或いは加熱炉出側での目標出
側板温の異なる複数の鋼帯を溶接して一連に形成された
ものである。このストリップ1は、ロール2の回転によ
って加熱炉3内に送給され、ロール4の回転によって加
熱炉3内を通過し、ロール5,6の回転によって加熱炉
3外へと矢印方向に通板される。これらのロール2〜6
は夫々に設けられたモータ7によって個別に、或いはス
トリップ1の通板に伴って一連に回転されるようにして
ある。なお、ロール6には回転速度計8が取付けられて
おり、その検出信号は通板速度制御装置15に向けて送
出される。
FIG. 1 shows an example of an apparatus embodying the method for controlling the plate temperature of a continuous annealing furnace according to the present invention. The strip 1 shown in the figure is formed in series by welding a plurality of steel strips having different plate thicknesses, plate widths, or target outlet side plate temperatures on the outlet side of the heating furnace. This strip 1 is fed into the heating furnace 3 by the rotation of the roll 2, passes through the heating furnace 3 by the rotation of the roll 4, and passes through the outside of the heating furnace 3 in the direction of the arrow by the rotation of the rolls 5 and 6. To be done. These rolls 2-6
Are rotated individually by a motor 7 provided for each, or in series with the passage of the strip 1. A tachometer 8 is attached to the roll 6, and a detection signal of the tachometer 8 is sent to the plate passing speed control device 15.

【0015】前記加熱炉3内には流量弁9を介して燃焼
ガスが流入されており、この燃焼ガスは加熱炉3内を通
板するストリップ1の近傍に並設された図示されないラ
ジアントチューブ内に送給されて燃焼する。従って、加
熱炉3内の炉温は、ロール4とストリップ1との伝熱、
炉内の対流伝熱、炉壁の輻射伝熱等の諸元を包含するも
のの、あらかた燃焼ガスの流入量によって制御される。
この加熱炉3には炉温計10が取付けられており、その
検出信号は炉温制御装置11に向けて送出される。
Combustion gas is introduced into the heating furnace 3 through a flow valve 9, and the combustion gas is inside a radiant tube (not shown) arranged in the vicinity of the strip 1 passing through the heating furnace 3. It is sent to and burns. Therefore, the furnace temperature in the heating furnace 3 is the heat transfer between the roll 4 and the strip 1,
Although it includes specifications such as convective heat transfer in the furnace and radiant heat transfer in the furnace wall, it is controlled by the flow rate of the combustion gas.
A furnace thermometer 10 is attached to the heating furnace 3, and its detection signal is sent to the furnace temperature control device 11.

【0016】一方、連続焼鈍設備の集中制御室等に設け
られているストリップ条件設定器12で設定された種々
の炉温条件信号は炉温設定器13に向けて送出され、該
炉温設定器13で設定された設定炉温の炉温設定信号は
前記炉温制御装置11に向けて送出され、該炉温制御装
置11からの炉温制御信号に基づいて前記流量弁9の開
閉度を制御して燃焼ガスの流入量を制御すると共に、前
記炉温計10からの検出信号に基づいて該燃焼ガスの流
入量をフィードバック制御するようにしてある。ちなみ
に、前記ストリップ条件設定器12から送出される炉温
条件信号には、各鋼板(仕様の異なる鋼板は通常個別の
コイルに巻回されているので、以下、仕様の異なる鋼板
を単にコイルと記す)の加熱炉出側での目標出側板温T
SO,品質上で決定される加熱炉出側での上限出側板温T
SU及び加熱炉出側での下限出側板温TSL,加熱炉能力等
から決定される上限炉温TFU及び下限炉温TFL,蛇行を
防止するために決定される上限通板速度VSU,バックリ
ングを防止するために決定される下限通板速度VSL,及
び各コイルの機械的諸元等がある。なお、これらの上下
値は、オペレータの操作が介在した場合にはそれを優先
し、機械設備上の警報信号が送出された場合にはそれを
最も優先する。また、多くの場合、前記目標出側板温T
SOは下限出側板温TSL寄りに設定されていて必要以上の
熱量をできるだけ低減するようにしてあるが、実績出側
板温TS がこの下限出側板温TSLよりも下がることは品
質上、最も回避しなければならない。
On the other hand, various furnace temperature condition signals set by the strip condition setting device 12 provided in the centralized control room of the continuous annealing equipment are sent to the furnace temperature setting device 13, and the furnace temperature setting device is operated. The furnace temperature setting signal of the set furnace temperature set in 13 is sent to the furnace temperature control device 11, and the opening / closing degree of the flow valve 9 is controlled based on the furnace temperature control signal from the furnace temperature control device 11. The inflow amount of the combustion gas is controlled, and the inflow amount of the combustion gas is feedback-controlled based on the detection signal from the furnace thermometer 10. Incidentally, in the furnace temperature condition signal sent from the strip condition setting device 12, each steel plate (steel plates with different specifications are usually wound around individual coils, so hereinafter, steel plates with different specifications are simply referred to as coils. ) Target outlet plate temperature T at outlet of heating furnace
SO , upper limit outlet plate temperature T at outlet of heating furnace determined by quality
SU and the lower limit outlet plate temperature T SL at the outlet side of the heating furnace, the upper limit furnace temperature T FU and the lower limit furnace temperature T FL determined from the heating furnace capacity, etc., and the upper limit strip speed V SU determined to prevent meandering , The lower limit plate passing speed V SL determined to prevent buckling, and the mechanical specifications of each coil. It should be noted that these upper and lower values are prioritized when an operator's operation is present, and most prioritized when an alarm signal on mechanical equipment is transmitted. In many cases, the target outlet plate temperature T
SO is set close to the lower limit outlet plate temperature T SL so as to reduce the amount of heat more than necessary, but the fact that the actual outlet plate temperature T S is lower than the lower limit outlet plate temperature T SL is in terms of quality. Most must be avoided.

【0017】また、前記ストリップ条件設定器12で設
定された種々の通板速度条件信号は通板速度設定器14
に向けて送出されると共に、前記炉温計10の炉温検出
信号も該通板速度設定器14に向けて送出され、該通板
速度設定器14で設定された通板速度設定信号は前記通
板速度制御装置15に向けて送出され、該通板速度制御
装置15からの通板速度制御信号に基づいて前記モータ
7の回転速度を制御してロール6の回転速度を制御する
と共に、前記回転速度計8からの回転速度検出信号に基
づいて該モータ7の回転速度をフィードバック制御する
ようにしてある。ちなみに、前記ストリップ条件設定器
12から送出される通板速度条件信号にも、各コイルの
加熱炉出側での目標出側板温TSO,加熱炉出側での上限
出側板温TSU,加熱炉出側での下限出側板温TSL,上限
炉温設定値,下限炉温設定値,上限通板速度VSU,下限
通板速度VSL,及び各コイルの機械的諸元等がある。ま
たこれらの上下値は前記と同様に、オペレータの操作が
介在した場合にはそれを優先し、機械設備上の警報信号
が送出された場合にはそれを最も優先する。
Further, various strip passing speed condition signals set by the strip strip condition setting unit 12 are sent to the strip passing speed setter 14.
And the furnace temperature detection signal of the furnace thermometer 10 is also sent to the plate passing speed setting device 14, and the plate passing speed setting signal set by the plate passing speed setting device 14 is The rotation speed of the motor 7 is controlled by controlling the rotation speed of the motor 7 on the basis of the threading speed control signal from the threading speed control device 15, and the rotation speed of the roll 6 is controlled. The rotation speed of the motor 7 is feedback-controlled based on the rotation speed detection signal from the rotation speed meter 8. By the way, in the strip speed condition signal sent from the strip condition setter 12, the target outlet side plate temperature T SO at the heating furnace outlet side of each coil, the upper limit outlet side plate temperature T SU at the heating furnace outlet side, and the heating There are a lower limit outlet side plate temperature T SL at the furnace outlet side, an upper limit furnace temperature set value, a lower limit furnace temperature set value, an upper limit plate passing speed V SU , a lower limit plate passing speed V SL , and mechanical specifications of each coil. Further, these upper and lower values have the same priority as above, when the operator's operation is involved, and give the highest priority when the alarm signal on the mechanical equipment is transmitted.

【0018】また、この連続焼鈍設備では、加熱炉の出
側に実績出側板温TS を検出する板温計16を設置して
ある。そしてこの板温計16の実績出側板温検出信号、
及び前記回転速度計8及び炉温計10の検出信号は学習
制御器17に向けて送出される。この学習制御器17で
は、これらの検出信号から後述する物理的モデル式の物
理的パラメータを修正する必要が生じたときに、前記炉
温設定器13及び通板速度設定器14に向けてパラメー
タ修正信号を送出する。
Further, in this continuous annealing equipment, a plate thermometer 16 for detecting the actual delivery side plate temperature T S is installed on the outlet side of the heating furnace. The actual output side plate temperature detection signal of the plate thermometer 16,
The detection signals of the tachometer 8 and the furnace thermometer 10 are sent to the learning controller 17. In the learning controller 17, when it becomes necessary to correct the physical parameters of the physical model formula described later from these detection signals, the parameters are corrected toward the furnace temperature setting device 13 and the strip speed setting device 14. Send a signal.

【0019】前記炉温設定器13及び通板速度設定器1
4には図示されないコンピュータが設置されており、こ
のコンピュータでは前記諸条件信号に基づいて所定条件
に従って設定設定値及び修正通板速度を算出するが、こ
の所定条件には例えば一般に炉温と板温との相関関係を
表す下記1式に示す前記物理的モデル式が使用される。
The furnace temperature setting device 13 and the plate passing speed setting device 1
4, a computer (not shown) is installed, and this computer calculates a set set value and a corrected stripping speed in accordance with predetermined conditions based on the various condition signals. The predetermined conditions generally include, for example, the furnace temperature and the plate temperature. The physical model equation shown in the following equation 1 representing the correlation with is used.

【0020】 dTS /dt=φcgσ(TS 4 −TF 4 ) ……… (1) ここでTS :出側板温,t:時間,φcg,σ:物理的パ
ラメータ,TF :炉温を示す。従って、左辺dTS /d
tは時間当たりの出側板温の温度勾配を表し、φcg
σ,TS ,TF が定数であると仮定して時間差Δtを決
定すれば出側板温の変化量ΔTS が決定され、出側板温
の変化量ΔTS を決定すれば時間差Δtが決定される。
DT S / dt = φ cg σ (T S 4 −T F 4 ) ... (1) where T S : outlet plate temperature, t: time, φ cg , σ: physical parameter, T F : Indicates furnace temperature. Therefore, the left side dT S / d
t represents the temperature gradient of the outlet plate temperature per hour, φ cg ,
If the time difference Δt is determined assuming that σ, T S , and T F are constants, the change amount ΔT S of the outlet plate temperature is determined, and if the change amount ΔT S of the outlet plate temperature is determined, the time difference Δt is determined. It

【0021】前記炉温設定器13内のコンピュータでは
図2aのフローチャートに示す基本プログラムが実行さ
れて、目標通板速度VSO,設定炉温TFO,及び炉温設定
替タイミングt1 が決定される。また、通板速度設定器
14内のコンピュータでは図2bのフローチャートに示
す基本プログラムが実行されて、修正通板速度VS ,及
び通板速度設定替タイミング及び変化立等が決定され
る。
The computer in the furnace temperature setter 13 executes the basic program shown in the flowchart of FIG. 2a to determine the target strip running speed V SO , the set furnace temperature T FO , and the furnace temperature setting change timing t 1. It Further, the computer in the strip passing speed setting unit 14 executes the basic program shown in the flowchart of FIG. 2B to determine the corrected strip passing speed V S , the strip passing speed setting change timing, and the change standing.

【0022】図2aのフローチャートに示されるプログ
ラムは、前述のように炉温の設定替えに対する実績炉温
の応答が数十分を要し、それに対して各コイルの加熱炉
内通過時間は数分であることから、各コイルが加熱炉を
通板する前に事前に行われる。このプログラムでは、ま
ずステップS1において、前記条件信号から各コイルの
目標出側板温TSOを読込む。
The program shown in the flow chart of FIG. 2A requires the response of the actual furnace temperature to the change of the setting of the furnace temperature as described above, whereas the passage time of each coil in the heating furnace is several minutes. Therefore, each coil is performed in advance before passing through the heating furnace. In this program, first, in step S1, the target outlet plate temperature T SO of each coil is read from the condition signal.

【0023】次にステップS2に移行して、各コイルの
目標通板速度VSOを決定する。この目標通板速度V
SOは、前記上限通板速度VSUと下限通板速度VSLとの間
に設定される必要があり、また生産性を考慮すれば可能
な限り上限通板速度VSU側に近い、即ち高いことが望ま
れるが、後述する通板速度の修正制御のためにはこれを
上限値に決定してしまうことは望ましくない。この実施
例では図3,図4に示すように各コイルで目標通板速度
SOを一定とし、且つ上限通板速度VSUよりやや低めに
設定した。
Next, in step S2, the target strip running speed V SO of each coil is determined. This target strip speed V
SO needs to be set between the upper limit sheet passing speed V SU and the lower limit sheet passing speed V SL, and in view of productivity, it is as close as possible to the upper limit sheet passing speed V SU side, that is, high. However, it is not desirable to set this to the upper limit value for the correction control of the strip running speed described later. In this embodiment, as shown in FIGS. 3 and 4, the target strip running speed V SO was set constant for each coil and set slightly lower than the upper limit strip running speed V SU .

【0024】次にステップS3に移行して、前記学習制
御器17から前記物理的モデル式1式の物理的パラメー
タφcgの修正信号が送出されているか否かを判別し、該
修正信号が送出されている場合にはステップS4に移行
し、そうでない場合にはステップS5に移行する。前記
ステップS4では、前記1式の修正パラメータを読込ん
で前記ステップS5に移行する。
Next, in step S3, it is determined whether or not a correction signal for the physical parameter φ cg of the physical model equation 1 is transmitted from the learning controller 17, and the correction signal is transmitted. If so, the process proceeds to step S4, and if not, the process proceeds to step S5. In step S4, the one set of correction parameters is read and the process proceeds to step S5.

【0025】前記ステップS5では、各コイルを前記ス
テップS2で決定した目標通板速度VSOで通板したとき
に、各コイルの目標出側板温TSOを達成するための設定
炉温TFOを、前記1式に従って算出する。この場合、前
記1式における板温TS には目標出側板温TSOを、炉温
F には設定炉温TFOを代入して該設定炉温TFOを算出
する。なお、該1式の左辺の板温勾配dTSO/dtは各
コイルの諸元(板厚,板幅)に基づいて、経験値等から
得られた記憶テーブルから所要のデータを引用して代入
する。この場合、例えば前記時間変化率dtの積分値、
時間差Δtは炉長と前記目標通板速度VSOとから、前記
板温変化率dTSOの積分値、板温変化量ΔTSOは現在入
側板温と目標出側板温TSOとから算出される。勿論、こ
の場合、設定炉温TF が上限炉温TFU以上である場合に
は設定炉温TF を上限炉温TFUに、設定炉温TF が下限
炉温TFL以上である場合には設定炉温TF を下限炉温T
FLに設定する必要がある。
In step S5, the set furnace temperature T FO for achieving the target outlet side plate temperature T SO of each coil when each coil is passed at the target running speed V SO determined in step S2 is set. , Is calculated according to the above formula 1. In this case, the target outlet-side plate temperature T SO is substituted for the plate temperature T S in the equation 1 and the set furnace temperature T FO is substituted for the furnace temperature T F to calculate the set furnace temperature T FO . Note that the plate temperature gradient dT SO / dt on the left side of the equation 1 is substituted based on the specifications (plate thickness, plate width) of each coil by quoting required data from a memory table obtained from empirical values and the like. To do. In this case, for example, the integrated value of the time change rate dt,
The time difference Δt is calculated from the furnace length and the target strip speed V SO , the integrated value of the plate temperature change rate dT SO , and the plate temperature change amount ΔT SO is calculated from the current inlet plate temperature and the target outlet plate temperature T SO. . Of course, in this case, the set oven temperature T F in the upper furnace temperature T FU when set furnace temperature T F is the upper limit reactor temperature T FU or, if the set furnace temperature T F is lower furnace temperature T FL or Set the furnace temperature T F to the lower limit furnace temperature T
Must be set to FL .

【0026】次にステップS6に移行して、前記ステッ
プS5で算出した設定炉温TFOに対して実績炉温の応答
遅れから生じる出側板温の応答遅れを算出し、この出側
板温の応答遅れ時間を考慮して炉温設定替タイミングを
算出する。この場合、実績炉温の応答遅れは現在実績炉
温と設定炉温との差を、また出側板温の応答遅れは実績
炉温と実績出側板温との差を用いて、例えば経験値から
得られた記憶テーブルから所要のデータを引用する。こ
れらのデータを適宜処理して出側板温の応答遅れ時間を
算出し、この応答遅れ時間に基づいて炉温設定替タイミ
ングを算出する。
Next, in step S6, the response delay of the outlet side plate temperature caused by the response delay of the actual furnace temperature with respect to the set furnace temperature T FO calculated in step S5 is calculated, and the response of the outlet side plate temperature is calculated. The furnace temperature setting change timing is calculated in consideration of the delay time. In this case, the response delay of the actual furnace temperature is the difference between the current actual furnace temperature and the set furnace temperature, and the response delay of the outlet plate temperature is the difference between the actual furnace temperature and the actual outlet plate temperature. The required data is quoted from the obtained storage table. These data are appropriately processed to calculate the response delay time of the outlet plate temperature, and the furnace temperature setting change timing is calculated based on this response delay time.

【0027】次にステップS7に移行して、前記ステッ
プS6までの間に演算を行った各コイルに対して、現在
時刻から目標出側板温到達時刻までの間に加熱炉を通過
或いは加熱炉内に送給されるコイルを算出し、そのよう
なコイルに対して夫々設定された設定炉温TFOのうち最
も高温の設定炉温TFOを選択し、この設定炉温を目標設
定炉温TFOとして決定する。なお、前記現在時刻から目
標出側板温到達時刻までの間に加熱炉を通過或いは加熱
炉内に送給されるコイルの算出は、各コイル長,炉長,
目標通板速度VSOに基づいて算出される。
Next, in step S7, the coils that have been calculated up to step S6 are passed through or inside the heating furnace from the current time to the target delivery side plate temperature arrival time. Of the set furnace temperature T FO set for each of the coils, the highest set furnace temperature T FO is selected, and this set furnace temperature is set as the target set furnace temperature T FO. Determined as FO . In addition, the calculation of the coil that passes through or is fed into the heating furnace from the current time to the time when the target outlet plate temperature is reached is calculated by each coil length, furnace length,
It is calculated based on the target running speed V SO .

【0028】次にステップS8に移行して、前記ステッ
プS7で決定した目標設定炉温TFOに対して、現在時刻
に最も近いコイルの炉温設定替タイミングtFOを組合わ
せてなる炉温設定信号を前記炉温制御装置11に向けて
出力し、プログラムを終了する。前記図2bのフローチ
ャートに示すプログラムは、前記通板速度制御装置15
の処理時間、モータ7及びロール6の応答時間、回転速
度計8の処理時間、通板速度設定器14の処理時間を除
いて、前記炉温計10からの検出信号に対して、例えば
5sec.毎にリアルタイムに行われる。
Next, at step S8, the furnace temperature setting timing t FO of the coil closest to the current time is combined with the target set furnace temperature T FO determined at step S7. A signal is output to the furnace temperature control device 11, and the program ends. The program shown in the flowchart of FIG.
Processing time, the response time of the motor 7 and the roll 6, the processing time of the tachometer 8, and the processing time of the strip speed setting device 14, with respect to the detection signal from the furnace thermometer 10, for example, 5 seconds. Every time it is done in real time.

【0029】このプログラムではまずステップS9にお
いて、各コイルの目標出側板温TSO,上限通板速度
SU,下限通板速度VSLを読込む。次にステップS10
に移行して、前記炉温計10からの実績炉温検出信号か
ら実績炉温TF を読込む。次にステップS11に移行し
て、前記学習制御器17から前記1式の物理的パラメー
タφcgεの修正信号が送出されているか否かを判別し、
該修正信号が送出されている場合にはステップS12に
移行し、そうでない場合にはステップS13に移行す
る。
In this program, first, in step S9, the target outlet side plate temperature T SO , the upper limit plate passing speed V SU , and the lower limit plate passing speed V SL are read. Next in step S10
Then, the actual furnace temperature T F is read from the actual furnace temperature detection signal from the furnace thermometer 10. Next, in step S11, it is determined whether or not a correction signal for the physical parameter φ cg ε of the equation 1 has been sent from the learning controller 17.
If the correction signal is transmitted, the process proceeds to step S12, and if not, the process proceeds to step S13.

【0030】前記ステップS12では、前記1式の修正
パラメータを読込んで前記ステップS13に移行する。
前記ステップS13では、各コイルを前記実績炉温TF
で通板したときの目標出側板温勾配dTSO/dtを、前
記1式の炉温TF に実績炉温TF を代入して算出する。
In step S12, the one set of correction parameters is read, and the process proceeds to step S13.
In step S13, each coil is connected to the actual furnace temperature T F.
In the target delivery side temperature gradient dT SO / dt when the strip passing is calculated by substituting the actual furnace temperature T F in furnace temperature T F of the equation (1).

【0031】次にステップS14に移行して、前記目標
出側板温勾配dTSO/dtを達成する修正通板速度VS
を算出する。この場合、例えば前記時間変化率dtの積
分値、時間差Δtは目標出側板温変更点(仮段)から加
熱炉出側までの距離と修正通板速度VS とから、前記目
標出側板温変化率dTSOの積分値、板温変化量ΔTSO
現在実績出側板温TS と目標出側板温TSOとから算出さ
れる。
Next, the routine proceeds to step S14, where the corrected running speed V S for achieving the target outlet side plate temperature gradient dT SO / dt.
To calculate. In this case, for example, the integrated value of the time change rate dt and the time difference Δt are the target output side plate temperature change based on the distance from the target output side plate temperature change point (temporary stage) to the heating furnace output side and the corrected running speed V S. The integrated value of the rate dT SO and the plate temperature change amount ΔT SO are calculated from the current actual delivery side plate temperature T S and the target delivery side plate temperature T SO .

【0032】次にステップS15に移行して、前記修正
通板速度VS が上限通板速度VSU以上である場合には該
修正通板速度VS を上限通板速度VSUに設定し、修正通
板速度VS が下限通板速度VSL以上である場合には該修
正通板速度VS を下限通板速度VSLに設定すると共に、
現在加熱炉3の出側を通過中のコイルの出側板温TSN
ら修正通板速度VS の通板速度変化率、即ち加減速度
と、修正通板速度到達遅れ時間から修正通板速度VS
通板速度設定替タイミングtSOを算出する。
Next, in step S15, if the corrected strip passing speed V S is equal to or higher than the upper limit sheet passing speed V SU , the corrected sheet passing speed V S is set to the upper limit sheet passing speed V SU , When the corrected passing speed V S is equal to or higher than the lower limit passing speed V SL , the corrected passing speed V S is set to the lower limit passing speed V SL , and
From the exit side plate temperature T SN of the coil currently passing through the exit side of the heating furnace 3, the rate of change of the passing speed of the corrected running speed V S , that is, the acceleration / deceleration, and the corrected passing speed V delay time, The passage speed setting change timing t SO of S is calculated.

【0033】次にステップS16に移行して、現在時刻
から通板速度修正に伴う目標出側板温到達時刻までの間
に加熱炉内を通過或いは加熱炉内に送給されるコイルを
算出し、それらのコイルのうち修正通板速度VS の最も
低いコイルの修正通板速度を選択し、これを修正通板速
度VS と決定する。次にステップS17に移行して、前
記決定修正通板速度VS に対して、現在時刻に最も近い
コイルの通板速度設定替タイミングtSO及び速度変化率
を組合わせてなる通板速度設定信号を出力し、プログラ
ムを終了する。
Next, in step S16, the coil that passes through or is fed into the heating furnace is calculated from the current time to the time when the target delivery side plate temperature is reached when the running speed is corrected. Of these coils, the corrected threading speed of the coil having the lowest corrected threading speed V S is selected, and this is determined as the corrected threading speed V S. Next, the process proceeds to step S17, where the determined corrected strip passing speed V S is combined with the strip passage speed setting change timing t SO of the coil closest to the current time and the speed change rate. Is output and the program ends.

【0034】次に、これらのプログラム処理による本発
明の作用について図3,図4を用いて説明する。このう
ち、図3は後行板の目標出側板温が先行板の現在出側板
温よりも高い場合であり、図4は後行板の目標出側板温
が先行板の現在出側板温よりも低い場合を示している。
例えば図3aのように先行板が現在実績出側板温TSN
ある状況から、後行板が目標出側板温TSOになるように
変更する場合、前記ストリップ条件設定器12からの条
件信号により後行板の機械的諸元及び目標通板速度VSO
から目標出側板温到達時刻tO を得る。このとき、目標
出側板温到達時刻tO は後行板先端仮段の出側通過時刻
に一致する。これらの情報を得た炉温設定器13では前
記ステップS1において後行板の目標出側板温TSOを読
込み、ステップS2で後行板の目標通板速度VSOを決定
する。この場合は、先行板の通板速度VSNに一致させる
ように該目標通板速度VSOを決定した。
Next, the operation of the present invention by these program processes will be described with reference to FIGS. Of these, FIG. 3 shows the case where the target output side plate temperature of the trailing plate is higher than the current output side plate temperature of the preceding plate, and FIG. 4 shows that the target output side plate temperature of the following plate is higher than the current output side plate temperature of the preceding plate. The case is low.
For example, as shown in FIG. 3a, when the preceding plate has the current actual delivery side plate temperature T SN and the trailing plate is changed to the target delivery side plate temperature T SO , a condition signal from the strip condition setting device 12 is used. The mechanical specifications of the trailing plate and the target running speed V SO
The target arrival side plate temperature arrival time t O is obtained from. At this time, the target delivery side plate temperature reaching time t O coincides with the delivery side passage time of the trailing plate leading edge stage. The furnace temperature setting device 13 which has obtained these pieces of information reads the target exit side plate temperature T SO of the trailing plate in step S1 and determines the target passing speed V SO of the trailing plate in step S2. In this case, the target strip running speed V SO was determined so as to match the strip running speed V SN of the preceding plate.

【0035】次にステップS3,S4で物理的モデル式
の物理的パラメータを修正し、ステップS5で設定炉温
FOを決定し、ステップS6で現在炉温TFNから設定炉
温T FOに設定替えした場合の板温応答遅れ時間を算出
し、前記目標出側板温到達時刻t0 から該遅れ時間分だ
け前倒しして炉温設定替タイミングtFOを決定する。し
かして炉温設定替タイミングtFOになったら設定炉温T
FOに設定替えを行う。
Next, in steps S3 and S4, the physical model formula
Modify the physical parameters of and set the furnace temperature in step S5.
TFOAnd the current furnace temperature T in step S6.FNFrom setting furnace
Temperature T FOCalculates the plate temperature response delay time when the setting is changed to
Then, the target delivery side plate temperature reaching time t0From the delay time
Move the furnace forward and change the furnace temperature setting timing tFOTo decide. Shi
However, the furnace temperature setting change timing tFOWhen it becomes, set furnace temperature T
FOChange the setting to.

【0036】ここで本来であればステップS7,S8に
おいて所定の処理を行うが、ここでは簡単のために現在
時刻から目標出側板温到達時刻までの間に加熱炉内を通
過するコイルは後行板だけであるとして説明を進め、該
ステップS7,S8の作用については好適な実施例をも
って後述することとする。一方、通板速度設定器14で
は前記ステップS9において後行板の目標出側板温
SO,上限通板速度VSU,下限通板速度VSLを読込み、
次いでステップS10において現在実績炉温TF を読込
む。
Here, originally, predetermined processing is performed in steps S7 and S8, but here, for simplification, the coil passing through the heating furnace between the current time and the target delivery side plate temperature arrival time is trailing. The description will proceed assuming that only the plate is used, and the operation of steps S7 and S8 will be described later with a preferred embodiment. On the other hand, in the step S9, the target delivery side plate temperature T SO of the trailing plate, the upper limit plate speed V SU and the lower limit plate speed V SL are read in the step S9,
Next, in step S10, the current actual furnace temperature T F is read.

【0037】次にステップS11,S12で物理的モデ
ル式の物理的パラメータを修正し、ステップS13,S
14で修正通板速度VS を決定し、ステップS15で現
在通板速度VSNから修正通板速度VS に設定替えした場
合の出側板温応答遅れ時間を算出し、前記目標出側板温
到達時刻t0 から該遅れ時間分だけ前倒しして通板速度
設定替タイミングtSOを決定し、しかして通板速度設定
替タイミングtSOになったら修正通板速度VS に設定替
えを行う。
Next, in steps S11 and S12, the physical parameters of the physical model formula are modified, and in steps S13 and S12.
In step S14, the corrected running speed V S is determined, and in step S15, the delivery side plate temperature response delay time is calculated when the current running speed V SN is changed to the corrected running speed V S , and the target delivery side plate temperature is reached. From the time t 0, the plate passing speed setting change timing t SO is determined by moving forward by the delay time, and when the plate passing speed setting change timing t SO is reached, the corrected plate passing speed V S is changed.

【0038】この場合も本来であればステップS16に
おいて所定の処理を行うが、ここでは前述と同様にこの
まま説明を進め、該ステップS16の作用については好
適な実施例をもって後述することとする。また、通板速
度の修正制御によって目標出側板温到達時刻は初期の設
定時刻よりも前後するため、実際の制御装置並びに炉温
設定器13及び通板速度設定器14ではこの目標出側板
温到達時刻の変動を常時修正するが、ここでは簡単のた
めに目標出側板温到達時刻(=後行板先端仮段の出側通
過時刻)tO は変動しないものとして説明を進める。
In this case as well, the predetermined processing is normally performed in step S16, but here, the description will be continued as it is, and the operation of step S16 will be described later with a preferred embodiment. Further, since the target delivery-side plate temperature reaching time is earlier or later than the initial set time by the correction control of the strip passing speed, the actual controller, the furnace temperature setting device 13, and the strip-passing speed setting device 14 reach this target delivery-side plate temperature. Although the time variation is constantly corrected, for the sake of simplicity, the description will be made assuming that the target delivery-side plate temperature arrival time (= outgoing-side passage time of the trailing plate leading edge stage) t O does not change.

【0039】前記ステップS17では修正通板速度VS
に現在時刻の通板速度設定替タイミングtSO及び速度変
化率を組合わせて通板速度設定信号を出力するので、例
えば図3aの炉温特性に実線で示す実績炉温TF に対し
て、同図の出側板温特性に仮想線で示す仮想出側板温T
Siのように出側板温は追従しようとするが、実質的な通
板速度の修正制御に対する目標出側板温の応答遅れ分を
除いた、先行板の現在出側板温TSNに対する仮想出側板
温TSiへの変動は無駄であるから、その分だけ現在時刻
から継続的に通板速度を修正制御することにより、先行
板に与えられた無駄な温度変化分を除去することができ
る。図3aの場合、斜線部イに示す先行板の板温上昇分
は無駄な熱量であるから、同図の実績(修正)通板速度
S に示すように、通板速度設定替タイミングtSOで修
正通板速度VS に到達するように炉温設定替タイミング
FOから通板速度設定替タイミングtSOまでの間に通板
速度を加速し、目標出側板温到達時刻tO で目標通板速
度VSOに到達するように通板速度設定替タイミングtSO
から目標出側板温到達時刻tO までの間に通板速度を減
速することによって前記斜線部イの余分な熱量を削除す
ることができる。
In step S17, the corrected plate passing speed V S
Since the strip running speed setting change timing t SO at the present time and the speed change rate are combined to output the strip running speed setting signal, for example, with respect to the actual furnace temperature T F shown by the solid line in the furnace temperature characteristic of FIG. Virtual output side plate temperature T indicated by a virtual line in the output side plate temperature characteristic of FIG.
Although the output side plate temperature tries to follow like Si, the virtual output side plate temperature with respect to the current output side plate temperature T SN of the preceding plate, excluding the response delay amount of the target output side plate temperature with respect to the substantial correction control of the strip passing speed. Since the change to T Si is useless, the useless temperature change given to the preceding plate can be removed by continuously correcting and controlling the passing speed from the current time. In the case of FIG. 3a, since the plate temperature rise amount of the preceding plate indicated by the hatched portion a is a wasteful heat amount, as shown by the actual (corrected) plate passing speed V S in the figure, the plate passing speed setting change timing t SO In order to reach the corrected strip running speed V S , the strip running speed is accelerated between the furnace temperature setting change timing t FO and the strip running speed setting change timing t SO , and the target strip running temperature is reached at the target delivery side plate temperature reaching time t O. timing t sO exchange Tsuban speed setting so as to reach the plate velocity V sO
It is possible to remove the extra heat of the hatched portion Lee by decelerating the Tsuban speed until the target delivery side temperature arrival time t O from.

【0040】これに対して図3bのように、例えば炉温
設定替タイミングtFOが遅れる等の理由により、後行板
先端仮段の出側通過時刻、即ち目標出側板温到達時刻t
O に対して設定炉温到達時刻tF1が遅れてしまった場合
は、前述と同様に先行板の余剰熱量(斜線部ロ)を削除
すると共に後行板の不足熱量(斜線部ハ)を補充するよ
うに通板速度を修正制御しなければならない。このた
め、同図の実績(修正)通板速度VS に示すように、通
板速度設定替タイミングtSOで修正通板速度VSに到達
するように炉温設定替タイミングtFOから通板速度設定
替タイミングtSOまでの間に通板速度を加速し、通板速
度設定替タイミングtSOから目標出側板温到達時刻tO
までの間に、仮想出側板温TSiと実績出側板温TS とが
交差する時刻t1 で目標通板速度VSOとゼロクロスする
ように通板速度を減速し、更に設定炉温到達時刻tF1
目標通板速度VSOに到達するように目標出側板温到達時
刻t O から設定炉温到達時刻tF1までの間に通板速度を
加速することによって、前記斜線部ロの熱量を削除し、
且つ前記斜線部ハの熱量を補充することが可能となる。
On the other hand, as shown in FIG.
Setting change timing tFOTrailing plate due to delay
The exit side passage time of the provisional tip stage, that is, the target exit side plate temperature arrival time t
OFor the set furnace temperature reaching time tF1Is delayed
Removes the excess heat of the preceding plate (hatched area B) as above
And supplement the insufficient heat of the trailing plate (hatched area C).
Therefore, the strip speed must be corrected and controlled. others
Therefore, the actual (corrected) plate passing speed V in the figureS, As shown in
Plate speed setting change timing tSOCorrected plate passing speed VSReached
To change the furnace temperature setting timing tFOFrom passing speed setting
Replacement timing tSOUp to the passing speed,
Degree setting change timing tSOTo the target delivery side plate temperature at time tO
Until the virtual outlet plate temperature TSiAnd actual delivery side plate temperature TSAnd
Crossing time t1And target strip speed VSOAnd zero cross
As shown in FIG.F1so
Target strip speed VSOWhen the target outlet plate temperature is reached
Tick t OFrom the set furnace temperature reaching time tF1The strip speed
By accelerating, the heat quantity in the shaded area B is deleted,
Moreover, it becomes possible to supplement the heat quantity of the hatched portion c.

【0041】また図3cのように、例えば炉温設定替タ
イミングtFOが早すぎる等の理由により、後行板先端仮
段の出側通過時刻、即ち目標出側板温到達時刻tO より
先に設定炉温に到達してしまった場合は、前記図3aの
場合と同様に先行板の余剰熱量(斜線部ニ)を削除する
ように通板速度を修正制御する。この場合は通板速度設
定替タイミングtsoより設定炉温到達時刻tF1が先行し
ているため、同図の実績(修正)通板速度VS に示すよ
うに、設定炉温到達時刻tF1で修正通板速度V S に到達
するように炉温設定替タイミングtFOから設定炉温到達
時刻tF1までの間に通板速度を加速し、設定炉温到達時
刻tF1から通板速度設定替タイミングt SOまでの間は修
正通板速度VS に維持し、更に目標出側板温到達時刻t
O で目標通板速度VSOに到達するように通板速度設定替
タイミングtSOから目標出側板温到達時刻tO までの間
は通板速度を減速することによって、前記斜線部ニの熱
量を削除することが可能となる。
As shown in FIG. 3c, for example, a furnace temperature setting changer
Imming tFOThe trailing edge of the trailing plate is
The passage-side passage time, that is, the target arrival-side plate temperature arrival time tOThan
If the set furnace temperature is reached first,
As in the case, delete the surplus heat of the preceding plate (hatched area D)
The strip speed is corrected and controlled as follows. In this case
Replacement timing tsoFrom the set furnace temperature reaching time tF1Preceded by
Therefore, the actual (corrected) plate passing speed V in the figureSI'll show you
Sea urchin reaching the set furnace temperature tF1Corrected plate passing speed V SReached
To change the furnace temperature setting timing tFOFrom reaching the set furnace temperature
Time tF1When the set furnace temperature is reached,
Tick tF1To passing speed setting change timing t SOUp until
Straight plate speed VSAt the target delivery side plate temperature t
OAnd target strip speed VSOChange the strip speed so that
Timing tSOTo the target delivery side plate temperature at time tOUntil
Reduces the heat of the shaded area by reducing the passing speed.
It is possible to delete the amount.

【0042】一方、図4aのように先行板の現在出側板
温TSNに対して後行板の目標出側板温TSOを下降する場
合は、後行板先端仮段の出側通過時刻が通板速度設定替
タイミングtO に一致する。この場合も前述と同様に、
例えば図4aの炉温特性に実線で示す実績炉温TF に対
して、同図の出側板温特性に仮想線で示す仮想出側板温
Siのように出側板温は追従しようとするが、実質的な
通板速度の修正制御に対する目標出側板温の応答遅れ分
を除いた、先行板の現在出側板温TSNに対する仮想出側
板温TSiへの変動は無駄であるから、その分だけ現在時
刻から継続的に通板速度を修正制御することにより、先
行板に与えられた無駄な温度変化分を除去することがで
きる。図4aの場合、斜線部ホに示す先行板の板温上昇
分は無駄な熱量であるから、同図の実績(修正)通板速
度VS に示すように、目標出側板温到達時刻tO で修正
通板速度VS に到達するように通板速度設定替タイミン
グtSOから目標出側板温到達時刻tO までの間に通板速
度を加速し、設定炉温到達時刻tF1で目標通板速度VSO
に到達するように目標出側板温到達時刻tO から設定炉
温到達時刻tF1までの間に通板速度を減速することによ
って、前記斜線部ホの余分な熱量を削除することができ
る。
On the other hand, when the target delivery side plate temperature T SO of the trailing plate is lowered with respect to the current delivery side plate temperature T SN of the preceding plate as shown in FIG. It coincides with the passage speed setting change timing t O. In this case as well,
For example, the output side plate temperature tends to follow the actual furnace temperature T F shown by the solid line in the furnace temperature characteristic of FIG. 4a, like the virtual output side plate temperature T Si shown by the virtual line in the output side plate temperature characteristic of FIG. The change in the virtual output side plate temperature T Si with respect to the current output side plate temperature T SN of the preceding plate, which excludes the delay in the response of the target output side plate temperature to the substantial correction control of the plate passing speed, is useless. Only by continuously correcting and controlling the strip passing speed from the current time, it is possible to remove the wasteful temperature change given to the preceding strip. In the case of FIG. 4A, since the amount of heat increase of the preceding plate indicated by the shaded portion E is a wasteful amount of heat, as shown by the actual (corrected) plate passing speed V S in the same figure, the target delivery side plate temperature arrival time t O In order to reach the corrected strip running speed V S , the strip running speed is accelerated between the strip running speed setting change timing t SO and the target exit side plate temperature reaching time t O, and the target strip passing speed is reached at the set furnace temperature reaching time t F1. Plate speed V SO
By decelerating the plate passing speed between the target outlet plate temperature arrival time t O and the set furnace temperature arrival time t F1 so as to reach the above, it is possible to remove the excess heat amount of the shaded portion e.

【0043】これに対して図4bのように、例えば炉温
設定替タイミングtFOが後行板先端仮段の出側通過時
刻、即ち通板速度設定替タイミングtSOより遅れた場合
は、前記図4aの場合と同様に先行板の余剰熱量(斜線
部ヘ)を削除するように通板速度を修正制御する。この
場合は炉温設定替タイミングtFOが目標出側板温到達時
刻tO より後行しているため、同図の実績(修正)通板
速度VS に示すように、目標出側板温到達時刻tO で修
正通板速度VS に到達するように通板速度設定替タイミ
ングtSOから目標出側板温到達時刻tO までの間に通板
速度を加速し、目標出側板温到達時刻tO から炉温設定
替タイミングtFOまでの間は修正通板速度VS に維持
し、更に設定炉温到達時刻tF1で目標通板速度VSOに到
達するように炉温設定替タイミングtFOから設定炉温到
達時刻tF1までの間は通板速度を減速することによっ
て、前記斜線部ヘの熱量を削除することが可能となる。
On the other hand, as shown in FIG. 4B, for example, when the furnace temperature setting change timing t FO lags behind the exit side passage time of the trailing plate leading edge stage, that is, the passing speed setting change timing t SO , As in the case of FIG. 4a, the passage speed is corrected and controlled so as to delete the surplus heat amount (to the shaded portion) of the preceding plate. In this case, since the furnace temperature setting change timing t FO is after the target delivery side plate temperature arrival time t O , as shown in the actual (corrected) plate passing speed V S in the figure, the target delivery side plate temperature arrival time accelerate Tsuban speed between the Tsuban speed setting replacement timing t sO so as to reach the corrected through plate velocity V S in t O to the target delivery side temperature arrival time t O, the target delivery side temperature arrival time t O from the until the furnace temperature setting replacement timing t FO maintains the modified passage plate velocity V S, further setting oven temperature arrival time t F1 in replacement furnace temperature set to reach the target through plate velocity V sO timing t FO It is possible to remove the heat quantity to the shaded portion by reducing the plate passing speed until the set furnace temperature reaching time t F1 .

【0044】また図4cのように、例えば炉温設定替タ
イミングtFOが後行板先端仮段の出側通過時刻、即ち通
板速度設定替タイミングtSOより早くなった場合は、前
述と同様に先行板の余剰熱量(斜線部ト)を削除すると
共に後行板の不足熱量(斜線部チ)を補充するように通
板速度を修正制御しなければならない。このため、同図
の実績(修正)通板速度VS に示すように、通板速度設
定替タイミングtSOで減速側修正通板速度VS1に到達す
るように炉温設定替タイミングtFOから通板速度設定替
タイミングtSOまでの間に通板速度を加速し、通板速度
設定替タイミングtSOから目標出側板温到達時刻tO
での間に、仮想出側板温TSiと実績出側板温TS とが交
差する時刻t2 で目標通板速度VSOとゼロクロスし、且
つ目標出側板温到達時刻tO で加速側修正通板速度VS2
に到達するように通板速度を加速し、更に設定炉温到達
時刻tF1で目標通板速度VSOに到達するように目標出側
板温到達時刻tO から設定炉温到達時刻tF1までの間に
通板速度を加速することによって、前記斜線部トの熱量
を削除し、且つ前記斜線部チの熱量を補充することが可
能となる。
Further, as shown in FIG. 4C, for example, when the furnace temperature setting change timing t FO is earlier than the exit side passage time of the trailing plate leading edge stage, that is, the passing speed setting change timing t SO , the same as above. In addition, it is necessary to correct the passage speed so as to delete the surplus heat amount of the leading plate (hatched portion) and supplement the insufficient heat amount of the trailing plate (hatched portion). Therefore, as shown in the actual (corrected) strip passing speed V S in the figure, the furnace temperature setting change timing t FO is reached from the furnace temperature setting change timing t FO so as to reach the deceleration-side corrected strip passing speed V S1 at the strip passing speed setting change timing t SO. accelerate Tsuban speed until time t SO exchange sheet passing speed setting, between the sheet passing speed setting replacement timing t SO to the target delivery side temperature arrival time t O, out virtual delivery side temperature T Si and results At the time t 2 at which the side plate temperature T S intersects, the target plate running speed V SO is zero-crossed, and at the target exit side plate temperature reaching time t O , the acceleration side corrected plate running speed V S2.
Accelerating Tsuban speed to reach the further from the target delivery side temperature arrival time t O to reach the target through plate velocity V SO settings furnace temperature arrival time t F1 to set furnace temperature arrival time t F1 By accelerating the plate passing speed in the meantime, it becomes possible to eliminate the heat quantity of the shaded area and supplement the heat quantity of the shaded area.

【0045】勿論、これらの制御において、設定炉温T
FOが図示されていない上限炉温TFU以上になった場合は
上限炉温TFUが設定炉温TFOに決定され、設定炉温TFO
が図示されていない下限炉温TFL以下になった場合は下
限炉温TFLが設定炉温TFOに決定される。同様に、修正
通板速度VS が上限通板速度SU以上になった場合は上限
通板速度SUが修正通板速度VS に決定され、修正通板速
度VS が下限通板速度VSL以下になった場合は下限通板
速度VSLが修正通板速度VS に決定される。また、実績
出側板温TS が上限出側板温TSU以上になる場合は、例
えば修正通板速度VS を減速側に制御するなどして実績
出側板温TS が上限出側板温TSUを越えないように制御
し、実績出側板温TS が下限出側板温TSL以下になる場
合は、例えば修正通板速度VS を加速側に制御するなど
して実績出側板温TS が下限出側板温TSLを越えないよ
うに制御する。
Of course, in these controls, the set furnace temperature T
FO upper limit reactor temperature T FU When it becomes more than the upper limit reactor temperature T FU which is not shown, it is determined to set furnace temperature T FO, set furnace temperature T FO
Is below the lower limit furnace temperature T FL ( not shown), the lower limit furnace temperature T FL is determined as the set furnace temperature T FO . Similarly, the upper limit passing plate speed SU is determined corrected through plate velocity V S when the corrected through plate velocity V S is equal to or higher than the upper limit passing plate speed SU, modified through plate velocity V S is lower passage plate velocity V SL When it becomes the following, the lower limit plate passing speed V SL is determined as the corrected plate passing speed V S. Further, actual delivery side temperature T S If is greater than or equal to the upper delivery side temperature T SU, for example, a modified passage plate velocity V S out performance, such as by controlling the speed reduction side plate temperature T S is an upper limit delivery side temperature T SU controlled not exceed, performance when the delivery side temperature T S is less than or equal to the lower delivery side temperature T SL, for example, actual delivery side temperature T S, such as by controlling the modified passage plate velocity V S in the acceleration side Control so as not to exceed the lower limit outlet plate temperature T SL .

【0046】前記本発明の連続焼鈍炉の板温制御方法に
よる好適な実施例を図5に基づいて詳述する。なお、こ
の実施例でも前記作用の説明と同様に各コイルの目標通
板速度VSOは一定速度になるように制御した。また、通
板速度の修正制御によって目標出側板温到達時刻は初期
の設定時刻よりも前後するため、実際の制御装置並びに
炉温設定器13及び通板速度設定器14ではこの目標出
側板温到達時刻の変動を常時修正するが、ここでは簡単
のために目標出側板温到達時刻tO は変動しないものと
して説明を進める。一方、この実施例では前記作用の説
明と異なり、制御の順に経時的に時刻に添字を付与す
る。
A preferred embodiment of the plate temperature control method for the continuous annealing furnace of the present invention will be described in detail with reference to FIG. In this embodiment as well, the target strip running speed V SO of each coil was controlled to be a constant speed as in the case of the above description of the operation. Further, since the target delivery-side plate temperature reaching time is earlier or later than the initial set time by the correction control of the strip passing speed, the actual controller, the furnace temperature setting device 13, and the strip-passing speed setting device 14 reach this target delivery-side plate temperature. Although the fluctuation of the time is constantly corrected, here, for the sake of simplicity, the description will be made on the assumption that the target outlet plate temperature arrival time t O does not change. On the other hand, in this embodiment, unlike the explanation of the above-mentioned action, subscripts are given to the time with time in the order of control.

【0047】まず、加熱炉内の通板状態について説明す
る。時刻t5 までの間にコイルAが加熱炉内を通過し、
時刻t3 〜t8 までの間にコイルBが加熱炉内を通過
し、時刻t4 〜t10までの間にコイルCが加熱炉内を通
過し、時刻t8 〜t11までの間にコイルDが加熱炉内を
通過し、時刻t9 以降にコイルEが加熱炉内を通過す
る。従って、各コイルの通過終了時刻までの後行コイル
の目標出側板温を達成する設定炉温に到達していなけれ
ばならない。
First, the state of passing the plate in the heating furnace will be described. Coil A passed through the heating furnace by time t 5 ,
Coil B passes through the heating furnace until the time t 3 ~t 8, the coil C is passed through the heating furnace until the time t 4 ~t 10, until time t 8 ~t 11 The coil D passes through the heating furnace, and the coil E passes through the heating furnace after time t 9 . Therefore, it is necessary to reach the set furnace temperature that achieves the target outlet plate temperature of the trailing coil until the passage end time of each coil.

【0048】またコイルAの目標出側板温TSOA は現在
実績出側板温TSNであり、以下コイルBの目標出側板温
はTSOB ,コイルCの目標出側板温はTSOC ,コイルD
の目標出側板温はTSOD ,コイルEの目標出側板温はT
SOE であり、コイルBの目標出側板温TSOB は現在実績
出側板温TSNより高く、コイルCの目標出側板温TSO C
は前記目標出側板温TSOB より高く、コイルDの目標出
側板温TSOD は前記目標出側板温TSOC より高く、コイ
ルEの目標出側板温TSOE は前記目標出側板温TSOD
りも低く設定されている。なお、コイルAの上限出側板
温はTSUA ,下限出側板温はTSLA 、コイルBの上限出
側板温はTSUB ,下限出側板温はTSLB、コイルCの上
限出側板温はTSUC ,下限出側板温はTSLC 、コイルD
の上限出側板温はTSUD ,下限出側板温はTSLD 、コイ
ルEの上限出側板温はTSUE ,下限出側板温はTSLE
ある。
The target output side plate temperature T SOA of the coil A is the actual output side output plate temperature T SN . Below, the target output side plate temperature of the coil B is T SOB , the target output side plate temperature of the coil C is T SOC , and the coil D.
The target outlet plate temperature of the coil E is T SOD , and the target outlet plate temperature of the coil E is T SOD .
SOE , the target outlet plate temperature T SOB of the coil B is higher than the current actual outlet plate temperature T SN , and the target outlet plate temperature T SO C of the coil C is SOE.
Is higher than the target outlet plate temperature T SOB , the target outlet plate temperature T SOD of the coil D is higher than the target outlet plate temperature T SOC , and the target outlet plate temperature T SOE of the coil E is higher than the target outlet plate temperature T SOD. It is set low. The upper limit outlet plate temperature of coil A is T SUA , the lower limit outlet plate temperature is T SLA , the upper limit outlet plate temperature of coil B is T SUB , the lower limit outlet plate temperature is T SLB , and the upper limit outlet plate temperature of coil C is T SUC. , Lower limit outlet plate temperature is T SLC , coil D
The upper limit outlet plate temperature is T SUD , the lower limit outlet plate temperature is T SLD , the upper limit outlet plate temperature of coil E is T SUE , and the lower limit outlet plate temperature is T SLE .

【0049】これらの目標出側板温TSOを達成するため
の設定炉温TFOA 、上限出側板温T SUになる上限設定炉
温TFU、下限出側板温TSLになる下限設定炉温TFLを算
出するが、このうち下限設定炉温TFLについては簡単の
ために説明を削除する。このようにして算出されたコイ
ルAの目標出側板温TSOA (TSN)を達成するための設
定炉温はTFOA (TSN)、上限出側板温TSUA になる上
限設定炉温はTFUA 、コイルBの目標出側板温TSOB
達成するための設定炉温はTFOB 、上限出側板温TSUB
になる上限設定炉温はTFUB 、コイルCの目標出側板温
SOC を達成するための設定炉温はTFOC 、上限出側板
温TSUC になる上限設定炉温はTFUC 、コイルDの目標
出側板温TSOD を達成するための設定炉温はTFOD 、上
限出側板温TSUD になる上限設定炉温はTFUD コイ
ルEの目標出側板温TSOE を達成するための設定炉温は
FOE 、上限出側板温TSUE になる上限設定炉温はT
FUEである。
These target outlet plate temperatures TSOTo achieve
Setting furnace temperature TFOA, Upper limit outlet plate temperature T SUUpper limit setting furnace
Temperature TFU, Lower limit outlet plate temperature TSLLower limit setting furnace temperature TFLCalculate
Out of these, the lower limit setting furnace temperature TFLEasy about
The description is deleted in order. Carp calculated in this way
Target outlet plate temperature T of Le ASOA(TSN) To achieve
Constant furnace temperature is TFOA(TSN), Upper limit outlet plate temperature TSUAOn
Limit furnace temperature is TFUA, Target output plate temperature T of coil BSOBTo
The set furnace temperature to achieve is TFOB, Upper limit outlet plate temperature TSUB
The upper limit setting furnace temperature isFUB, Target output plate temperature of coil C
TSOCTo set the temperature is TFOC, Upper exit plate
Temperature TSUCThe upper limit setting furnace temperature isFUC, Coil D target
Delivery side plate temperature TSODTo set the temperature is TFOD,Up
Limited side plate temperature TSUDThe upper limit setting furnace temperature isFUD, Koi
Target outgoing plate temperature T of Le ESOEThe set furnace temperature to achieve
TFOE, Upper limit outlet plate temperature TSUEThe upper limit setting furnace temperature is
FUEIs.

【0050】ここで時刻t5 でコイルBの目標出側板温
SOB を達成する設定炉温TFOB に到達するためには時
刻t2 を炉温設定替タイミングとしなければならない。
また時刻t8 でコイルCの目標出側板温TSOC を達成す
る設定炉温TFOC に到達するためには時刻t3 を炉温設
定替タイミングとしなければならない。また時刻t13
コイルEの目標出側板温TSOE を達成する設定炉温T
FOE に到達するためには時刻t11を炉温設定替タイミン
グとしなければならない。
Here, in order to reach the set furnace temperature T FOB which achieves the target outlet plate temperature T SOB of the coil B at the time t 5 , the time t 2 must be the furnace temperature setting change timing.
Further, in order to reach the set furnace temperature T FOC that achieves the target outlet plate temperature T SOC of the coil C at the time t 8 , the time t 3 must be the furnace temperature setting change timing. Further, at time t 13 , the set furnace temperature T for achieving the target outlet plate temperature T SOE of the coil E is obtained.
In order to reach the FOE , the time t 11 must be the furnace temperature setting change timing.

【0051】ここで、前記ステップS7において、夫々
の後行コイルのための炉温変更中、即ち現在時刻から目
標出側板温到達時刻までの間の加熱炉内のコイル通板状
態について考察する。コイルBのための炉温昇温中、即
ち時刻t2 〜t5 の間の時間にコイルA,コイルB,コ
イルCが加熱炉内を通過或いは加熱炉内に送給される。
従って、この時間内の設定炉温にはそのうち最も高いコ
イルCの設定炉温TFO C が選定される。この選定された
設定炉温TFOC は、通過する各コイルの上限設定炉温T
FUA ,TFUB ,TFUC の何れよりも低いので、目標設定
炉温は該設定炉温TFOC に決定される。そして前記ステ
ップS8において、現在時刻に最も近いコイルBの炉温
設定替タイミングt2 から設定炉温TFOC に炉温の設定
替えが行われ、時刻t5 において該設定炉温TFOC に到
達する。
Here, in the step S7, the coil passing state in the heating furnace during the change of the furnace temperature for each trailing coil, that is, from the present time to the time when the target outlet side plate temperature is reached will be considered. Furnace YutakaNoboru Yutakachu for the coil B, ie time coil A between times t 2 ~t 5, coil B, coil C is fed to a passage or heating furnace to the heating furnace.
Therefore, as the set furnace temperature within this time, the highest set furnace temperature T FOC of the coil C is selected. The selected set furnace temperature T FOC is the upper limit set furnace temperature T of each passing coil.
FUA, T FUB, is lower than either of the T FUC, target setting oven temperature is determined to be the set furnace temperature T FOC. Then, in step S8, the setting of the furnace temperature is changed to the set furnace temperature T FOC from the furnace temperature setting change timing t 2 of the coil B closest to the current time, and the set furnace temperature T FOC is reached at the time t 5 . ..

【0052】同様にして、コイルCのための炉温昇温
中、即ち時刻t3 〜t8 の間の時間にコイルB,コイル
Cが加熱炉内を通過或いは加熱炉内に送給されるが、前
述のように時刻t5 において炉温は設定炉温TFOC に到
達しているので、ここでは時刻t8 まで該設定炉温T
FOC に維持される。一方、コイルDのための炉温昇温
中、即ち時刻t6 〜t10の間の時間にコイルC,コイル
D,コイルEが加熱炉内を通過或いは加熱炉内に送給さ
れる。従って、この時間内の設定炉温にはそのうち最も
高いコイルDの設定炉温TFOD が選定される。この選定
された設定炉温TFOD は、コイルC,コイルEの上限設
定炉温TFUC ,TFUE よりも低いが、コイルBの上限設
定炉温TFUB よりも高い。従って前述した基本プログラ
ムには記載されていないが、このような場合には現在時
刻に最も近いコイルCの炉温設定替タイミングt6 から
設定炉温TFOD に炉温の設定替えが行われたと仮定し
て、炉温の温度勾配にほぼ比例する板温の温度勾配を前
記1式に従って算出し、この温度勾配がコイルBの後端
仮段の出側通過時刻t8 で前記上限設定炉温TFUB を越
えるか否かを判定する。この場合は、算出された仮定温
度勾配TFiが前記出側通過時刻t8 で該上限設定炉温T
FUB を越えないので、炉温設定替えタイミングt6 から
設定炉温TFOD に炉温の設定替えが行われる。
Similarly, during the temperature rise of the furnace for the coil C, that is, during the time between times t 3 and t 8 , the coils B and C pass through the heating furnace or are fed into the heating furnace. However, since the furnace temperature reaches the set furnace temperature T FOC at time t 5 as described above, here, the set furnace temperature T FOC is set until time t 8.
Maintained at FOC . On the other hand, it fed the furnace YutakaNoboru Yutakachu, i.e. the time the coil C between times t 6 ~t 10, coils D, and the coil E is passed or heating furnace to a heating furnace for coils D. Therefore, as the set furnace temperature within this time, the highest set furnace temperature TFOD of the coil D is selected. The selected set furnace temperature T FOD is lower than the upper limit set furnace temperatures T FUC and T FUE of the coil C and the coil E, but higher than the upper set furnace temperature T FUB of the coil B. Therefore, although not described in the basic program described above, in such a case, the setting of the furnace temperature was changed from the furnace temperature setting change timing t 6 of the coil C closest to the current time to the set furnace temperature T FOD. Assuming that the temperature gradient of the plate temperature, which is almost proportional to the temperature gradient of the furnace temperature, is calculated according to the above equation 1, this temperature gradient is the upper limit set furnace temperature at the exit side passage time t 8 of the rear end temporary stage of the coil B. It is determined whether T FUB is exceeded. In this case, the calculated assumed temperature gradient T Fi is the upper limit set furnace temperature T at the exit side passage time t 8.
Since the FUB is not exceeded , the furnace temperature setting is changed to the set furnace temperature T FOD from the furnace temperature setting change timing t 6 .

【0053】また、コイルEのための炉温降温中、即ち
時刻t11〜t13の間の時間には他のコイルは加熱炉内を
通過或いは加熱炉内に送給されない。従って、この時間
内の設定炉温にはコイルEの設定炉温TFOE が決定さ
れ、前記時刻t11を炉温設定替タイミングとして設定炉
温TFOE に炉温の設定替えが行われる。従って、炉温
は、時刻t1 〜t2 までの間は現在実績炉温TFNに維持
され、時刻t2 〜t5 までの間は実績炉温TF のように
上昇し、時刻t5 〜t6 までの間は設定炉温TFOC に維
持され、時刻t6 〜t10までの間は仮想炉温TFiのよう
に上昇し、時刻t10〜t11の間は設定炉温TFOD に維持
され、時刻t11〜t13までの間は仮想炉温TFiのように
下降し、時刻t13から設定炉温TFOE に維持されるはず
である。ところが、実際の実績炉温TF は時刻t6 〜t
10までの間に仮想炉温TFiより上昇して時刻t8 で設定
炉温TFOD に到達してしまい、また時刻t11〜t13まで
の間にも仮想炉温TFiより上昇してしまった。これに合
わせて出側板温特性に仮想線で示す仮想出側板温TSi
ように変化することが予想された。
Further, during the temperature decrease of the furnace for the coil E, that is, during the time between the times t 11 and t 13, no other coil passes through the heating furnace or is fed into the heating furnace. Therefore, the set furnace temperature T FOE of the coil E is determined as the set furnace temperature within this time, and the furnace temperature setting is changed to the set furnace temperature T FOE with the time t 11 as the furnace temperature setting change timing. Thus, the furnace temperature, between times t 1 ~t 2 is maintained to the current actual furnace temperature T FN, between times t 2 ~t 5 rises as actual furnace temperature T F, time t 5 until ~t 6 is maintained at the set furnace temperature T FOC, time t 6 until ~t 10 is raised like a virtual furnace temperature T Fi, between times t 10 ~t 11 set furnace temperature T is maintained FOD, between times t 11 ~t 13 descends like a virtual furnace temperature T Fi, it should be maintained at the set furnace temperature T FOE from the time t 13. However, the actual actual reactor temperature T F is the time t 6 to t
The temperature rises above the virtual furnace temperature T Fi until 10 and reaches the set furnace temperature T FOD at time t 8 , and also rises above the virtual furnace temperature T Fi between times t 11 and t 13. Oops. In accordance with this, it was expected that the output side plate temperature characteristic would change like a virtual output side plate temperature T Si shown by a virtual line.

【0054】しかしながら、前記通板速度設定器14で
はこの実績炉温TF を常時監視し、それに合わせて通板
速度の制御がほぼリアルタイムに行われた。即ち、時刻
1〜t2 までの間は現在実績通板速度VSN(目標通板
速度VSO)に維持され、時刻t2 〜t4 までの間は該時
刻t4 で修正通板速度VSAに到達するように加速され、
該時刻t4 を通板速度設定替タイミングとして時刻t5
までの間は該時刻t5で修正通板速度VSBO に到達する
ように減速され、時刻t5 〜t6 までの間は該修正通板
速度VSBO に維持され、時刻t6 〜t7 までの間は該時
刻t7 で修正通板速度VSBに到達するように加速され、
該時刻t7 を通板速度設定替タイミングとして時刻t8
までの間は該時刻t8 で修正通板速度VSCに到達するよ
うに減速され、時刻t8 〜t9 までの間は該修正通板速
度VSCに維持され、該時刻t9 を通板速度設定替タイミ
ングとして時刻t10までの間は該時刻t10で目標通板速
度VSOに到達するように減速され、時刻t10〜t11まで
の間は該目標通板速度VSOに維持され、該時刻t11を通
板速度設定替タイミングとして時刻t12までの間は該時
刻t12で修正通板速度VSEに到達するように加速され、
時刻t12〜t13までの間は該時刻t13目標正通板速度V
SOに到達するように減速される。
However, the strip passage speed setting device 14 constantly monitors the actual furnace temperature T F, and the strip passage speed is controlled in real time in accordance with it. In other words, until the time t 1 ~t 2 is maintained to the current actual communication plate velocity V SN (target passing plate velocity V SO), modified through plate velocity between the said time t 4 to time t 2 ~t 4 Accelerated to reach V SA ,
The time t 4 is time t 5 as the passage speed setting change timing.
Until is decelerated so as to reach the corrected through plate velocity V SBO at the time t 5, until time t 5 ~t 6 is maintained in the modified passage plate velocity V SBO, the time t 6 ~t 7 Until then, the vehicle is accelerated so as to reach the corrected passing speed V SB at the time t 7 ,
The time t 7 is time t 8 as the passage speed setting change timing.
Until is decelerated so as to reach the corrected through plate velocity V SC at the time t 8, between times t 8 ~t 9 is maintained in the modified passage plate velocity V SC, passing the time t 9 between times t 10 as a plate speed setting replacement timing is decelerated to reach the target through plate velocity V sO in the time t 10, until time t 10 ~t 11 to the target through plate velocity V sO is maintained until a time t 12 the time t 11 as strip running speed setting replacement timing is accelerated so as to reach the corrected through plate speed V SE at the time t 12,
Time t 12 ~t until 13 the time t 13 target Masamichi plate velocity V
Slows down to reach SO .

【0055】この制御によって時刻t2 〜t5 までの間
は修正通板速度TSOB の設定替えに伴う目標出側板温到
達遅れ時間を除く実績出側板温TS の目標出側板温T
SOC 分の余剰熱量が削除され、時刻t5 〜t6 までの間
は実績出側板温TS の目標出側板温TSOC 分の余剰熱量
が削除され、時刻t6 〜t8 までの間は修正通板速度T
SOC の設定替えに伴う目標出側板温到達遅れ時間を除く
実績出側板温TS の目標出側板温TSOD 分の余剰熱量が
削除され、時刻t8 〜t10までの間は実績出側板温TS
の目標出側板温TSOD 分の余剰熱量が削除され、時刻t
11〜t13までの間は修正通板速度TSOE の設定替えに伴
う目標出側板温到達遅れ時間を除く実績出側板温TS
目標出側板温TSOD 分の余剰熱量が削除される。
By this control, the time t2~ TFiveUntil
Is the corrected running speed TSOBTarget delivery side plate temperature due to change of setting
Actual delivery side plate temperature T excluding delay timeSTarget outlet plate temperature T
SOCThe surplus amount of heat is deleted at time tFive~ T6Until
Is the actual delivery side plate temperature TSTarget outlet plate temperature TSOCSurplus heat
Is deleted at time t6~ T8Until the passing time T
SOCExcluding the delay time for reaching the target outlet plate temperature due to the setting change of
Actual output side plate temperature TSTarget outlet plate temperature TSODExcess heat
Deleted at time t8~ TTenUntil the actual delivery side plate temperature TS
Target outlet plate temperature TSODThe surplus amount of heat is deleted at time t
11~ T13Until the passing time TSOEAccompanying the setting change of
Actual delivery side plate temperature T excluding target delivery side plate temperature arrival delay timeSof
Target outlet plate temperature TSODThe surplus amount of heat is deleted.

【0056】このように制御することにより、実績出側
板温TS を目標出側板温TSOの許容範囲内にリアルタイ
ムに制御することが可能となり、実績出側板温TS に付
与される余剰のエネルギを削除したり、不足のエネルギ
を補充したりすることも可能となる。この実施例では、
このように実績出側板温TS に付与される余剰のエネル
ギを削除することも同時に制御するようにしたため、実
績通板速度VS は比較的大きく変動するが、勿論、本発
明では設定炉温TFOに対する実績炉温TF の変動量だけ
を補うように通板速度を修正制御してもよい。この場
合、前記図5に示すような仮想炉温TFiに対する実績炉
温TF の偏差は前記1式のような物理的モデル式の物理
的パラメータを修正することにより次第に減少するた
め、目標通板速度V SOで目標出側板温TSOを達成する操
業を安定して行うこともできる。
By controlling in this way, the actual result output side
Plate temperature TSIs the target outlet plate temperature TSOReal Thai within the tolerance of
It becomes possible to control the temperature at the output side plate temperature TSAttached to
Remove excess energy provided, or lack energy
It is also possible to replenish. In this example,
In this way, the actual delivery side plate temperature TSSurplus energy given to
Since I also tried to control the deletion of Gi at the same time,
Through plate speed VSFluctuates relatively, but of course
In the case of Ming, the set furnace temperature TFOActual furnace temperature T againstFVariation of
The sheet passing speed may be corrected and controlled to compensate for the above. This place
If the virtual furnace temperature T as shown in FIG.FiAgainst actual furnace
Temperature TFDeviation is the physical model equation
It is gradually reduced by modifying the dynamic parameters.
The target strip speed V SOTarget output plate temperature TSOTo achieve
It is possible to carry out the work stably.

【0057】[0057]

【発明の効果】以上説明したように、本発明の連続焼鈍
炉の板温制御方法によれば、目標通板速度で通板したと
きに加熱炉の出側板温が目標出側板温になる設定炉温値
をモデル式に従って決定すると共に、この設定炉温値か
ら算出される炉温の応答遅れ時間を考慮して炉温設定替
タイミングを決定し、この設定炉温値及び炉温設定替タ
イミングで制御された結果の実績炉温を検出し、その実
績炉温で通板したときに前記加熱炉出側板温を目標出側
板温に対して所定の範囲内に制御するための修正通板速
度を前記モデル式に従って決定すると共に、この修正通
板速度から算出される出側板温の変化所要時間を考慮し
て通板速度設定替タイミングを決定することにより、実
績炉温が何らかの不安定要素によって設定炉温を満足し
ない場合にも、この実績炉温で実績出側板温を目標出側
板温の許容範囲内に制御することができ、しかも通板速
度の設定変更に対する応答特性は極めて良好であるた
め、検出された実績炉温に対して殆どリアルタイムに通
板速度を修正制御することができ、高精度の板温制御が
可能となる。しかも、前記モデル式に含まれる物理的パ
ラメータを学習制御によって修正することにより、前記
修正通板速度は漸近的に目標通板速度に近接し、所望の
目標通板速度にて目標出側板温を達成する操業を安定し
て行うことが可能となる。
As described above, according to the plate temperature control method of the continuous annealing furnace of the present invention, the outlet side plate temperature of the heating furnace is set to the target outlet side plate temperature when the plate is passed at the target stripping speed. The furnace temperature value is determined according to the model formula, the furnace temperature setting change timing is determined in consideration of the response delay time of the furnace temperature calculated from the set furnace temperature value, and the set furnace temperature value and the furnace temperature setting change timing are determined. The corrected strip running speed for detecting the actual furnace temperature as a result of control by the above, and controlling the heating furnace exit side plate temperature within a predetermined range with respect to the target exit side plate temperature when the plate is passed at the actual furnace temperature. Is determined according to the model formula, and the passage speed setting change timing is determined in consideration of the time required for the change of the outlet side plate temperature calculated from the corrected strip speed, so that the actual furnace temperature is affected by some unstable factors. Even if the set furnace temperature is not satisfied, With the actual furnace temperature, the actual outlet plate temperature can be controlled within the allowable range of the target outlet plate temperature, and the response characteristics to the setting change of the strip passing speed are extremely good. The strip speed can be corrected and controlled almost in real time, and the strip temperature can be controlled with high accuracy. Moreover, by correcting the physical parameters included in the model formula by learning control, the corrected strip running speed asymptotically approaches the target strip running speed, and the target delivery side plate temperature is obtained at the desired target strip running speed. It is possible to carry out the operations to be achieved in a stable manner.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の連続焼鈍炉の板温制御方法を実施化し
た連続焼鈍設備の一例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of a continuous annealing equipment in which a plate temperature control method for a continuous annealing furnace of the present invention is implemented.

【図2】図1の連続焼鈍設備で行われる基本処理プログ
ラムを示すものであり、(a)は炉温設定を示すフロー
チャート図、(b)は通板速度設定を示すフローチャー
ト図である。
2A and 2B show a basic processing program executed in the continuous annealing equipment of FIG. 1, in which FIG. 2A is a flowchart showing furnace temperature setting, and FIG. 2B is a flowchart showing plate passing speed setting.

【図3】図2の基本処理プログラムにより後行板の目標
出側板温を高く制御した場合の作用を示す炉温特性−出
側板温特性−通板速度特性の相関関係図である。
FIG. 3 is a correlation diagram of furnace temperature characteristics-outlet plate temperature characteristics-passing speed characteristics showing an operation when the target outlet plate temperature of the trailing plate is controlled to be high by the basic processing program of FIG.

【図4】図2の基本処理プログラムにより後行板の目標
出側板温を低く制御した場合の作用を示す炉温特性−出
側板温特性−通板速度特性の相関関係図である。
FIG. 4 is a correlation diagram of furnace temperature characteristics-outlet plate temperature characteristics-passing speed characteristics showing an operation when the target outlet plate temperature of the trailing plate is controlled to be low by the basic processing program of FIG.

【図5】図1の連続焼鈍設備によって行われた出側板温
制御の一実施例を示す炉温特性−出側板温特性−通板速
度特性の相関関係図である。
FIG. 5 is a correlation diagram of furnace temperature characteristics-outlet plate temperature characteristics-passing speed characteristics showing an embodiment of the outlet plate temperature control performed by the continuous annealing equipment of FIG. 1.

【符号の説明】[Explanation of symbols]

1はストリップ 2〜6はロール 7はモータ 8は回転速度計 9は流量弁 10は炉温計 11は炉温制御装置 12はストリップ条件設定器 13は炉温設定器 14は通板速度設定器 15は通板速度制御装置 16は板温計 17は学習制御器 1 is a strip 2 to 6 is a roll 7 is a motor 8 is a rotation speed meter 9 is a flow valve 10 is a furnace thermometer 11 is a furnace temperature control device 12 is a strip condition setting device 13 is a furnace temperature setting device 14 is a plate passing speed setting device 15 is a plate speed control device 16 is a plate thermometer 17 is a learning controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 板厚、板幅或いは加熱炉の出側での目標
出側板温が異なる鋼帯を、加熱炉に連続的に通板して連
続焼鈍を行う連続焼鈍炉にあって、加熱炉の設定炉温値
及び通板速度を制御することにより加熱炉の出側板温を
制御する連続焼鈍炉の板温制御方法において、炉内の通
板及び鋼帯の焼鈍が安定して行われる定常状態の通板速
度を目標通板速度とし、この目標通板速度で通板したと
きに加熱炉の出側板温が前記目標出側板温になる設定炉
温値を所定条件に従って決定すると共に、この設定炉温
値から算出される炉温の応答遅れ時間を考慮して炉温設
定替タイミングを決定し、この設定炉温値及び炉温設定
替タイミングで制御された結果の実績炉温を検出し、そ
の実績炉温で通板したときに前記加熱炉出側板温を目標
出側板温に対して所定の範囲内に制御するための修正通
板速度を所定条件に従って決定すると共に、この修正通
板速度から算出される出側板温の変化所要時間を考慮し
て通板速度設定替タイミングを決定することを特徴とす
る連続焼鈍炉の板温制御方法。
1. A continuous annealing furnace in which steel strips having different plate thicknesses, plate widths, or target outlet plate temperatures on the outlet side of the heating furnace are continuously passed through the heating furnace to perform continuous annealing, In the plate temperature control method of the continuous annealing furnace, which controls the outlet plate temperature of the heating furnace by controlling the set furnace temperature value and the plate passing speed of the furnace, the plate passing and the steel strip in the furnace are stably annealed. A steady-state plate passing speed is set as a target plate-passing speed, and the set furnace temperature value at which the outlet plate temperature of the heating furnace becomes the target outlet plate temperature when the plate is passed at the target plate-passing speed according to a predetermined condition, The furnace temperature setting change timing is determined in consideration of the response delay time of the furnace temperature calculated from this set furnace temperature value, and the actual furnace temperature as a result of control at this set furnace temperature value and the furnace temperature setting change timing is detected. However, when passing the plate at the actual furnace temperature, the heating furnace outlet side plate temperature is set to the target outlet side plate temperature. The corrected strip passing speed for controlling within a fixed range is determined according to a predetermined condition, and the strip running speed setting change timing is determined in consideration of the time required for the change of the outlet side plate temperature calculated from the corrected strip running speed. A plate temperature control method for a continuous annealing furnace, which is characterized in that
【請求項2】 前記炉温設定値と前記修正通板速度とを
同一の所定のモデル式に従って算出し、このモデル式に
含まれる物理的パラメータを学習制御によって修正する
ようにしたことを特徴とする請求項1に記載の連続焼鈍
炉の板温制御方法。
2. The furnace temperature set value and the corrected strip running speed are calculated according to the same predetermined model formula, and the physical parameters included in this model formula are modified by learning control. The plate temperature control method for a continuous annealing furnace according to claim 1.
JP4064009A 1992-03-19 1992-03-19 Sheet temperature control method for continuous annealing furnace Expired - Fee Related JP2809925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4064009A JP2809925B2 (en) 1992-03-19 1992-03-19 Sheet temperature control method for continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4064009A JP2809925B2 (en) 1992-03-19 1992-03-19 Sheet temperature control method for continuous annealing furnace

Publications (2)

Publication Number Publication Date
JPH05263147A true JPH05263147A (en) 1993-10-12
JP2809925B2 JP2809925B2 (en) 1998-10-15

Family

ID=13245758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4064009A Expired - Fee Related JP2809925B2 (en) 1992-03-19 1992-03-19 Sheet temperature control method for continuous annealing furnace

Country Status (1)

Country Link
JP (1) JP2809925B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235988A (en) * 2009-03-30 2010-10-21 Kobe Steel Ltd Method of producing high-strength steel sheet
JP2013100578A (en) * 2011-11-08 2013-05-23 Jfe Steel Corp Method and device for controlling continuous annealing line
JP2015001004A (en) * 2013-06-14 2015-01-05 Jfeスチール株式会社 Method and program for setting furnace velocity and furnace temperature in continuous annealing line
JP2016524041A (en) * 2013-05-22 2016-08-12 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for open-loop control and / or closed-loop control of an annealing furnace or heat treatment furnace of a production line for processing metal materials
JP2016172908A (en) * 2015-03-18 2016-09-29 Jfeスチール株式会社 Plate temperature controlling method and device in continuous annealing furnace
EP3642372B1 (en) 2017-06-20 2021-05-26 SMS Group GmbH Method for operating an annealing surface
CN115029517A (en) * 2022-07-18 2022-09-09 北京京诚之星科技开发有限公司 Plate temperature control method and device for strip steel continuous annealing dynamic specification changing stage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474825A (en) * 1990-07-13 1992-03-10 Sumitomo Metal Ind Ltd Method for controlling temperature of steel sheet in continuous heating furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474825A (en) * 1990-07-13 1992-03-10 Sumitomo Metal Ind Ltd Method for controlling temperature of steel sheet in continuous heating furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235988A (en) * 2009-03-30 2010-10-21 Kobe Steel Ltd Method of producing high-strength steel sheet
JP2013100578A (en) * 2011-11-08 2013-05-23 Jfe Steel Corp Method and device for controlling continuous annealing line
JP2016524041A (en) * 2013-05-22 2016-08-12 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for open-loop control and / or closed-loop control of an annealing furnace or heat treatment furnace of a production line for processing metal materials
JP2015001004A (en) * 2013-06-14 2015-01-05 Jfeスチール株式会社 Method and program for setting furnace velocity and furnace temperature in continuous annealing line
JP2016172908A (en) * 2015-03-18 2016-09-29 Jfeスチール株式会社 Plate temperature controlling method and device in continuous annealing furnace
EP3642372B1 (en) 2017-06-20 2021-05-26 SMS Group GmbH Method for operating an annealing surface
CN115029517A (en) * 2022-07-18 2022-09-09 北京京诚之星科技开发有限公司 Plate temperature control method and device for strip steel continuous annealing dynamic specification changing stage
CN115029517B (en) * 2022-07-18 2023-06-16 北京京诚之星科技开发有限公司 Strip steel continuous annealing dynamic specification changing stage plate temperature control method and device

Also Published As

Publication number Publication date
JP2809925B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
JPH05263147A (en) Method for controlling strip temperature in continuous annealing furnace
JP6816829B2 (en) Endless rolling line temperature control device
JP3657750B2 (en) Temperature control device and recording medium for hot finishing mill
JPH11179410A (en) Manufacture of cold rolled steel strip having small variation of material characteristic value
JP2809918B2 (en) Sheet temperature control method for continuous annealing furnace
JPH0564687B2 (en)
JPH10206038A (en) Furnace heating control method using fuzzy logic
JP2910521B2 (en) Sheet temperature control method of steel strip in continuous annealing furnace
JPH0791590B2 (en) Velocity changing method in plate temperature control of continuous annealing furnace
JPS6334210B2 (en)
JP2528048B2 (en) Temperature control method in plate rolling
JPH05255759A (en) Method for controlling strip temperature in radiant tube type continuous heat treatment furnace
JPH05186836A (en) Method for controlling strip temperature in continuous heat treatment furnace for metallic strip
JP2596229B2 (en) Manufacturing method of galvannealed steel sheet
JPH0510414B2 (en)
JPH0472022A (en) Method and device for controlling strip temperature in continuous annealing furnace
WO2024070279A1 (en) Continuous annealing facility, continuous annealing method, method for producing cold-rolled steel sheet, and method for producing plated steel sheet
JP3085858B2 (en) Rolling mill control device
JPH1030127A (en) Method for controlling strip temperature in continuous annealing furnace
JP3161653B2 (en) Method for controlling the degree of alloying of hot-dip galvanized steel sheet
JPH09227953A (en) Method for controlling temperature of strip in cooling zone of continuous annealing furnace
JPH08246064A (en) Method for setting temperature in continuous furnace
JPH059590A (en) Strip temperature control method for continuous heat annealing furnace
JPH0967618A (en) Method for controlling atmospheric dew point in decarburize-annealing furnace
JPH09176746A (en) Method for controlling sheet temperature in continuous annealing furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees