JPH04323325A - Method for controlling temperature of steel sheet in continuous annealing furnace - Google Patents
Method for controlling temperature of steel sheet in continuous annealing furnaceInfo
- Publication number
- JPH04323325A JPH04323325A JP2152291A JP2152291A JPH04323325A JP H04323325 A JPH04323325 A JP H04323325A JP 2152291 A JP2152291 A JP 2152291A JP 2152291 A JP2152291 A JP 2152291A JP H04323325 A JPH04323325 A JP H04323325A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- furnace
- sheet
- temp
- continuous annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000000137 annealing Methods 0.000 title claims abstract description 19
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 14
- 239000010959 steel Substances 0.000 title claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 95
- 230000004044 response Effects 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 238000003466 welding Methods 0.000 description 10
- 239000000446 fuel Substances 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Landscapes
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Control Of Heat Treatment Processes (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、寸法,目標板温或い
は材質等の条件が異なる鋼板 (ストリップ)を接合し
て連続焼鈍炉で連続的に処理する際の、先行材と次行材
との接合部における鋼板の温度制御方法に関するもので
ある。
【0002】
【従来技術とその課題】連続焼鈍炉においては、鋼板(
ストリップ)を連続的に熱処理するため、炉の入側にお
いて“通板中のストリップ”の後端と“次に通板される
ストリップ”の前端とを溶接により接続することが行わ
れている。この場合、溶接部前後におけるそれぞれのス
トリップの寸法(板厚や板幅),目標板温及び材質の少
なくとも1つが溶接部前後で異なるときには、この溶接
部を境にしてライン速度や炉温を変更しなければならな
い。
【0003】ところで、連続焼鈍炉においては、一般に
炉温は炉温制御装置により炉温設定値と実炉温が一致す
るように燃料流量を操作することにより制御されている
。しかし、この場合、炉の熱容量が非常に大きいために
炉温の応答性は悪い。即ち、炉温設定値を変更してから
実炉温が設定された炉温になるまでには20分程度の時
間を要することとなる。そのため、この区域間はストリ
ップの板温が目標板温値から外れてしまい、所定の機械
的性質を得ることができないという問題があった。
【0004】そこで、板温外れを避け得ない場合には、
故意に板温外れを板質上問題の少ない過加熱側に発生さ
せてストリップの機械的特性値外れの減少を図る方法が
提案された(特開昭57−35640号等)。しかし、
この方法は、「溶接部前後で目標板温と板厚が同時に変
わるような場合には過加熱側への板温度外れが大きくな
り過ぎる」という新たな問題点を有しているものであっ
た。
【0005】このため、本出願人は、先に、次のような
連続焼鈍炉における鋼板温度の制御方法を提案した(特
願昭63−317013号)が、この方法を図3のタイ
ムチャ−トにより説明する。
【0006】図3は、その項目(A) に示したように
先行材の板厚H1 が次行材の板厚H2 よりも小さく
(H1 <H2 )、かつ項目(B) に示すように
先行材の目標板温T1 が次行材の目標板温T2 より
も小さい (T1 <T2 )場合の温度制御例に関す
るものである。ここで、炉温の応答時間は20分程度と
大きいため板温は項目(E) に示すような応答曲線と
なってしまい、板温公差の上限(a) 及び下限(b)
からの先行材の公差外れ部(c) と、次行材の板温
公差外れ部(d) が発生する。そこで、この板温公差
外れ部(c) 及び(d) が最小となるように、図3
の項目(C) に示すライン速度及び項目(D) に示
す炉温に設定変更がなされる。
【0007】即ち、板温公差外れ部(c) 及び(d)
の面積をそれぞれE1 ,E2 とした場合、次式で
算出される評価関数Eが最小となるように“先行材のラ
イン速度V1 から次行材のライン速度V2 への変更
タイミング” 及び ”先行材の炉温F1 から次行材
の炉温F2 への変更タイミング” を計算する。
E=αE1 + (1−α)
E2 (0<α<1) ……
(1) 上記 (1)式のパラメ−タαは、“先行材重
視”或いは“次行材重視”の板温応答曲線を指定するた
めのパラメ−タであり、先行材及び次行材の板温公差の
大きさに応じたテ−ブル値として予め指定しておく。
【0008】なお、実際の板温管理においては、図3の
項目(E) に示すように板温公差上限(a) 及び下
限(b) からの先行材の板温公差外れ長さL1 及び
次行材の板温公差外れ長さL2 が管理基準となってい
る。
【0009】本出願人が先に提案した上記手段により鋼
板の温度制御は非常に安定することとなったが、それで
も実際作業を通じ、「前記 (1)式の評価関数Eを最
小とするこの方法ではパラメ−タαと板温応答曲線(E
) の対応関係がつかみにくく、 板温公差外れ長さL
1 ,L2 が管理基準を満たすよう間接的にパラメ−
タαを指定することが非常に困難である」といった問題
が認識されることとなった。
【00010】例えば、図3において次行材の板温外れ
長さL2 が零で先行材の板温外れ長さL1 が最小と
なるようにしたい場合、それに対応した適切なパラメ−
タαの値を予め指定することは難しい。このため、図4
に示したような繰り返し計算をせざるを得ず、必ずしも
実用的な方法とは言えない。
【00011】このようなことから、本発明が目的とし
たのは、従来法に見られる上記問題を払拭し、格別に困
難な操作を要せずに連続焼鈍炉における処理鋼板の温度
を的確かつ安定に制御し得る手段を確立することであっ
た。
【00012】
【課題を解決するための手段】本発明は、上記目的を達
成すべく数多くの実験を繰り返しながら行われた本発明
者等の研究結果に基づいて完成されたものであり、「ラ
イン速度制御装置と炉温制御装置とを備えた連続焼鈍炉
において異なる条件の先行材と次行材とを連続処理する
に際し、 板厚と予め定められた目標板温及び板温公差
とに基づいて先行材と次行材のうちの何れが優先(後述
するように予め優先判定基準を定めておく)であるかを
判断すると共に、 優先側材料の“板温公差からの板温
外れ長さ”が零でかつ非優先側材料の“板温公差からの
板温外れ長さ”が最小値となる“先行材から次行材にか
けての板温応答曲線”とそのためのライン速度及び炉温
の設定変更タイミングを予測計算し、 これに基づいて
ライン速度及び炉温をそれぞれ制御することにより、
先行材と次行材とで鋼板寸法,目標板温或いは材質等の
条件が異なる場合でも、 少なくとも優先側材料が安定
して板温管理基準を満たし得る的確な鋼板温度制御を実
施し得るようにした点」に特徴を有するものである。以
下、実施例に基づいて、本発明をその作用・効果と共に
より具体的に説明する。
【00013】
【実施例】図1は、本発明法を連続焼鈍炉加熱帯に適用
した場合の鋼板の温度制御例を示している。図1におい
て、符号(1) で示されるものは、内部に鋼板(s)
を移送するためのハ−スロ−ル(2) を備えた連続
焼鈍炉加熱帯である。この連続焼鈍炉加熱帯(1)への
供給燃料流量の制御は、炉温制御装置(5) により、
連続焼鈍炉加熱帯(1) 内に設けられた炉温検出器(
3) からの信号に基づいて燃料流量制御装置(4)
を介して行われる。
【00014】なお、該連続焼鈍炉加熱帯(1) の出
側には板温検出器(6) が設けられている。また、連
続焼鈍炉加熱帯(1) の入側には駆動モ−タ(7)
で駆動される上下一対のブライドルロ−ル(8) が設
けられているが、この駆動モ−タ(7) は速度制御装
置(9) によって速度が制御されるようになっている
。
【00015】ブライドルロ−ル(8) の入側には溶
接点検出器(10)が設けられており、溶接点位置トラ
ッキング装置(11)に溶接点位置信号が入力される。
そして、この溶接点位置トラッキング装置(11)と速
度制御装置(9) ,炉温制御装置(5) とが設定指
令装置(15)に接続され、この設定指令装置(15)
はライン速度・炉温設定変更タイミング計算装置(12
)に接続されている。
【00016】このライン速度・炉温設定変更タイミン
グ計算装置(12)には、次行材設定値計算装置(13
)と板温公差優先度判定装置(14)が接続されている
。そして、次行材設定値計算装置(13)は次行材の板
厚,板幅,目標板温,材質の情報を受信し、ライン速度
・炉温設定変更タイミング計算装置(12)は先行材の
ライン速度・炉温実績値の情報を受信し、板温公差優先
度判定装置(14)は板厚,目標板温及び板温公差の情
報を受信するようになっている。
【00017】次に、上記構成に基づく制御過程を図2
に示すフロ−チャ−トに基づいて説明する。まず、次行
材のコイル情報(板厚,板幅,目標板温,材質)と先行
材のライン速度・炉温実績値の情報、及び先行材,次行
材の板温公差の情報を受信してメモリ−に記憶する。
【00018】次に、受信してメモリ−に記憶された前
記情報と予め用意したライン速度のテ−ブル値を使用し
て、まず次行材のライン速度V2 を次行材設定値計算
装置(13)にて次の(2) 式により計算して決定す
る。
V2 =F(H2,W2,Z
2)
……(2) 【00019】また、(2)
式で決定したライン速度V2 の下での次行材の炉温設
定値F2 を次行材設定値計算装置(13)にて次の(
3) 式により計算して求める。
F2 =G (V2,H2,
W2,Z2,T2,ΦCG2)
……(3) 【00020】次に、先行材のライ
ン速度及び炉温から次行材のライン速度及び炉温へ変更
する時の設定変更タイミングが制御上重要であり、これ
らの設定変更タイミングの計算を行う。
【00021】この設定変更タイミングの計算法を前記
図3に示すタイムチャ−トを用いて説明する。従来の方
法では先行材の板温公差外れ部(c) 及び次行材の板
温公差外れ部(d)が最小となるように前記(1) 式
の評価関数Eを最小とするようにしていたが、本発明の
方法では、板温公差優先度判定装置(14)で板厚,目
標板温及び板温公差に基づいて先行材と次行材のうち何
れが優先であるかを判断(例えば後述する図5に従った
判断)し、その結果先行材が優先である場合には、先行
材の板温公差外れ長さL1 が零で次行材の板温公差外
れ長さL2 が最小値となるように板温応答曲線を予測
計算し、次行材が優先である場合には次行材の板温公差
外れ長さL2が零で先行材の板温公差外れ長さL1 が
最小値となるように板温応答曲線を予測計算し、それに
必要な“先行材のライン速度V1 から次行材のライン
速度V2 への変更タイミング”及び“先行材の炉温F
1 から次行材の炉温F2 への変更タイミング”を計
算する。
【00022】即ち、次の (4)式に示すように、制
約条件の下で評価関数Lを最小値とする最適化問題を「
非線型最適化の数値計算手法」を用いて解くことにより
、ライン速度と炉温の最適設定変更タイミングが求まる
。
L(評価関数)=P2 L1
+P1 L2 …
…(4) 【00023】この時、ライン速度はブライ
ドルロ−ル駆動モ−タの能力で決まる最大加減速率で変
更可能であり、炉温は炉の熱容量で決まる1次遅れ状の
波形で変更可能と仮定して予測計算を行う点は、従来の
方法と同様である。
【00024】なお、上記 (4)式のパラメ−タP1
,P2 は、板温公差優先度判定装置(14)にて先
行材と次行材の板厚,目標板温及び板温公差に基づき例
えば図5のフロ−チャ−トに示すような優先度判定基準
に従って決定される。
【00025】また、図1に示す溶接点位置トラッキン
グ装置(11)は常に先行材と次行材との溶接位置をト
ラッキングしており、この溶接点位置がライン速度又は
炉温の設定変更タイミングに対応する位置を通過した時
点で、設定指令装置(15)は速度制御装置(9) と
炉温制御装置(5) に対してそれぞれ速度変更指令と
炉温変更指令を出力する。これを受けて、速度制御装置
(9) は駆動モ−タ(7) の速度が設定速度に一致
するよう制御し、炉温制御装置(5) は炉温が設定値
に一致するよう燃料流量制御装置(4) により炉内に
供給する燃料流量を操作する。
【00026】このように、寸法,目標板温或いは材質
等が異なる先行ストリップと次行ストリップを溶接接合
して連続焼鈍炉で連続的に熱処理する場合に、板厚と予
め定められた目標板温及び板温公差とに基づいて先行ス
トリップと次行ストリップのうちの適正処理の優先度を
判断し、優先側ストリップの板温公差からの板温外れ長
さが零で非優先側材料の板温公差からの板温外れ長さが
最小値となる“先行材から次行材にかけての板温応答曲
線”及びそれを実現するためのライン速度及び炉温の設
定変更タイミングを予測計算して、これに基づいた制御
を行えば、従来に見られない極めて的確な温度制御を行
えることとなる。
【00027】
【効果の総括】以上に説明した如く、この発明によれば
、格別に困難で煩雑な操作を要することなく的確で安定
した鋼板温度の制御を行える連続焼鈍炉制御法を提供で
きるなど、産業上極めて有用な効果がもたらされる。Detailed Description of the Invention [0001] [Industrial Application Field] This invention involves joining steel plates (strips) with different conditions such as dimensions, target plate temperatures, materials, etc. and continuously processing them in a continuous annealing furnace. The present invention relates to a method for controlling the temperature of a steel plate at a joint between a preceding material and a succeeding material. [Prior art and its problems] In a continuous annealing furnace, steel plates (
In order to heat-treat the strip continuously, the rear end of the "strip being threaded" and the front end of the "strip to be threaded next" are connected by welding on the entrance side of the furnace. In this case, if at least one of the dimensions (thickness and width), target strip temperature, and material of each strip before and after the weld are different before and after the weld, the line speed and furnace temperature may be changed at the weld. Must. By the way, in a continuous annealing furnace, the furnace temperature is generally controlled by a furnace temperature control device by manipulating the fuel flow rate so that the furnace temperature setting value and the actual furnace temperature match. However, in this case, the furnace temperature response is poor because the heat capacity of the furnace is very large. That is, it takes about 20 minutes for the actual furnace temperature to reach the set furnace temperature after changing the furnace temperature setting value. Therefore, there was a problem that the plate temperature of the strip deviated from the target plate temperature value between these areas, making it impossible to obtain predetermined mechanical properties. [0004] Therefore, if the plate temperature cannot be avoided,
A method has been proposed in which the deviation in mechanical properties of the strip is intentionally caused to occur on the overheated side, where there are fewer problems in terms of plate quality, to reduce deviations in the mechanical properties of the strip (Japanese Patent Laid-Open No. 57-35640, etc.). but,
This method had a new problem: ``If the target plate temperature and plate thickness change at the same time before and after the weld, the plate temperature deviation toward the overheating side will be too large.'' . For this reason, the present applicant previously proposed the following method of controlling the temperature of a steel plate in a continuous annealing furnace (Japanese Patent Application No. 317013/1983), but this method is shown in the time chart of FIG. This is explained by: FIG. 3 shows that, as shown in item (A), the thickness H1 of the preceding material is smaller than the thickness H2 of the succeeding material (H1 < H2), and as shown in item (B), the thickness H1 of the preceding material is smaller than the thickness H2 of the succeeding material. This example relates to a temperature control example when the target plate temperature T1 of the material is smaller than the target plate temperature T2 of the next material (T1 < T2). Here, since the response time of the furnace temperature is long, about 20 minutes, the plate temperature becomes a response curve as shown in item (E), and the upper limit (a) and lower limit (b) of the plate temperature tolerance.
An out-of-tolerance part (c) of the preceding material and an out-of-tolerance part (d) of the plate temperature of the next material occur. Therefore, in order to minimize the plate temperature deviation parts (c) and (d),
Setting changes are made to the line speed shown in item (C) and the furnace temperature shown in item (D). That is, the parts (c) and (d) outside the plate temperature tolerance.
When the areas of are respectively E1 and E2, the "timing of changing the line speed V1 of the preceding material to the line speed V2 of the next material" and "the timing of changing the line speed of the preceding material V2" are set such that the evaluation function E calculated by the following formula is minimized. Calculate the timing for changing the furnace temperature F1 from the furnace temperature F2 of the next material to the furnace temperature F2 of the next material. E=αE1 + (1-α)
E2 (0<α<1)...
(1) The parameter α in the above equation (1) is a parameter for specifying the sheet temperature response curve of “prior material emphasis” or “following material emphasis”, and is a parameter for specifying the plate temperature response curve of “prior material emphasis” or “following material emphasis”. It is specified in advance as a table value according to the size of the plate temperature tolerance. In actual sheet temperature management, as shown in item (E) in FIG. 3, the sheet temperature tolerance deviation length L1 of the preceding material from the sheet temperature tolerance upper limit (a) and lower limit (b) The board temperature tolerance length L2 of the row material is the control standard. [0009] Although the temperature control of the steel plate was made very stable by the above-mentioned means proposed earlier by the present applicant, it was still found through actual work that ``this method that minimizes the evaluation function E of the above equation (1)'' Then, the parameter α and the plate temperature response curve (E
) is difficult to grasp, and the length L is outside the plate temperature tolerance.
Parameters are indirectly set so that 1 and L2 meet the management standards.
It has become recognized that it is extremely difficult to specify the data α. For example, in FIG. 3, if it is desired that the sheet temperature deviation length L2 of the next material is zero and the sheet temperature deviation length L1 of the preceding material is to be minimized, appropriate parameters corresponding to this should be set.
It is difficult to specify the value of α in advance. For this reason, Figure 4
It is not necessarily a practical method as it requires repeated calculations as shown in the figure. [00011] Therefore, an object of the present invention is to eliminate the above-mentioned problems seen in the conventional method and to accurately and accurately control the temperature of treated steel sheets in a continuous annealing furnace without requiring particularly difficult operations. The aim was to establish a means of stable control. [Means for Solving the Problems] The present invention was completed based on the research results of the present inventors, who conducted numerous experiments in order to achieve the above object. When continuously processing preceding material and subsequent material under different conditions in a continuous annealing furnace equipped with a speed control device and a furnace temperature control device, based on the sheet thickness, predetermined target sheet temperature and sheet temperature tolerance, In addition to determining which of the preceding material and the following material has priority (determining priority criteria in advance as described below), it also determines the "length of the sheet temperature deviation from the sheet temperature tolerance" of the priority material. ``Plate temperature response curve from the preceding material to the next material'' where ``length of plate temperature deviation from plate temperature tolerance'' of the non-priority side material is zero and the minimum value, and setting of line speed and furnace temperature for this. By predicting the change timing and controlling the line speed and furnace temperature based on this,
Even if conditions such as steel plate dimensions, target plate temperature, material quality, etc. differ between the preceding material and the subsequent material, accurate steel plate temperature control can be carried out so that at least the priority material can stably satisfy the plate temperature control standards. It is characterized by the fact that Hereinafter, the present invention will be described in more detail along with its functions and effects based on Examples. Embodiment FIG. 1 shows an example of temperature control of a steel plate when the method of the present invention is applied to a heating zone of a continuous annealing furnace. In Fig. 1, the part indicated by the symbol (1) has a steel plate (s) inside.
This is a continuous annealing furnace heating zone equipped with a hearth roll (2) for transferring. The flow rate of fuel supplied to the continuous annealing furnace heating zone (1) is controlled by a furnace temperature control device (5).
Furnace temperature detector (
3) Fuel flow control device (4) based on the signal from
It is done through. A plate temperature detector (6) is provided on the exit side of the continuous annealing furnace heating zone (1). In addition, a drive motor (7) is installed on the entrance side of the continuous annealing furnace heating zone (1).
A pair of upper and lower bridle rolls (8) driven by a motor are provided, and the speed of this drive motor (7) is controlled by a speed control device (9). A welding point detector (10) is provided on the entry side of the bridle roll (8), and a welding point position signal is input to a welding point position tracking device (11). This welding point position tracking device (11), speed control device (9), and furnace temperature control device (5) are connected to a setting command device (15), and this setting command device (15)
is line speed/furnace temperature setting change timing calculation device (12
)It is connected to the. This line speed/furnace temperature setting change timing calculation device (12) includes a next line material setting value calculation device (13).
) and a plate temperature tolerance priority determination device (14) are connected. Then, the next material setting value calculation device (13) receives information on the thickness, width, target material temperature, and material of the next material, and the line speed/furnace temperature setting change timing calculation device (12) receives information on the thickness, width, target material temperature, and material of the next material. The plate temperature tolerance priority determination device (14) receives information on the plate thickness, target plate temperature, and plate temperature tolerance. Next, the control process based on the above configuration is shown in FIG.
This will be explained based on the flowchart shown in FIG. First, we receive the coil information (thickness, width, target plate temperature, material) of the next material, the actual line speed and furnace temperature of the preceding material, and the information on the sheet temperature tolerance of the preceding material and the next material. and store it in memory. Next, using the information received and stored in the memory and the line speed table values prepared in advance, the line speed V2 of the next row material is calculated by the next row material setting value calculation device ( 13), it is calculated and determined using the following formula (2). V2 = F(H2, W2, Z
2)
...(2) 00019] Also, (2)
The furnace temperature setting value F2 of the next row material under the line speed V2 determined by the formula is calculated by the next row material set value calculation device (13) as follows (
3) Obtain by calculating using the formula. F2 = G (V2, H2,
W2, Z2, T2, ΦCG2)
...(3) Next, the timing of setting changes when changing from the line speed and furnace temperature of the preceding material to the line speed and furnace temperature of the next material is important for control, and the timing of these setting changes is important. Do calculations. A method of calculating this setting change timing will be explained using the time chart shown in FIG. 3. In the conventional method, the evaluation function E in equation (1) above is minimized so that the area outside the sheet temperature tolerance of the preceding material (c) and the area outside the sheet temperature tolerance of the next material (d) are minimized. However, in the method of the present invention, the sheet temperature tolerance priority determination device (14) determines which of the preceding material and the following material has priority based on the sheet thickness, target sheet temperature, and sheet temperature tolerance ( For example, if the preceding material is given priority, the preceding material's sheet temperature tolerance length L1 is zero and the sheet temperature tolerance length L2 of the next material is the minimum. If the next material has priority, the sheet temperature tolerance length L2 of the next row material is zero and the sheet temperature tolerance length L1 of the preceding material is the minimum. The plate temperature response curve is predicted and calculated so that the necessary "timing for changing the line speed V1 of the preceding material to the line speed V2 of the next material" and the "furnace temperature F of the preceding material" are calculated.
1 to the next material's furnace temperature F2 is calculated. In other words, as shown in the following equation (4), an optimization problem in which the evaluation function L is minimized under the constraint conditions is calculated. of"
By solving the problem using "Nonlinear Optimization Numerical Computation Method," the optimal timing for changing the line speed and furnace temperature settings can be determined. L (evaluation function) = P2 L1
+P1 L2...
...(4) At this time, the line speed can be changed by the maximum acceleration/deceleration rate determined by the capacity of the bridle roll drive motor, and the furnace temperature can be changed by a first-order lag waveform determined by the heat capacity of the furnace. It is similar to the conventional method in that the predictive calculation is performed assuming that it is possible. [00024] Furthermore, the parameter P1 of the above equation (4)
, P2 is determined by the plate temperature tolerance priority determination device (14) based on the plate thicknesses of the preceding material and the succeeding material, the target plate temperature, and the plate temperature tolerance, as shown in the flowchart of FIG. 5, for example. Determined according to criteria. Furthermore, the welding point position tracking device (11) shown in FIG. 1 constantly tracks the welding position between the preceding material and the succeeding material, and this welding point position is determined at the timing of changing the line speed or furnace temperature setting. When passing the corresponding position, the setting command device (15) outputs a speed change command and a furnace temperature change command to the speed control device (9) and the furnace temperature control device (5), respectively. In response to this, the speed control device (9) controls the speed of the drive motor (7) to match the set speed, and the furnace temperature control device (5) controls the fuel flow rate so that the furnace temperature matches the set value. A control device (4) operates the fuel flow rate supplied into the furnace. [00026] In this way, when the preceding strip and the succeeding strip, which have different dimensions, target plate temperatures, materials, etc., are welded together and are continuously heat-treated in a continuous annealing furnace, the plate thickness and the predetermined target plate temperature are The priority of appropriate processing of the preceding strip and the following strip is determined based on the strip temperature tolerance and the strip temperature tolerance, and the strip temperature deviation length from the strip temperature tolerance of the priority strip is zero and the strip temperature of the non-priority material is determined. We predict and calculate the "plate temperature response curve from the preceding material to the next material" where the length of the deviation of the plate temperature from the tolerance is the minimum value, and the timing of changing the line speed and furnace temperature settings to achieve this. If control is performed based on this, it will be possible to perform extremely accurate temperature control that has never been seen before. [Summary of Effects] As explained above, according to the present invention, it is possible to provide a continuous annealing furnace control method that can accurately and stably control the temperature of a steel plate without requiring particularly difficult and complicated operations. , industrially extremely useful effects are brought about.
【図1】本発明に係る温度制御法例の説明図である。FIG. 1 is an explanatory diagram of an example of a temperature control method according to the present invention.
【図2】本発明に係る温度制御過程を示すフロ−チャ−
トである。[Fig. 2] Flowchart showing the temperature control process according to the present invention.
It is.
【図3】先に提案された方法のタイムチャ−トである。FIG. 3 is a time chart of the previously proposed method.
【図4】先に提案された方法での操業条件変更手順を示
したフロ−チャ−トである。FIG. 4 is a flowchart showing a procedure for changing operating conditions in the previously proposed method.
a 板温公差上限
b 板温公差下限
c 先行材の板温公差外れ部
d 次行材の板温公差外れ部
1 連続焼鈍炉加熱帯
2 ハ−スロ−ル
3 炉温検出器
4 燃料流量制御装置
5 炉温制御装置
6 板温検出器
7 駆動モ−タ
8 ブライドルロ−ル
9 速度制御装置
10 溶接点検出器
11 溶接点位置トラッキング装置
12 ライン速度・炉温設定変更タイミング計算装置
13 次行材設定計算装置
14 板温公差外れ長さ指定装置
15 設定指令装置a Upper limit of plate temperature tolerance b Lower limit of plate temperature tolerance c Area outside the plate temperature tolerance of the preceding material d Area outside the plate temperature tolerance of the succeeding material 1 Continuous annealing furnace heating zone 2 Hearth roll 3 Furnace temperature detector 4 Fuel flow control Device 5 Furnace temperature control device 6 Plate temperature detector 7 Drive motor 8 Bridle roll 9 Speed control device 10 Welding point detector 11 Welding point position tracking device 12 Line speed/furnace temperature setting change timing calculation device 13 Next line Material setting calculation device 14 Plate temperature tolerance deviation length specification device 15 Setting command device
Claims (1)
を備えた連続焼鈍炉において異なる条件の先行材と次行
材とを連続処理するに際し、板厚と予め定められた目標
板温及び板温公差とに基づいて先行材と次行材のうちの
何れが優先であるかを判断すると共に、優先側材料の“
板温公差からの板温外れ長さ”が零でかつ非優先側材料
の“板温公差からの板温外れ長さ”が最小値となる“先
行材から次行材にかけての板温応答曲線”とそのための
ライン速度及び炉温の設定変更タイミングを予測計算し
、これに基づいてライン速度及び炉温をそれぞれ制御す
ることを特徴とする、連続焼鈍炉における鋼板の温度制
御方法。Claim 1: When continuously processing a preceding material and a subsequent material under different conditions in a continuous annealing furnace equipped with a line speed control device and a furnace temperature control device, Based on the temperature tolerance, it is determined which of the preceding material and the following material has priority, and the "
Sheet temperature response curve from the preceding material to the succeeding material where the "length of the sheet temperature deviation from the sheet temperature tolerance" is zero and the "length of the sheet temperature deviation from the sheet temperature tolerance" of the non-priority side material is the minimum value. A method for controlling the temperature of a steel plate in a continuous annealing furnace, which is characterized by predicting and calculating the timing of setting changes in line speed and furnace temperature for that purpose, and controlling the line speed and furnace temperature respectively based on this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2152291A JPH04323325A (en) | 1991-01-21 | 1991-01-21 | Method for controlling temperature of steel sheet in continuous annealing furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2152291A JPH04323325A (en) | 1991-01-21 | 1991-01-21 | Method for controlling temperature of steel sheet in continuous annealing furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04323325A true JPH04323325A (en) | 1992-11-12 |
Family
ID=12057288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2152291A Pending JPH04323325A (en) | 1991-01-21 | 1991-01-21 | Method for controlling temperature of steel sheet in continuous annealing furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04323325A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011021231A (en) * | 2009-07-15 | 2011-02-03 | Kobe Steel Ltd | Method for determining order of charging rolled material into continuous heat treatment furnace |
-
1991
- 1991-01-21 JP JP2152291A patent/JPH04323325A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011021231A (en) * | 2009-07-15 | 2011-02-03 | Kobe Steel Ltd | Method for determining order of charging rolled material into continuous heat treatment furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4239483A (en) | Method of controlling steel strip temperature in continuous heating equipment | |
CN108026604B (en) | Heat treatment apparatus for heat treatment of steel strip and method of controlling heat treatment apparatus for heat treatment of steel strip | |
CN101519735B (en) | Method for controlling strip-steel head and tail temperature | |
JPH04323325A (en) | Method for controlling temperature of steel sheet in continuous annealing furnace | |
JP2809925B2 (en) | Sheet temperature control method for continuous annealing furnace | |
JPH02163325A (en) | Method for controlling temperature of metallic sheet in continuous annealing furnace | |
JPH03277723A (en) | Method for controlling temperature of steel sheet in continuous annealing furnace | |
JPH032331A (en) | Apparatus for controlling strip temperature in continuous annealing furnace | |
JPH0192322A (en) | Method for controlling sheet temperature in continuous annealing furnace | |
JPS61159213A (en) | Method for controlling hardness of steel strip | |
JP2910521B2 (en) | Sheet temperature control method of steel strip in continuous annealing furnace | |
JPS6213526A (en) | Method for controlling temperature of induction heating furnace | |
JPH04323324A (en) | Method for controlling temperature of steel sheet in continuous heating furnace | |
JPH0192323A (en) | Method for controlling sheet temperature in continuous annealing furnace | |
JP3085858B2 (en) | Rolling mill control device | |
JPH0474825A (en) | Method for controlling temperature of steel sheet in continuous heating furnace | |
JPH04337039A (en) | Strip temperature control method for continuous annealing furnace | |
JPH04191336A (en) | Method for controlling sheet temperature | |
JPH0472022A (en) | Method and device for controlling strip temperature in continuous annealing furnace | |
JP2921420B2 (en) | Combustion control method in continuous annealing furnace | |
JPH0585621B2 (en) | ||
JPH04346623A (en) | Method for controlling finish continuous annealing for nonoriented magnetic steel sheet | |
JPH0499824A (en) | Method for controlling output of heating in heating apparatus | |
JPS61199038A (en) | Method for controlling temperature of strip in continuous annealing furnace | |
JPS60141833A (en) | Continuous annealing furnace |