JPH0474415A - Selective epitaxial growth method of silicon - Google Patents

Selective epitaxial growth method of silicon

Info

Publication number
JPH0474415A
JPH0474415A JP18853890A JP18853890A JPH0474415A JP H0474415 A JPH0474415 A JP H0474415A JP 18853890 A JP18853890 A JP 18853890A JP 18853890 A JP18853890 A JP 18853890A JP H0474415 A JPH0474415 A JP H0474415A
Authority
JP
Japan
Prior art keywords
growth
flow rate
gas flow
silicon
growth temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18853890A
Other languages
Japanese (ja)
Other versions
JP2638261B2 (en
Inventor
Masayuki Hiroi
政幸 廣井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2188538A priority Critical patent/JP2638261B2/en
Publication of JPH0474415A publication Critical patent/JPH0474415A/en
Application granted granted Critical
Publication of JP2638261B2 publication Critical patent/JP2638261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a selective epitaxial growth method, of silicon, which controls the shape of a growth part near an insulating film and which restrains the deformation of a facet by a method wherein a growth temperature is made low or a gas flow rate is increased. CONSTITUTION:When silicon is grown epitaxially, a growth temperature and a gas flow rate are controlled and, thereby, the shape of a selective growth part near an insulating film is controlled. At this time, the growth temperature is changed within a range of 400 to 800 deg.C, and the gas flow rate is changed within a range where the degree of vacuum near the surface of a substrate is at 10<-3>Torr or lower. For example, when the growth temperature is set at 550 deg.C and the gas flow rate is at 50 scums i.e., when the growth temperature is low and the gas flow rate is large, the silicon is grown in a shape that a part near an oxide-film sidewall 13 swells. Consequently, a leakage current generated at the part of a facet is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガスソースを用いたシリコンの選択エピタキシ
ャル成長方法に関し、特に絶縁膜の側壁付近の成長層の
形状を制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for selective epitaxial growth of silicon using a gas source, and particularly to a method for controlling the shape of a grown layer near the sidewalls of an insulating film.

(従来の技術) ガスソースを用いたシリコンの単結晶成長において、酸
化膜や窒化膜などの絶縁膜とシリコンの露出した部分が
混在する場合に、シリコン露出部分のみに選択的に成長
を行えることが知られている。はじめに行われたのはジ
クロロシランと塩化水素を用いたものであり、このとき
の成長温度は800°C以上であった。その後シラン、
ジシランを用いたものが報告されており、成長温度は5
00°C付近まで下がった。しかし、選択成長を達成す
るためにガス流量は、表面付近でのジシラン分圧が1O
−5Torr以下の低い圧力条件で行われてきた。これ
ら従来の成長条件では成長にしたがって絶縁膜の側壁部
分からファセットと呼ばれる成長しにくい面が広がって
いく。
(Prior art) In the single crystal growth of silicon using a gas source, when an insulating film such as an oxide film or a nitride film and an exposed silicon part coexist, growth can be performed selectively only on the exposed silicon part. It has been known. The first method used was dichlorosilane and hydrogen chloride, and the growth temperature at this time was 800°C or higher. Then silane,
It has been reported that disilane was used, and the growth temperature was 5.
The temperature dropped to around 00°C. However, in order to achieve selective growth, the gas flow rate must be adjusted so that the partial pressure of disilane near the surface is 1O
It has been carried out under low pressure conditions of −5 Torr or less. Under these conventional growth conditions, surfaces that are difficult to grow, called facets, expand from the sidewall portions of the insulating film as the insulating film grows.

第7図は成長温度700°C、ガス流量を5secmと
した場合の選択成長後の断面図である。この場合の表面
付近の真空度は約1O−5Torrである。このような
成長温度が高くガス流量が小さい場合のシリコン基板1
0上にエピタキシャル成長層11には、酸化膜12の側
壁13の下端からファセツト面14が形成され、また本
来の(100)成長面15は平坦である。
FIG. 7 is a cross-sectional view after selective growth at a growth temperature of 700° C. and a gas flow rate of 5 seconds. In this case, the degree of vacuum near the surface is approximately 10-5 Torr. Silicon substrate 1 when the growth temperature is high and the gas flow rate is low
In the epitaxially grown layer 11 on the oxide film 12, a facet surface 14 is formed from the lower end of the side wall 13 of the oxide film 12, and the original (100) growth surface 15 is flat.

(発明が解決しようとする課題) ファセットがあると、素子を形成したときファセットの
部分でリーク電流が増大し、素子が機能しなくなるとい
う問題点がある。また、成長膜厚を厚くするにつれてフ
ァセットも成長するので、平坦部の面積が小さくなり段
差も大きくなってしまうため、微細な素子をつくる場合
はファセットの存在が大きな問題となる。第7図の場合
では、成長層11の厚さ200OAのときファセ・ノド
の幅Wは約2500人にもなる。
(Problems to be Solved by the Invention) If there are facets, there is a problem that when an element is formed, leakage current increases at the facet portion, causing the element to malfunction. Furthermore, as the thickness of the grown film increases, the facets also grow, which reduces the area of the flat portion and increases the level difference, so the presence of facets becomes a big problem when making fine elements. In the case of FIG. 7, when the thickness of the growth layer 11 is 200 OA, the width W of the face and throat is about 2,500.

本発明の目的はガスソースを用いたシリコンの選択成長
において絶縁膜近傍の成長部分の形状を制御してファセ
ットの変形を抑制することである。
An object of the present invention is to suppress deformation of facets by controlling the shape of a grown portion near an insulating film in selective growth of silicon using a gas source.

(課題を解決するための手段) 本発明はガスを用いたシリコンの選択エピタキシャル成
長において、成長温度、ガスの供給速度を制御すること
によって絶縁膜付近の選択成長部分の形状を制御するも
のである。従来−船釣に用いられてきたのは成長温度7
006C以上、ガス流量が表面付近で圧力に変換すると
おおよそ10 ’Torr以下という成長条件でありこ
の条件ではファセットが形成された。本発明者は鋭意検
討の結果シリコンのエピタキシャル成長反応は成長温度
とガス流量の両方に依存するため、従来の条件より成長
温度を下げる、またはガス流量を増す、という二つ手段
のうちのいづれかによってファセットの形成を抑えるこ
とができることを見出した。ここで成長温度を変化させ
る範囲は400°Cから800°C、ガス流量を変化さ
せる範囲は基板表面付近の真空度が1O−3Torr以
下となる領域である。また、成長温度を下げ、しかもガ
ス供給量を増加させると絶縁膜近傍の部分が盛り上がっ
た形状に成長することができる。
(Means for Solving the Problems) The present invention controls the shape of a selectively grown portion near an insulating film by controlling the growth temperature and gas supply rate in selective epitaxial growth of silicon using gas. Traditionally - growth temperature 7 has been used for boat fishing
The growth conditions were 0.006C or higher, and the gas flow rate was approximately 10' Torr or lower when converted to pressure near the surface, and under these conditions, facets were formed. As a result of extensive studies, the present inventor found that the epitaxial growth reaction of silicon depends on both the growth temperature and the gas flow rate. It was found that the formation of can be suppressed. Here, the range in which the growth temperature is changed is from 400°C to 800°C, and the range in which the gas flow rate is changed is in a range where the degree of vacuum near the substrate surface is 10-3 Torr or less. Further, by lowering the growth temperature and increasing the gas supply amount, the portion near the insulating film can grow into a raised shape.

(作用) 成長が進むにしたがってファセット面が広がっていくの
は、ファセット面の反応性が低いために、成長初期にわ
ずかでもファセット面ができるとマイグレーションなど
によって反応種がファセット面上からどんどん逃散して
しまうためである。したがって反応種力吻アセット面か
ら逃散する速度より成長速度のほうが速くなる条件にす
ればファセットの形成を抑制することができる。この条
件を達成するには二つのアプローチがある。
(Function) The facets spread out as the growth progresses because the reactivity of the facets is low, so if even a small amount of facets is formed in the early stages of growth, reactive species will rapidly escape from the facets due to migration, etc. This is because the Therefore, the formation of facets can be suppressed by providing conditions in which the growth rate of reactive species is faster than the rate of escape from the proboscis asset surface. There are two approaches to achieving this condition.

一つは成長温度を下げることであり、一つはガス流量を
増すことである。成長温度を下げることによって面方位
による反応性の差が低下する。このためファセット面と
成長面の成長速度の差が小さくなり、ファセットの形成
が抑えられる。このとき成長温度は400°C以上でな
くてはならない。これは成長の進行には、ガスのもつ水
素などの置換基が脱離が必要であり、その脱離反応が4
00°C以上の温度を必要とするためである。一方、同
じ成長温度においては逃散の速度は一定であるから、ガ
ス流量を増やすことによって表面での反応速度を増加さ
せてファセットの成長を抑えることができる。このとき
ガス流量は、基板の表面付近の真空度が10 ”Tor
r以下までの範囲に制御する。これ以上ガス流量を増加
すると、表面に到達する前にガス分子間の衝突によって
ガス分子が励起されてしまうために、選択性が保てなく
なってしまう。ここまで述べたように、成長温度の低下
、またはガス流量の増加のどちらによってもファセット
の形成は抑制される。成長温度が低く、かつガス流量を
多い条件を用いた場合には、成長反応が完全に反応律速
となる。このとき絶縁膜側壁からの熱輻射によって絶縁
膜側壁近傍の温度が上昇するため、絶縁膜側壁付近が盛
り上がった形状に成長する。
One is to lower the growth temperature, and one is to increase the gas flow rate. By lowering the growth temperature, the difference in reactivity due to plane orientation is reduced. Therefore, the difference in growth rate between the facet surface and the growth surface becomes small, and the formation of facets is suppressed. At this time, the growth temperature must be 400°C or higher. This is because substituents such as hydrogen in the gas must be eliminated for growth to proceed, and the elimination reaction is 4
This is because a temperature of 00°C or higher is required. On the other hand, since the rate of escape is constant at the same growth temperature, the growth of facets can be suppressed by increasing the reaction rate on the surface by increasing the gas flow rate. At this time, the gas flow rate is such that the degree of vacuum near the surface of the substrate is 10" Tor.
control within the range below r. If the gas flow rate is increased more than this, the gas molecules will be excited by collisions between them before reaching the surface, making it impossible to maintain selectivity. As described above, the formation of facets can be suppressed by either lowering the growth temperature or increasing the gas flow rate. When the growth temperature is low and the gas flow rate is high, the growth reaction becomes completely rate-limiting. At this time, the temperature near the insulating film side wall increases due to heat radiation from the insulating film side wall, so that the insulating film grows into a swollen shape near the side wall.

(実施例) 以下図面を用いて本発明について説明する。第1図は本
発明の詳細な説明するためのガスソースによるシリコン
エピタキシャル成長装置の概要説明図である。基板1と
して表面に厚さ5000人の酸化膜パターンをもつ4イ
ンチn型5i(100)ウェハーを用いた。この基板は
成長チャンバー2にロードされる。チャンバー2内を超
高真空にして基板裏側のヒーター3により900°C1
10分間の加熱を行う。このプロセスによって清浄な5
i(100)表面が得られる。表面の清浄度は高速電子
銃4と蛍光スクリーン5で構成される反射高速電子線回
折装置の回折パターンにおいて清浄な5i(100)面
に特徴的な2×1表面超構造が観測されることで確認し
た。シリコン基板を550°Cから800°Cの成長温
度に設定して、この清浄な表面に対してソースガスであ
るジシランをガスセル6から供給する。ガスポンベ7か
らサブチエバー8を通して供給されるジシランガス流量
は5secmから101005eまで変化させた。この
うち大部分はサブチェンバーの排気ポンプ9によって排
気され、基板に対してはこの約5分の1の量がガスセル
から供給される。
(Example) The present invention will be described below using the drawings. FIG. 1 is a schematic explanatory diagram of a silicon epitaxial growth apparatus using a gas source for explaining the present invention in detail. As the substrate 1, a 4-inch n-type 5i (100) wafer having an oxide film pattern with a thickness of 5000 nm on the surface was used. This substrate is loaded into growth chamber 2. The inside of the chamber 2 is made into an ultra-high vacuum and heated to 900°C by the heater 3 on the back side of the substrate.
Heat for 10 minutes. This process cleans 5
An i(100) surface is obtained. The cleanliness of the surface is determined by the observation of a 2×1 surface superstructure characteristic of a clean 5i (100) plane in the diffraction pattern of a reflection high-speed electron diffraction device consisting of a high-speed electron gun 4 and a fluorescent screen 5. confirmed. The growth temperature of the silicon substrate is set at 550° C. to 800° C., and disilane as a source gas is supplied from the gas cell 6 to this clean surface. The disilane gas flow rate supplied from the gas pump 7 through the subchamber 8 was varied from 5 seconds to 101005e. Most of this is evacuated by the subchamber's exhaust pump 9, and approximately one-fifth of this amount is supplied to the substrate from the gas cell.

第2図は成長温度700°C、ガス流量を50secm
とした場合の選択成長後の断面図である。これは第7図
の従来例に比べてガス流量を増加した場合であるが、本
来の成長面15が平坦なまま、ファセット面14を小さ
くし、酸化膜側壁13と成長層11の側部がほぼ接合し
た状態に成長することができる。成長膜厚が第7図と同
じ2000人の場合、ファセットの幅Wは約400人、
深さDは約300人と第7図の従来例に比へ非常に小さ
くなっている。
Figure 2 shows a growth temperature of 700°C and a gas flow rate of 50 sec.
FIG. 3 is a cross-sectional view after selective growth in the case of This is a case where the gas flow rate is increased compared to the conventional example shown in FIG. They can grow into a nearly bonded state. If the grown film thickness is the same as in Figure 7, 2000 people, the facet width W is about 400 people,
The depth D is about 300 people, which is very small compared to the conventional example shown in FIG.

第3図は成長温度550°C、ガス流量を5secmと
した場合の選択成長後の断面図である。このような成長
温度が低くガス流量が小さい場合には、酸化膜側壁13
と成長層11の側面は接合し、ファセット面は形成され
ず、図中17aで示すように酸化膜側壁13付近が丸み
をおびた形状に成長する。この成長条件では成長膜厚2
000人のとき、丸みをおびた部分17aの大きさは、
高さが100人程度と非常に小さく、幅も100OA程
度と小さい。酸化膜側壁13がら離れた部分は平坦であ
る。
FIG. 3 is a cross-sectional view after selective growth at a growth temperature of 550° C. and a gas flow rate of 5 seconds. When the growth temperature is low and the gas flow rate is small, the oxide film sidewall 13
The side surfaces of the grown layer 11 are joined to each other, no facets are formed, and the oxide film grows into a rounded shape near the side wall 13, as shown by 17a in the figure. Under these growth conditions, the grown film thickness is 2
When there are 000 people, the size of the rounded part 17a is
The height is very small, about 100 people, and the width is also small, about 100 OA. The portion away from the oxide film sidewall 13 is flat.

第4図は成長温度550°C、ガス流量を50secm
とした場合の選択成長後の断面図である。このような成
長温度が低くガス流量が大きい場合には、酸化膜側壁1
3の近くが盛り上がったような形状にシリコンが成長す
る。この成長条件量はせいちょう膜厚200OAのとき
、盛り上がった部分17bの大きさは、高さ400人と
非常に小さく、幅も200OA程度である。このときも
やはり酸化膜側壁13がら離れ7た部分は平坦である。
Figure 4 shows a growth temperature of 550°C and a gas flow rate of 50 sec.
FIG. 3 is a cross-sectional view after selective growth in the case of When the growth temperature is low and the gas flow rate is large, the oxide film sidewall 1
Silicon grows into a raised shape near 3. When the growth condition is a film thickness of 200 OA, the size of the raised portion 17b is very small, 400 OA in height, and the width is also about 200 OA. At this time as well, the portion 7 apart from the oxide film sidewall 13 is flat.

比較のために第7図の従来例に比べ成長温度がやや低め
、ガス流量がやや多めという場合の実験結果を示す。第
5図は成長温度600’C、ガス流量を1105CCと
した場合の選択成長後の断面図である。
For comparison, experimental results are shown in which the growth temperature was slightly lower and the gas flow rate was slightly higher than in the conventional example shown in FIG. FIG. 5 is a cross-sectional view after selective growth at a growth temperature of 600'C and a gas flow rate of 1105CC.

この場合、ファセットは酸化膜側壁13の途中から成長
しファセット面14はやや小さくなるものの平らである
。このときファセット面の上部がやや盛り上がったかた
ちになり、酸化膜側壁13がら離れた成長層はやはり平
坦である。ファセットの幅Wは成長膜厚が2000人の
とき約2000人であり、この条件では十分にファセッ
トの形成が抑制されているとはいえない。
In this case, the facet grows from the middle of the oxide film side wall 13, and the facet surface 14 is flat, although it becomes slightly smaller. At this time, the upper part of the facet surface becomes slightly raised, and the grown layer separated from the oxide film sidewall 13 is still flat. The width W of the facet is approximately 2000 mm when the grown film thickness is 2000 mm, and it cannot be said that the formation of facets is sufficiently suppressed under this condition.

第6図は、ファセットの形成が抑制される成長条件を示
したものである。図中に示した丸は、L述の実施例で説
明した、第2図から第5図までの成長条件である。図の
斜線で示した領域が、ファセットの形成が十分に抑制さ
れる領域である。必要なガス流量は使用する装置の大き
さなどによって変わるため装置ごとに較正するとよい。
FIG. 6 shows growth conditions under which the formation of facets is suppressed. The circles shown in the figure are the growth conditions shown in FIGS. 2 to 5, which were explained in the example described in L. The shaded area in the figure is the area where the formation of facets is sufficiently suppressed. Since the required gas flow rate varies depending on the size of the device used, it is recommended to calibrate each device.

(発明の効果) 以上詳しく説明したように本発明によれば、ガスソース
を用いたシリコンのエピタキシャル成長において、基板
の温度とガス流量とを調節することによって絶縁膜側壁
付近のシリコン成長部分の形状を制御してファセットの
形成を抑制することが可能となるので、ファセットの部
分で生じるリーク電流が小さくなる。またファセットが
小さくなるので微細な素子を作る際も問題はなくなる。
(Effects of the Invention) As described in detail above, according to the present invention, in epitaxial growth of silicon using a gas source, the shape of the silicon growth portion near the sidewall of the insulating film is controlled by adjusting the temperature of the substrate and the gas flow rate. Since it is possible to control and suppress the formation of facets, the leakage current generated at the facet portions is reduced. Furthermore, since the facets become smaller, there is no problem when manufacturing minute elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するためのガスによるシリ
コンエピタキシャル成長装置の装置概略図である。第2
図から第4図は本発明の条件で、第5図、第7図はそれ
をはずれた成長条件で、選択成長を行ったときの成長後
の酸化膜側壁付近の構造の断面図である。第6図はファ
セットの形成が十分に抑制される成長条件を示す図であ
る。 図においてlは4インチn型5i(100)ウェハ、2
はガスによるシリコンエピタキシャル成長装置、3は基
板ヒーター、4は反射高速電子線用高速電子銃、5は反
射電子線回折パターン観察用蛍光スクリーン、6はガス
セル、7はガスボンベ、8はサブチェンバー9はサブチ
ェンバー排気ポンプ、1oはn型シリコン(ioo)基
板、11はシリコン選択エピタキシャル成長層、12は
酸化膜、13は酸化膜側壁、14はファセット面、15
は成長層のシリコン(100)表面である。
FIG. 1 is a schematic diagram of a gas-based silicon epitaxial growth apparatus for explaining the present invention in detail. Second
4 is a cross-sectional view of the structure near the side wall of the oxide film after growth when selective growth is performed under the conditions of the present invention, and FIGS. 5 and 7 are under growth conditions other than the conditions. FIG. 6 is a diagram showing growth conditions under which the formation of facets is sufficiently suppressed. In the figure, l is a 4-inch n-type 5i (100) wafer, 2
3 is a silicon epitaxial growth device using gas, 3 is a substrate heater, 4 is a high-speed electron gun for reflected high-speed electron beams, 5 is a fluorescent screen for observing reflected electron beam diffraction patterns, 6 is a gas cell, 7 is a gas cylinder, 8 is a subchamber 9 is a sub-chamber Chamber exhaust pump, 1o is an n-type silicon (IOO) substrate, 11 is a silicon selective epitaxial growth layer, 12 is an oxide film, 13 is an oxide film side wall, 14 is a facet surface, 15
is the silicon (100) surface of the growth layer.

Claims (1)

【特許請求の範囲】[Claims]  ガスソースを用いてシリコンを選択エピタキシャル成
長させる方法において、成長温度を低くするか、あるい
はガス流量を増加させることによって選択成長時に側壁
付近の成長部の形状を制御する成長法。
A growth method in which silicon is selectively epitaxially grown using a gas source, in which the shape of the grown region near the sidewalls is controlled during selective growth by lowering the growth temperature or increasing the gas flow rate.
JP2188538A 1990-07-17 1990-07-17 Selective epitaxial growth of silicon Expired - Fee Related JP2638261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2188538A JP2638261B2 (en) 1990-07-17 1990-07-17 Selective epitaxial growth of silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2188538A JP2638261B2 (en) 1990-07-17 1990-07-17 Selective epitaxial growth of silicon

Publications (2)

Publication Number Publication Date
JPH0474415A true JPH0474415A (en) 1992-03-09
JP2638261B2 JP2638261B2 (en) 1997-08-06

Family

ID=16225460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2188538A Expired - Fee Related JP2638261B2 (en) 1990-07-17 1990-07-17 Selective epitaxial growth of silicon

Country Status (1)

Country Link
JP (1) JP2638261B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861059A (en) * 1995-08-23 1999-01-19 Nec Corporation Method for selective growth of silicon epitaxial film
US6074478A (en) * 1997-01-24 2000-06-13 Nec Corporation Method of facet free selective silicon epitaxy
US6828182B2 (en) 2002-02-22 2004-12-07 Mitsubishi Denki Kabushiki Kaisha Epitaxial thin film forming method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106922A (en) * 1988-10-17 1990-04-19 Sanyo Electric Co Ltd Selective epitaxial growth method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106922A (en) * 1988-10-17 1990-04-19 Sanyo Electric Co Ltd Selective epitaxial growth method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861059A (en) * 1995-08-23 1999-01-19 Nec Corporation Method for selective growth of silicon epitaxial film
US6074478A (en) * 1997-01-24 2000-06-13 Nec Corporation Method of facet free selective silicon epitaxy
US6828182B2 (en) 2002-02-22 2004-12-07 Mitsubishi Denki Kabushiki Kaisha Epitaxial thin film forming method

Also Published As

Publication number Publication date
JP2638261B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
US4395438A (en) Low pressure chemical vapor deposition of silicon nitride films
US7097920B2 (en) Group III nitride based semiconductor substrate and process for manufacture thereof
US6358316B1 (en) Method for producing semiconductor device, method for producing semiconductor laser device, and method for producing quantum wire structure
US5945690A (en) Compound semiconductor device
US5399522A (en) Method of growing compound semiconductor
US5108947A (en) Integration of gaas on si substrates
US6255004B1 (en) III-V nitride semiconductor devices and process for the production thereof
US5578521A (en) Semiconductor device with vaporphase grown epitaxial
JPH0474415A (en) Selective epitaxial growth method of silicon
JP4665286B2 (en) Semiconductor substrate and manufacturing method thereof
US5637145A (en) Method of vapor phase epitaxial growth
JPS63291897A (en) Method for growing single crystal membrane
JPH0897193A (en) Manufacture of semiconductor element
JP2000012467A (en) Method for forming gaas layer
US20030162365A1 (en) Epitaxial thin film forming method
JP3380343B2 (en) Reduced pressure type vapor phase growth apparatus and vapor phase growth method using the same
JP2735190B2 (en) Molecular beam epitaxy growth method and growth apparatus
JP2641540B2 (en) Method for forming epitaxial crystal layer and method for manufacturing stripe type semiconductor laser
JPH06260415A (en) Epitaxial wafer and manufacture thereof
JPH0831410B2 (en) Method for manufacturing semiconductor device
JPH04306821A (en) Compound semiconductor crystal growth method
JPH07273025A (en) Semiconductor substrate
JP2535560B2 (en) Molecular beam crystal growth method
JP2703340B2 (en) Liquid phase epitaxial growth method
JPH05198579A (en) Semiconductor water and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees