JP2535560B2 - Molecular beam crystal growth method - Google Patents

Molecular beam crystal growth method

Info

Publication number
JP2535560B2
JP2535560B2 JP62231807A JP23180787A JP2535560B2 JP 2535560 B2 JP2535560 B2 JP 2535560B2 JP 62231807 A JP62231807 A JP 62231807A JP 23180787 A JP23180787 A JP 23180787A JP 2535560 B2 JP2535560 B2 JP 2535560B2
Authority
JP
Japan
Prior art keywords
shutter
molecular beam
substrate
group
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62231807A
Other languages
Japanese (ja)
Other versions
JPS6473715A (en
Inventor
淳二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62231807A priority Critical patent/JP2535560B2/en
Publication of JPS6473715A publication Critical patent/JPS6473715A/en
Application granted granted Critical
Publication of JP2535560B2 publication Critical patent/JP2535560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概要〕 分子線結晶成長方法に係わり,特に第III族元素と第
V族元素の化合物半導体結晶のエピタキシャル成長方法
に関し, 蒸気圧の異なる構成元素を交互にシャッターの開閉に
より加熱基板上に照射するに際して,シャッターを閉じ
た後に基板表面あるいはその近傍に残留している蒸気圧
の高い構成元素を除去することを目的とし, まず、第III族元素の線源のシャッターを開き,基板
上に所定時間照射した後該シャッターを閉じ,次に第V
族元素の線源のシャッターを開き,基板上に所定時間照
射した後該シャッターを閉じ,以下上記工程を繰り返す
に際し,第V族元素の線源のシャッターが閉じ,第III
族元素の線源のシャッターが開くまでの間に,水素ガス
を基板表面に吹きつけ同時に排気する構成とする。
DETAILED DESCRIPTION OF THE INVENTION [Outline] The present invention relates to a molecular beam crystal growth method, and more particularly to an epitaxial growth method of a compound semiconductor crystal of a Group III element and a Group V element, in which constituent elements having different vapor pressures are alternately opened and closed. When irradiating on a heated substrate, the purpose is to remove the constituent elements with high vapor pressure remaining on or near the surface of the substrate after closing the shutter. First, open the shutter of the group III element source. , After the substrate is irradiated for a predetermined time, the shutter is closed, and then the V-th
The shutter of the source of the group element is opened, the shutter is closed after irradiating the substrate for a predetermined time, and the shutter of the source of the group V element is closed when the above steps are repeated.
Hydrogen gas is blown onto the substrate surface and exhausted at the same time until the shutter of the source of group elements is opened.

〔産業上の利用分野〕[Industrial applications]

本発明は化合物半導体の超薄膜結晶を制御性良く成長
させる分子線結晶成長方法に関する。
The present invention relates to a molecular beam crystal growth method for growing an ultrathin crystal of a compound semiconductor with good controllability.

〔従来の技術〕[Conventional technology]

近年,化合物半導体デバイスは超薄膜のエピタキシャ
ル単結晶層を使って作製される傾向にある。
In recent years, compound semiconductor devices have tended to be manufactured using ultra-thin epitaxial single crystal layers.

数Aから数十Aという非常に薄い単結晶層を多層成長
する技術としては,単原子層エピタキシャル成長法(At
omic Layer Epitaxy;ALE)や,Migration Enhanced Epit
axy(MEE)があげられる。これらの成長技術の特徴は,
基板面内の横方向で原子層オーダーの平坦な面が得ら
れ,原子層オーダーでの膜圧制御が容易なことである。
As a technique for growing a very thin single crystal layer of several A to several tens A in multiple layers, a monoatomic layer epitaxial growth method (At
omic Layer Epitaxy; ALE) and Migration Enhanced Epit
axy (MEE) is given. The characteristics of these growth technologies are:
A flat surface on the order of atomic layers is obtained in the lateral direction of the substrate surface, and the film pressure control on the order of atomic layers is easy.

MEEは従来の分子線結晶成長(MBE)装置を使っても行
われていた。GaAsのMEEを例にとって説明すると,Gaビー
ムとAsビームをそれぞれのシャッター開閉により交互
に,適当に加熱した基板上に照射する方法で行われてき
た。即ち、Asビームを断った状態でGaビームを基板上に
照射し,続いてGaビームを断った状態でAsビームを基板
上に照射することにより,基板上でGa原子或いはAs原子
のMigrationを増大させ,基板面内の横方向で原子層オ
ーダーの平坦な面を得ようとしていた。
MEE has also been performed using conventional molecular beam crystal growth (MBE) equipment. Taking the MEE of GaAs as an example, a method has been used in which Ga beams and As beams are irradiated alternately onto a properly heated substrate by opening and closing the respective shutters. That is, by irradiating the Ga beam on the substrate with the As beam cut off, and then irradiating the As beam on the substrate with the Ga beam cut off, the migration of Ga atoms or As atoms on the substrate is increased. Then, we tried to obtain a flat surface of the atomic layer order in the lateral direction within the substrate surface.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし,この方法では次のうな問題が残されていた。 However, this method had the following problems.

GaAsのようなIII族−V族の化合物半導体の場合,第
V族元素の蒸気圧が高く過剰な供給が必要であり,加熱
された基板表面からの第V族元素の再蒸発,あるいは基
板外の加熱部分例えば基板加熱ホルダー部分からの第V
族元素の再蒸発があり,As分子線源のシャッターを閉じ
たのみではAs元素の蒸気を基板表面から完全に除去する
ことができなかった。このため,平坦な面を成長させる
ことが困難であった。本発明はこの基板表面あるいは近
傍にある余剰な第V族元素を除去し,平坦な面を持続し
て成長させる方法を提供するものである。
In the case of a group III-V compound semiconductor such as GaAs, the vapor pressure of the group V element is high and excessive supply is required, which causes re-evaporation of the group V element from the heated substrate surface or the outside of the substrate. Heating part of the substrate, for example, the Vth from the substrate heating holder part
There was re-evaporation of group elements, and vapor of As element could not be completely removed from the substrate surface only by closing the shutter of As molecular beam source. Therefore, it was difficult to grow a flat surface. The present invention provides a method of removing excess Group V element on or near the surface of the substrate to continuously grow a flat surface.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題を解決するために,残留している余剰な第V
族元素を強制的に排気することが本発明のポイントであ
る。
In order to solve the above-mentioned problem, the remaining excess V-th
The point of the present invention is to forcibly exhaust the group element.

第1図は本発明の原理を説明するもので,第III族元
素A及び第V族元素Bから成る化合物半導体超薄膜結晶
の成長過程を示す。
FIG. 1 illustrates the principle of the present invention, and shows the growth process of a compound semiconductor ultrathin film crystal composed of a Group III element A and a Group V element B.

第1図(a)のようにAビームシャッター閉,Bシャッ
ター開の状態では,第V族元素Bが過剰に供給されるた
め,化合物半導体基板上には単原子層を形成するに必要
以上のB原子が残ることになる。この過剰なB原子を除
去するために,次の過程として第1図(b)のようにB
ビームシャッターを閉じた後,Aビームシャッターを開け
てAビームを供給する前に,水素(H2)ガスを粘性流に
近い量基板表面に吹きつける。この水素ガス流を排気す
ることによって基板表面近傍の余剰B原子も同時に強制
的に排除することができる。
In the state where the A beam shutter is closed and the B shutter is opened as shown in FIG. 1 (a), the group V element B is excessively supplied, so that it is more than necessary to form a monoatomic layer on the compound semiconductor substrate. B atom will remain. As shown in FIG. 1 (b), B is removed as the next process in order to remove the excess B atoms.
After closing the beam shutter, before opening the A beam shutter and supplying the A beam, hydrogen (H 2 ) gas is blown onto the substrate surface in an amount close to a viscous flow. By exhausting this hydrogen gas flow, surplus B atoms near the substrate surface can be forcibly eliminated at the same time.

〔作用〕[Action]

水素ガスと共に強制的にB原子を排除することによ
り,次にA原子を積むべき表面層を平坦にし,A原子単原
子層を形成することができる。
By forcibly excluding B atoms together with hydrogen gas, the surface layer on which A atoms are to be stacked next can be flattened to form an A atom monoatomic layer.

かくして平坦な原子層をつぎつぎに積層して行くこと
ができる。
Thus, flat atomic layers can be stacked one after another.

〔実施例〕〔Example〕

以下,実施例によって本発明を詳細に説明する。第2
図は本発明を実施するMBE装置の例を示す。高純度(99.
999%)の水素(H2)ガスを導入口1から導入し,流量
計2および開閉バルブ3を経て,MBE成長室14に突き出た
水素導入ノズル4へと導く。ノズル4は水素がGaAs基板
6の表面に噴出するように向けられている。GaAsの成長
は以下の手順で行われた。GaAs基板はAsビーム照射下で
自然酸化膜を除去するため,一度600度C以上に加熱し
た後,成長温度400度Cまで下げだ。成長はAs分子線源
8のシャッター1を閉じ,Ga分子線源9のシャッター11
を開けて開始された。Ga分子線を1原子層分照射した
後,シャッター11を閉じ,次いでAs分子線源8のシャッ
ター10を開いてAs分子線を照射した。続いてAs分子線の
シャッター10を閉じて次にH2ガスをノズル4から基板6
に吹きつけた。この時の一時的な成長室内の真空度は10
-4Torr台であった。また,導入したH2ガスはターボ分子
ポンプ13を使って排気した。H2ガスを約10秒吹きつけた
後,開閉バルブ3を閉じた。次にGa分子線のシャッター
11を開け再び原子層分のGa原子を基板6に照射した。次
に再びAs分子線シャッター10を開けてAs原子を供給し,
約2秒で閉じた。この様にGa,As,水素の順で供給をくり
返してGaAsの成長を続けた。
Hereinafter, the present invention will be described in detail with reference to examples. Second
The figure shows an example of an MBE device embodying the invention. High purity (99.
(999%) hydrogen (H 2 ) gas is introduced from the inlet 1, and is led to the hydrogen introduction nozzle 4 protruding into the MBE growth chamber 14 via the flow meter 2 and the opening / closing valve 3. The nozzle 4 is oriented so that hydrogen is ejected onto the surface of the GaAs substrate 6. The growth of GaAs was performed by the following procedure. In order to remove the natural oxide film on the GaAs substrate under As beam irradiation, the growth temperature is lowered to 400 ° C after heating it once to 600 ° C or more. To grow, close the shutter 1 of As molecular beam source 8 and shutter 11 of Ga molecular beam source 9.
Opened and started. After irradiating the Ga molecular beam for one atomic layer, the shutter 11 was closed, and then the shutter 10 of the As molecular beam source 8 was opened to irradiate the As molecular beam. Then, the shutter 10 for As molecular beam is closed, and then H 2 gas is supplied from the nozzle 4 to the substrate 6.
Sprayed on. The vacuum degree in the temporary growth chamber at this time is 10
-4 Torr range. The introduced H 2 gas was exhausted using a turbo molecular pump 13. After blowing H 2 gas for about 10 seconds, the on-off valve 3 was closed. Next, Ga molecular beam shutter
After opening 11, the substrate 6 was irradiated again with Ga atoms for the atomic layer. Next, open the As molecular beam shutter 10 again to supply As atoms,
It closed in about 2 seconds. In this way, the supply of Ga, As, and hydrogen was repeated in this order to continue the growth of GaAs.

単原子層の成長が続くことを確認するために,成長中
に基板表面をRHEED振動により観測した。RHEED振動は基
板表面が平坦で結晶性が良いほど減衰が少なく,表面が
荒れていくると減衰が大きくなるものである。結晶成長
が進み,膜厚が大きくなるにつれて減衰は大きくなる
が、従来のGa分子線とAs分子線のシャッターの切り換え
のみによって成長した場合に比べて,本発明の場合には
RHEED振動の減衰が半分以下に抑えられることがわかっ
た。
In order to confirm that the growth of the monoatomic layer continued, the substrate surface was observed by RHEED oscillation during the growth. The RHEED vibration is less attenuated when the substrate surface is flat and the crystallinity is better, and the attenuation increases as the surface becomes rough. Although the crystal growth progresses and the attenuation increases as the film thickness increases, in the case of the present invention, compared with the case where the conventional growth is performed only by switching the shutter of the Ga molecular beam and the As molecular beam.
It was found that the attenuation of RHEED vibration was suppressed to less than half.

〔発明の効果〕〔The invention's effect〕

本発明により,単原子層毎の成長が従来のMEE技術に
よる場合に比べて2倍以上の膜厚にわたって持続でき
る。また,本発明により超薄膜結晶を制御性よく成長で
きるようになった。
According to the present invention, the growth of each monoatomic layer can be sustained over the film thickness twice or more as compared with the conventional MEE technique. Moreover, the present invention has made it possible to grow an ultrathin film crystal with good controllability.

本発明の方法は第III族元素と第V族元素の化合物半
導体結晶のエピタキシャル成長に適用できるだけでな
く,蒸気圧の高い第VI族元素を含む第VI族元素と第II族
元素の化合物半導体結晶のエピタキシャル成長にも適用
することができる。
INDUSTRIAL APPLICABILITY The method of the present invention can be applied not only to the epitaxial growth of compound semiconductor crystals of group III elements and group V elements, but also to the compound semiconductor crystals of group VI elements and group II elements containing group VI elements with high vapor pressure. It can also be applied to epitaxial growth.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の原理説明図, 第2図は本発明を実施する装置の例を示す。 図において, 1は水素ガス導入口, 2は流量計, 3は開閉バルブ, 4は水素導入ノズル, 5は液体窒素シュラウド, 6はGaAs基板, 7は加熱ヒーター, 8はAs分子線源, 9はGa分子線源, 10はAs分子線のシャッター, 11はGa分子線のシャッター, 12は油回転ポンプ, 13はターボ分子ポンプ, 14はMBE成長室 である。 FIG. 1 is an explanatory view of the principle of the present invention, and FIG. 2 shows an example of an apparatus for carrying out the present invention. In the figure, 1 is a hydrogen gas inlet, 2 is a flow meter, 3 is an opening / closing valve, 4 is a hydrogen introducing nozzle, 5 is a liquid nitrogen shroud, 6 is a GaAs substrate, 7 is a heater, 8 is an As molecular beam source, 9 Is a Ga molecular beam source, 10 is an As molecular beam shutter, 11 is a Ga molecular beam shutter, 12 is an oil rotary pump, 13 is a turbo molecular pump, and 14 is an MBE growth chamber.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】分子線結晶成長法による第III族元素と第
V族元素の化合物半導体結晶のエピタキシャル成長過程
において,まず第III族元素の線源のシャッターを開
き,基板上に所定時間照射した後該シャッターを閉じ,
次に第V族元素の線源のシャッターを開き,基板上に所
定時間照射した後該シャッターを閉じ,以下上記工程を
繰り返すに際し,第V族元素の線源のシャッターが閉
じ,第III族元素の線源のシャッターが開くまでの間
に,水素ガスを基板表面に吹きつけ同時に排気すること
を特徴とする分子線結晶成長方法。
1. In the epitaxial growth process of a compound semiconductor crystal of a group III element and a group V element by a molecular beam crystal growth method, first, a shutter of a source of the group III element is opened and the substrate is irradiated for a predetermined time. Close the shutter,
Next, the shutter of the source of the group V element is opened, the shutter is closed after irradiating the substrate for a predetermined time, and when the above steps are repeated, the shutter of the source of the group V element is closed and the group III element is closed. The molecular beam crystal growth method characterized in that hydrogen gas is blown onto the substrate surface and exhausted at the same time until the shutter of the radiation source is opened.
JP62231807A 1987-09-16 1987-09-16 Molecular beam crystal growth method Expired - Fee Related JP2535560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62231807A JP2535560B2 (en) 1987-09-16 1987-09-16 Molecular beam crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62231807A JP2535560B2 (en) 1987-09-16 1987-09-16 Molecular beam crystal growth method

Publications (2)

Publication Number Publication Date
JPS6473715A JPS6473715A (en) 1989-03-20
JP2535560B2 true JP2535560B2 (en) 1996-09-18

Family

ID=16929324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62231807A Expired - Fee Related JP2535560B2 (en) 1987-09-16 1987-09-16 Molecular beam crystal growth method

Country Status (1)

Country Link
JP (1) JP2535560B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100472715C (en) * 2003-07-15 2009-03-25 日矿金属株式会社 Epitaxial growth process

Also Published As

Publication number Publication date
JPS6473715A (en) 1989-03-20

Similar Documents

Publication Publication Date Title
JPH07118450B2 (en) Method for growing a compound semiconductor layer on a single-component semiconductor substrate and such semiconductor structure
JPH05291140A (en) Growth method of compound semiconductor thin film
JP3895410B2 (en) Device comprising group III-V nitride crystal film and method for manufacturing the same
JP2535560B2 (en) Molecular beam crystal growth method
JP2607239B2 (en) Molecular beam epitaxy equipment
JPS63237517A (en) Selective formation of iii-v compound film
JP3779831B2 (en) Method of crystal growth of nitride III-V compound semiconductor and laminated structure of semiconductor obtained by the method
JPH08264455A (en) Semiconductor device and manufacture thereof
JP2704931B2 (en) Method for forming selective growth mask and method for removing same
JP2577542B2 (en) Semiconductor crystal growth equipment
JP3577880B2 (en) Method for manufacturing group 3-5 compound semiconductor
JPH05238880A (en) Method for epitaxial growth
JP3962101B2 (en) Method for heteroepitaxial growth of nitride semiconductor
JPH01214017A (en) Method and apparatus for molecular beam epitaxial growth
JPH0243720A (en) Molecular beam epitaxial growth method
JPS6134926A (en) Growing device of semiconductor single crystal
JP3574494B2 (en) Nitride compound semiconductor crystal growth method and growth apparatus
JPS6134922A (en) Manufacture of super lattice semiconductor device
JP2729866B2 (en) Compound semiconductor epitaxial growth method
JP2641539B2 (en) Method for manufacturing semiconductor device
JP2858058B2 (en) Crystal growth method
JP3353876B2 (en) Method and apparatus for vapor-phase growth of compound semiconductor thin film
JPH0194663A (en) Manufacture of mis type semiconductor using gallium arsenide
JPS62202894A (en) Vapor growth method for iii-v compound semiconductor
JPH0329314A (en) Formation of pattern of compound semiconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees