JPH0473304B2 - - Google Patents

Info

Publication number
JPH0473304B2
JPH0473304B2 JP58185403A JP18540383A JPH0473304B2 JP H0473304 B2 JPH0473304 B2 JP H0473304B2 JP 58185403 A JP58185403 A JP 58185403A JP 18540383 A JP18540383 A JP 18540383A JP H0473304 B2 JPH0473304 B2 JP H0473304B2
Authority
JP
Japan
Prior art keywords
pressure
sensitive resistors
diaphragm
sensitive
resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58185403A
Other languages
Japanese (ja)
Other versions
JPS6077470A (en
Inventor
Masaki Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP18540383A priority Critical patent/JPS6077470A/en
Publication of JPS6077470A publication Critical patent/JPS6077470A/en
Publication of JPH0473304B2 publication Critical patent/JPH0473304B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Description

【発明の詳細な説明】 本発明はピエゾ抵抗効果を利用したダイアフラ
ム型半導体圧力センサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a diaphragm type semiconductor pressure sensor that utilizes the piezoresistive effect.

従来この種の圧力センサには第1図a,bの平
面図と側面図に示す構造のものがある。n型シリ
コン基板1の中央部が機械的研摩または化学的エ
ツチング等により薄膜化されたダイアフラム2が
形成され、このダイアフラム2上に例えば硼素の
選択拡散あるいはイオン注入によつて4個の感圧
抵抗3,4,5,6が形成されている。
Conventionally, this type of pressure sensor has a structure shown in the plan view and side view of FIGS. 1a and 1b. A diaphragm 2 is formed in the center of an n-type silicon substrate 1 by mechanical polishing or chemical etching, and four pressure-sensitive resistors are formed on this diaphragm 2 by, for example, selective diffusion of boron or ion implantation. 3, 4, 5, and 6 are formed.

感圧抵抗3,4,5,6を第2図に示す様にア
ルミ配線等によりブリツジ接続し定電圧源7また
は定電流源8で駆動すれば、出力端子9,10間
に印加圧力に比例した電圧出力Voが得られる。
第1図に示した感圧抵抗配置は(100)面n型シ
リコン基板を用いた場合の典型的な例で、ダイア
フラム2に裏面から圧力を印加した場合、感圧抵
抗3,6の抵抗値は減少し、感圧抵抗4,5の抵
抗値は増大する。従つてブリツジ回路の出力端子
9の電位は上昇し、出力端子10の電位は下降し
てVoなる出力電圧が発生する。
If the pressure-sensitive resistors 3, 4, 5, and 6 are bridge-connected using aluminum wiring or the like as shown in Fig. 2 and driven by a constant voltage source 7 or constant current source 8, a voltage proportional to the applied pressure between the output terminals 9 and 10 will be generated. A voltage output Vo can be obtained.
The pressure-sensitive resistor arrangement shown in Fig. 1 is a typical example using a (100)-plane n-type silicon substrate, and when pressure is applied to the diaphragm 2 from the back side, the resistance value of the pressure-sensitive resistors 3 and decreases, and the resistance values of the pressure sensitive resistors 4 and 5 increase. Therefore, the potential at the output terminal 9 of the bridge circuit increases, and the potential at the output terminal 10 decreases to generate an output voltage Vo.

然しながらこの様な構成の圧力センサでは製造
時の目合せ誤差によつて生じるダイアフラムと感
圧抵抗の位置ずれや、膜厚の不均一性により圧力
−出力電圧特性の直線性が劣化する。例えばダイ
アフラム2が第1図の破線で示す設計中心から一
点鎖線で示す位置にずれた場合、各感圧抵抗の受
ける応力が非対称となる。その結果各感圧抵抗の
抵抗変化率が不均衡となり、出力特性の直線性が
劣化する。特に感圧抵抗3,6は中心からの距離
が大きく異なつて来て、しかもダイアフラム周辺
部では応力変化が急激であるので印加圧力に対す
る抵抗変化率は著しく不均衡となり、出力の直線
性が大きく損われる。一方、ダイアフラム2が設
計中心にあつても膜厚の不均一性があると各感圧
抵抗の感度が不均一となる。特に圧力感度は膜厚
の2乗に反比例し、微少な膜厚差でも感度変化は
大きい。前記位置ずれはマスクの機械的位置合せ
精度で制限され数μm程度は避けられない。また
膜厚の不均一性はエツチング速度のばらつきによ
り生じ、これを無くすことは製造技術上非常に困
難である。
However, in a pressure sensor having such a configuration, the linearity of the pressure-output voltage characteristic deteriorates due to misalignment between the diaphragm and pressure-sensitive resistor caused by alignment errors during manufacturing, and non-uniformity in film thickness. For example, if the diaphragm 2 is shifted from the design center indicated by the broken line in FIG. 1 to the position indicated by the dashed line, the stress applied to each pressure-sensitive resistor becomes asymmetrical. As a result, the rate of change in resistance of each pressure-sensitive resistor becomes unbalanced, and the linearity of the output characteristics deteriorates. In particular, the pressure-sensitive resistors 3 and 6 have greatly different distances from the center, and the stress changes rapidly around the diaphragm, so the rate of change in resistance with respect to the applied pressure becomes significantly unbalanced, and the linearity of the output is greatly impaired. be exposed. On the other hand, even if the diaphragm 2 is at the center of the design, if there is non-uniformity in film thickness, the sensitivity of each pressure-sensitive resistor will become non-uniform. In particular, pressure sensitivity is inversely proportional to the square of the film thickness, and even a small difference in film thickness causes a large change in sensitivity. The positional deviation is limited by the mechanical alignment accuracy of the mask, and is unavoidable on the order of several μm. Further, non-uniformity in film thickness is caused by variations in etching rate, and it is extremely difficult to eliminate this in terms of manufacturing technology.

これらの直線性の劣化を改善する為に第3図に
示す様に感圧抵抗3,6に隣接して感圧抵抗3′,
6′を形成し、感圧抵抗3,3′,4,5か感圧抵
抗4,5,6,6′かのいづれかよい方の組合せ
でブリツジを構成するものが提案されている。し
かし、感圧抵抗4,5と感圧抵抗3,3′あるい
は6,6′との間の抵抗変化率の不均衡は改善さ
れていない。
In order to improve these linearity deteriorations, pressure sensitive resistors 3' and 3' are installed adjacent to pressure sensitive resistors 3 and 6 as shown in FIG.
It has been proposed to form a bridge with a combination of pressure-sensitive resistors 3, 3', 4, and 5 or pressure-sensitive resistors 4, 5, 6, and 6'. However, the imbalance in the rate of resistance change between the pressure sensitive resistors 4 and 5 and the pressure sensitive resistors 3 and 3' or 6 and 6' has not been improved.

あるいは他の改善提案として第4図及び第5図
に示すもの(特願昭58−003812号(特開昭59−
127876号))がある。これは(110)面n型シリコ
ン基板を用いた例で、感圧抵抗11と11′およ
び感圧抵抗14と14′は縦方向の感圧抵抗であ
る。感圧抵抗12と12′および感圧抵抗13と
13′は横方向の感圧抵抗である。これらの感圧
抵抗を第5図に示されている様なブリツジ回路に
接続すると、例えば位置ずれや膜厚の不均一によ
り感圧抵抗11及び11′が感圧抵抗14及び1
4′に比べて感度が低下しても感圧抵抗11と1
4及び感圧抵抗11′と14′を直列接続してブリ
ツジ回路の一辺を構成しているので、不均一が平
均化され直線性が改善される。しかしながら感圧
抵抗をイオン注入等で形成する場合、各感圧抵抗
の距離が離れていると注入量の不均一により抵抗
値がばらつき完全に平均化するのは困難である。
Or, as another improvement proposal, the one shown in Fig. 4 and Fig.
No. 127876)). This is an example using a (110) plane n-type silicon substrate, and pressure sensitive resistors 11 and 11' and pressure sensitive resistors 14 and 14' are vertical pressure sensitive resistors. Pressure sensitive resistors 12 and 12' and pressure sensitive resistors 13 and 13' are lateral pressure sensitive resistors. When these pressure-sensitive resistors are connected to a bridge circuit as shown in FIG.
Even if the sensitivity decreases compared to 4', pressure sensitive resistors 11 and 1
4 and the pressure sensitive resistors 11' and 14' are connected in series to constitute one side of the bridge circuit, so that non-uniformity is averaged out and linearity is improved. However, when pressure-sensitive resistors are formed by ion implantation or the like, if the pressure-sensitive resistors are far apart, the resistance values vary due to non-uniform implantation amounts, and it is difficult to completely average them out.

本発明の目的は、上記欠点を解消し、感圧抵抗
とダイアフラムとの位置ずれや膜厚の不均一性等
に帰因する圧力感度の非直線性を除去し得るダイ
アフラム型半導体圧力センサを提供することにあ
る。
An object of the present invention is to provide a diaphragm-type semiconductor pressure sensor that can eliminate the above-mentioned drawbacks and eliminate non-linearity in pressure sensitivity caused by misalignment between a pressure-sensitive resistor and a diaphragm, non-uniformity of film thickness, etc. It's about doing.

本発明のダイアフラム型半導体圧力センサは、
ダイアフラム上の第1の端部に4個以上の感圧抵
抗を隣接して配置した第1の感圧抵抗群と、前記
第1の端部と前記ダイアフラムの中心に関してほ
ぼ直角を成す前記ダイアフラム上の第2の端部に
4個以上の感圧抵抗を隣接して配置した第2の感
圧抵抗群と、前記第1の感圧抵抗群から2個以上
選んで直列接続した第1の枝路、前記第2の感圧
抵抗群から2個以上選んで直列接続した第2の枝
路、前記第1の感圧抵抗群から別の2個以上を選
んで直列接続した第3の枝路、前記第2の感圧抵
抗群から別の2個以上を選んで直列接続した第4
の枝路を順次接続して構成したブリツジ回路とを
有することを特徴とする。
The diaphragm type semiconductor pressure sensor of the present invention includes:
a first pressure-sensitive resistor group including four or more pressure-sensitive resistors arranged adjacent to each other at a first end on the diaphragm; and a first pressure-sensitive resistor group on the diaphragm forming a substantially right angle with respect to the first end and the center of the diaphragm. a second pressure-sensitive resistor group in which four or more pressure-sensitive resistors are arranged adjacent to each other at a second end thereof; and a first branch in which two or more pressure-sensitive resistors selected from the first pressure-sensitive resistor group are connected in series. a second branch line in which two or more pressure sensitive resistors are selected from the second pressure sensitive resistor group and connected in series; a third branch line in which two or more pressure sensitive resistors are selected from the first pressure sensitive resistor group and connected in series; , a fourth pressure-sensitive resistor selected from the second pressure-sensitive resistor group and connected in series.
It is characterized by having a bridge circuit configured by sequentially connecting branch circuits.

以下、本発明の実施例を示す図面を参照して説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第6図、第7図は本発明を(100)面n形シリ
コン基板21を用いた圧力センサに適用した場合
の一実施例である。感圧抵抗23,23′,24,
24′,25,25′,26,26′をダイアフラ
ム22の端部に拡散またはイオン注入で形成す
る。感圧抵抗23,23′,25,25′,24,
24′,26,26′はいづれも〈110〉軸方向に
配置してある。これらの感圧抵抗を第7図に示す
様にアルミ配線等で接続しブリツジ回路を構成す
る。横方向の感圧抵抗は感圧抵抗23と25′を
直列接続したものと感圧抵抗23と25を直列接
続したものとから形成されている。同様に縦方向
の感圧抵抗は感圧抵抗24と26′を直列接続し
たものと感圧抵抗24′と26を直列接続したも
のとから形成されている。ダイアフラム加工は例
えばアルカリ溶液による異方性エツチングで行
う。
6 and 7 show an embodiment in which the present invention is applied to a pressure sensor using a (100) plane n-type silicon substrate 21. FIG. Pressure sensitive resistors 23, 23', 24,
24', 25, 25', 26, and 26' are formed at the end of the diaphragm 22 by diffusion or ion implantation. Pressure sensitive resistors 23, 23', 25, 25', 24,
24', 26, and 26' are all arranged in the <110> axis direction. These pressure sensitive resistors are connected with aluminum wiring or the like to form a bridge circuit as shown in FIG. The lateral pressure-sensitive resistors are formed by pressure-sensitive resistors 23 and 25' connected in series and pressure-sensitive resistors 23 and 25 connected in series. Similarly, the pressure sensitive resistors in the vertical direction are formed by pressure sensitive resistors 24 and 26' connected in series and pressure sensitive resistors 24' and 26 connected in series. Diaphragm processing is performed, for example, by anisotropic etching using an alkaline solution.

次に本実施例の効果について説明する。ダイア
フラム位置が目合せ誤差により第6図の一点鎖線
で示す様にずれた場合、各感圧抵抗はダイアフラ
ム中心からの距離が異なり、前述の様に抵抗変化
率が不均衡となる。第6図の例では感圧抵抗2
4,24′は対応する他の感圧抵抗26,26′よ
りダイアフラム中心からの距離が大きくなるので
印加圧力に対する抵抗変化率が増大する。しかし
感圧抵抗24と26′及び24′と26とをそれぞ
れ直列接続してブリツジ回路の相対する二辺の抵
抗としているので抵抗変化率の不均衡が解消され
る。感圧抵抗23,23′,25,25′に関して
も同様の効果が得られる。また感圧抵抗23,2
3′,25,25′及び感圧抵抗24,24′,2
6,26′は隣接して配置してあるので、不純物
濃度の場所による不均一が少なく、抵抗値の均一
性が良い。更にタイアフラム厚の場所による不均
一に帰因する抵抗率変化の不均衡も解消され、極
めて直線性の良い半導体圧力センサが得られる。
Next, the effects of this embodiment will be explained. If the diaphragm position deviates as shown by the dashed line in FIG. 6 due to an alignment error, each pressure-sensitive resistor has a different distance from the center of the diaphragm, and the rate of change in resistance becomes unbalanced as described above. In the example of Figure 6, pressure sensitive resistor 2
4 and 24' are located at a greater distance from the center of the diaphragm than the other corresponding pressure sensitive resistors 26 and 26', so that the rate of change in resistance with respect to applied pressure increases. However, since the pressure sensitive resistors 24 and 26' and 24' and 26 are connected in series to serve as resistors on two opposing sides of the bridge circuit, the imbalance in the rate of resistance change is eliminated. Similar effects can be obtained with respect to the pressure sensitive resistors 23, 23', 25, 25'. In addition, pressure sensitive resistors 23, 2
3', 25, 25' and pressure sensitive resistors 24, 24', 2
6 and 26' are arranged adjacent to each other, there is little non-uniformity in impurity concentration depending on location, and the uniformity of the resistance value is good. Furthermore, the imbalance in resistivity change due to non-uniformity of the tire phragm thickness depending on the location is also eliminated, and a semiconductor pressure sensor with extremely good linearity can be obtained.

次に感圧抵抗を3分割した場合の本発明の実施
例について説明する。第8図、第9図はそれぞれ
第2の実施例を示す感圧抵抗の配置図及び接続図
である。例えば感圧抵抗33,35′,33″を直
列接続したものと感圧抵抗35,33′,35″を
直列接続したものをそれぞれブリツジ回路の相対
する二辺とする。同様に感圧抵抗34,36′,
34″と感圧抵抗36,34′,36″をそれぞれ
ブリツジ回路の相対する二辺とする。これらの感
圧抵抗は極めて接近して配置されているので各抵
抗値のばらつきは少く、更に第1の実施例と同じ
く互に対向する位置の感圧抵抗を組合せているの
で、目合せずれの影響や膜厚の不均一による直線
性の劣化を解消できる。なお、31はn型シリコ
ン基板、32はダイヤフラムである。
Next, an embodiment of the present invention in which the pressure sensitive resistor is divided into three parts will be described. FIG. 8 and FIG. 9 are a layout diagram and a connection diagram of a pressure sensitive resistor, respectively, showing the second embodiment. For example, pressure-sensitive resistors 33, 35', and 33'' connected in series and pressure-sensitive resistors 35, 33', and 35'' connected in series are used as two opposing sides of the bridge circuit, respectively. Similarly, pressure sensitive resistors 34, 36',
34'' and pressure sensitive resistors 36, 34', and 36'' are two opposing sides of the bridge circuit, respectively. Since these pressure-sensitive resistors are arranged extremely close to each other, there is little variation in each resistance value.Furthermore, as in the first embodiment, pressure-sensitive resistors at opposing positions are combined, so misalignment can be avoided. It is possible to eliminate deterioration of linearity due to influence or non-uniformity of film thickness. Note that 31 is an n-type silicon substrate, and 32 is a diaphragm.

以上、(100)面n型シリコン基板を用いた本発
明の半導体圧力センサの2つの実施例を挙げて説
明した。しかしながらシリコン基板の導電型及び
面方向また感圧抵抗の導電型、軸方向、配置を変
更してもよい。更にダイアフラムの形状に関して
も円形や正方形に限定しなくてもよく、長方形や
楕円形であつても良い。ブリツジ回路の構成に関
しても各辺の抵抗を2分割及び3分割して直列接
続する構成で説明したが、4分割あるいはそれ以
上に分割して直列接続することも可能である。
Two embodiments of the semiconductor pressure sensor of the present invention using a (100) plane n-type silicon substrate have been described above. However, the conductivity type and planar direction of the silicon substrate and the conductivity type, axial direction, and arrangement of the pressure-sensitive resistor may be changed. Furthermore, the shape of the diaphragm does not have to be limited to circular or square, but may be rectangular or oval. Regarding the configuration of the bridge circuit, the resistors on each side are divided into two and three parts and connected in series, but it is also possible to divide the resistors into four or more parts and connect them in series.

上記説明から明らかな様に本発明によればブリ
ツジ各辺の抵抗値及び抵抗変化率が均一で非直線
誤差の少ない半導体圧力センサが得られる。
As is clear from the above description, according to the present invention, a semiconductor pressure sensor can be obtained in which the resistance value and resistance change rate on each side of the bridge are uniform and non-linear errors are small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは従来の半導体圧力センサを例示
する平面図、側面図、第2図は従来例を示す回路
図、第3図は他の従来例を示す平面図、第4図、
第5図はそれぞれさらに他の従来例を示す平面
図、回路図、第6図、第7図はそれぞれ本発明の
第1の実施例を示す平面図、回路図、第8図、第
9図はそれぞれ本発明の第2の実施例を示す平面
図、回路図である。 1,21,31……n型シリコン基板、2,2
7,37……ダイアフラム、3,4,5,6,
3′,6′,11,11′,12,12′,13,1
3′,14,14′,33,33′,33″,34,
34′,34″,35,35′,35″,36,3
6′,36″,23,23′,24,24′,25,
25′,26,26′……感圧抵抗、7……定電圧
源、8……定電流源、9,10……出力端子。
1A and 1B are a plan view and a side view illustrating a conventional semiconductor pressure sensor, FIG. 2 is a circuit diagram illustrating a conventional example, FIG. 3 is a plan view illustrating another conventional example, and FIG.
5 is a plan view and a circuit diagram showing still another conventional example, FIGS. 6 and 7 are a plan view and a circuit diagram showing a first embodiment of the present invention, and FIGS. 8 and 9, respectively. are a plan view and a circuit diagram respectively showing a second embodiment of the present invention. 1, 21, 31... n-type silicon substrate, 2, 2
7, 37...Diaphragm, 3, 4, 5, 6,
3', 6', 11, 11', 12, 12', 13, 1
3', 14, 14', 33, 33', 33'', 34,
34', 34'', 35, 35', 35'', 36, 3
6', 36'', 23, 23', 24, 24', 25,
25', 26, 26'...pressure sensitive resistor, 7...constant voltage source, 8...constant current source, 9,10...output terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 ダイアフラム上の第1の端部に4個以上の感
圧抵抗を隣接して配置した第1の感圧抵抗群と、
前記第1の端部と前記ダイアフラムの中心に関し
てほぼ直角を成す前記ダイアフラム上の第2の端
部に4個以上の感圧抵抗を隣接して配置した第2
の感圧抵抗群と、前記第1の感圧抵抗群から2個
以上選んで直列接続した第1の枝路、前記第2の
感圧抵抗群から2個以上選んで直列接続した第2
の枝路、前記第1の感圧抵抗群から別の2個以上
を選んで直列接続した第3の枝路、前記第2の感
圧抵抗群から別の2個以上を選んで直列接続した
第4の枝路を順次接続して構成したブリツジ回路
とを有することを特徴とするダイアフラム型半導
体圧力センサ。
1. A first pressure-sensitive resistor group in which four or more pressure-sensitive resistors are arranged adjacent to each other at a first end on a diaphragm;
a second end of the diaphragm that is substantially perpendicular to the first end and the center of the diaphragm;
a pressure-sensitive resistor group, a first branch line in which two or more pressure-sensitive resistors are selected from the first pressure-sensitive resistor group and connected in series, and a second branch line in which two or more pressure-sensitive resistors are selected from the second pressure-sensitive resistor group and connected in series.
A third branch line in which two or more pressure-sensitive resistors are selected from the first pressure-sensitive resistor group and connected in series; a third branch line is in which two or more pressure-sensitive resistors are selected from the second pressure-sensitive resistor group and connected in series. A diaphragm type semiconductor pressure sensor comprising a bridge circuit configured by sequentially connecting fourth branch circuits.
JP18540383A 1983-10-04 1983-10-04 Diaphragm type semiconductor pressure sensor Granted JPS6077470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18540383A JPS6077470A (en) 1983-10-04 1983-10-04 Diaphragm type semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18540383A JPS6077470A (en) 1983-10-04 1983-10-04 Diaphragm type semiconductor pressure sensor

Publications (2)

Publication Number Publication Date
JPS6077470A JPS6077470A (en) 1985-05-02
JPH0473304B2 true JPH0473304B2 (en) 1992-11-20

Family

ID=16170178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18540383A Granted JPS6077470A (en) 1983-10-04 1983-10-04 Diaphragm type semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPS6077470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018169177A (en) * 2017-03-29 2018-11-01 パナソニックIpマネジメント株式会社 Pressure sensor element and pressure sensor using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6142021A (en) * 1998-08-21 2000-11-07 Motorola, Inc. Selectable pressure sensor
JP3776666B2 (en) 2000-02-25 2006-05-17 沖電気工業株式会社 Semiconductor device
JP4843877B2 (en) * 2001-01-31 2011-12-21 株式会社デンソー Semiconductor dynamic quantity sensor
JP5081071B2 (en) * 2008-06-12 2012-11-21 アルプス電気株式会社 Semiconductor pressure sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162492A (en) * 1978-06-13 1979-12-24 Mitsubishi Electric Corp Semiconductor pressure transducer
JPS5524273A (en) * 1978-08-11 1980-02-21 Mitsubishi Heavy Ind Ltd Check valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162492A (en) * 1978-06-13 1979-12-24 Mitsubishi Electric Corp Semiconductor pressure transducer
JPS5524273A (en) * 1978-08-11 1980-02-21 Mitsubishi Heavy Ind Ltd Check valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018169177A (en) * 2017-03-29 2018-11-01 パナソニックIpマネジメント株式会社 Pressure sensor element and pressure sensor using the same

Also Published As

Publication number Publication date
JPS6077470A (en) 1985-05-02

Similar Documents

Publication Publication Date Title
US4462018A (en) Semiconductor strain gauge with integral compensation resistors
US4333349A (en) Binary balancing apparatus for semiconductor transducer structures
US6658948B2 (en) Semiconductor dynamic quantity sensor
JP2940293B2 (en) Manufacturing method of semiconductor acceleration sensor
US4275406A (en) Monolithic semiconductor pressure sensor, and method of its manufacture
JP3282090B2 (en) Piezoresistive sensor and method
JPH0473304B2 (en)
US20110001199A1 (en) Pressure sensor and pressure sensor manufacturing method
JP2004257864A (en) Pressure detector
JP2895262B2 (en) Composite sensor
EP0736756A1 (en) Balanced pressure sensor by arrangement of piezoresistive elements in a diaphragm
JP3500924B2 (en) Manufacturing method of semiconductor sensor
JP2715738B2 (en) Semiconductor stress detector
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPH08316495A (en) Semiconductor strain gauge and semiconductor pressure sensor
JPH0769239B2 (en) Semiconductor pressure sensor
JPH0259635B2 (en)
JP2737479B2 (en) Semiconductor stress detector
JPS6036115B2 (en) Hall element
JP3508962B2 (en) Semiconductor sensor with built-in amplifier circuit
JP3087334B2 (en) Semiconductor device
JPS59127876A (en) Diaphragm type semiconductor pressure sensor
JP2980440B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPS6154270B2 (en)
JPH06265427A (en) Semiconductor pressure converter