JPH0472761B2 - - Google Patents

Info

Publication number
JPH0472761B2
JPH0472761B2 JP13514286A JP13514286A JPH0472761B2 JP H0472761 B2 JPH0472761 B2 JP H0472761B2 JP 13514286 A JP13514286 A JP 13514286A JP 13514286 A JP13514286 A JP 13514286A JP H0472761 B2 JPH0472761 B2 JP H0472761B2
Authority
JP
Japan
Prior art keywords
ozone
oxygen
reaction tank
ozone reaction
ozone generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13514286A
Other languages
Japanese (ja)
Other versions
JPS62292604A (en
Inventor
Takanori Nanba
Shinji Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13514286A priority Critical patent/JPS62292604A/en
Publication of JPS62292604A publication Critical patent/JPS62292604A/en
Publication of JPH0472761B2 publication Critical patent/JPH0472761B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/00086Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
    • G11B20/00855Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving a step of exchanging information with a remote server

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は酸素リサイクルオゾン発生装置、と
くにその回収ガス中へ被処理物と共存する揮発性
有機物および窒素が混入することを防止して、長
時間にわたつて安定で効率よくオゾンを製造する
ことを可能にするものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an oxygen recycling ozone generator, in particular, a long-term oxygen recycling ozone generator that prevents volatile organic matter and nitrogen coexisting with the treated material from being mixed into the recovered gas. This makes it possible to produce ozone stably and efficiently over time.

〔従来の技術〕[Conventional technology]

第2図は例えば実開昭和55−133286号公報に示
された従来の酸素リサイクルオゾン発生装置を示
す構成図であり、図中1は原料ガス溜め、2はオ
ゾン発生器、3はオゾン反応槽、4はブロア、5
は冷却除湿器、6は吸着式ガス乾燥機、8は脱気
塔、9は散水ノズル、10は排気ポンプ、11は
水位検出器、12は水位検出器によりその開度も
しくは開閉状態を制御されるコントロールバル
ブ、13は給水ポンプである。
Fig. 2 is a configuration diagram showing a conventional oxygen recycling ozone generator disclosed in, for example, Japanese Utility Model Publication No. 55-133286, in which 1 is a raw material gas reservoir, 2 is an ozone generator, and 3 is an ozone reaction tank. , 4 is the blower, 5
1 is a cooling dehumidifier, 6 is an adsorption gas dryer, 8 is a deaeration tower, 9 is a water nozzle, 10 is an exhaust pump, 11 is a water level detector, and 12 is a water level detector whose opening degree or opening/closing state is controlled. 13 is a water supply pump.

次にこの従来装置の動作を説明する。原料ガス
溜め1から出た原料酸素はオゾン発生器2でオゾ
ン化酸素(そのオゾン濃度は通常数%)になり、
オゾン反応槽3底部より微細気泡として被処理水
中に散気される。これにより上記オゾン化酸素中
のオゾンは水中に溶解して消費される。この際に
酸素も一部は水中に溶解して消費されるが残りは
水中より排出される。この排出された酸素はブロ
ア4で吸引加圧された後、図示しない冷凍機より
低温ブラインが送られている冷却除湿器5で5℃
位に冷却され、ガス中に含まれていた水分は凝縮
され、ドレインとして除かれる。冷却除湿器5を
出たガスは吸着式ガス乾燥機6で露点が−40℃以
下に乾燥され、再び原料酸素として原料ガス凝め
1に送られるもので、このような循環系は酸素リ
サイクル系と呼ばれている。なお、オゾンに変換
された酸素および水に溶解して系外に流出した酸
素に相当する量の酸素は補給酸素として補給され
る。
Next, the operation of this conventional device will be explained. The raw material oxygen discharged from the raw material gas reservoir 1 is converted into ozonized oxygen (the ozone concentration is usually several percent) in the ozone generator 2.
Aeration is diffused into the water to be treated as fine bubbles from the bottom of the ozone reaction tank 3. As a result, the ozone in the ozonized oxygen is dissolved in water and consumed. At this time, some of the oxygen is dissolved in the water and consumed, but the rest is discharged from the water. This discharged oxygen is suctioned and pressurized by a blower 4, and then sent to a cooling dehumidifier 5 at a temperature of 5°C to which low-temperature brine is sent from a refrigerator (not shown).
The water contained in the gas is condensed and removed as a drain. The gas exiting the cooling dehumidifier 5 is dried to a dew point of -40°C or less in an adsorption type gas dryer 6, and then sent to the raw material gas condenser 1 again as raw material oxygen. Such a circulation system is an oxygen recycling system. It is called. Note that an amount of oxygen equivalent to the oxygen converted to ozone and the oxygen dissolved in water and flowing out of the system is supplied as supplementary oxygen.

一方、オゾン反応槽3へ送られてくる被処理物
即ち原水は、オゾン反応槽3より排出されるガス
中に溶解していた窒素および揮発性有機物が混入
しないように脱気塔8で脱気される。脱気塔8は
排気ポンプ10によつて減圧状態にあり、原水が
コントロールバルブ12を通じて脱気塔8へ吸入
される。この際に、原水は散水ノズル9より散水
されて脱気されるものである。水位検出器11は
給水ポンプ13により脱気塔8からオゾン反応槽
3へ送給される水量と同量の原水がコントロール
バルブ12を通つて吸入されるように、このコン
トロールバルブ12の開度を制御するために設置
されており脱気塔8の水位を一定に保つ。
On the other hand, the material to be treated, that is, raw water, sent to the ozone reaction tank 3 is degassed in a degassing tower 8 to prevent nitrogen and volatile organic substances dissolved in the gas discharged from the ozone reaction tank 3 from being mixed in. be done. The degassing tower 8 is under reduced pressure by the exhaust pump 10, and raw water is sucked into the degassing tower 8 through the control valve 12. At this time, the raw water is sprayed from the water spray nozzle 9 and degassed. The water level detector 11 controls the opening degree of the control valve 12 so that the same amount of raw water as the amount of water sent from the deaeration tower 8 to the ozone reaction tank 3 by the water supply pump 13 is sucked through the control valve 12. It is installed to control the water level of the degassing tower 8 and keep it constant.

上記のように、酸素リサイクル系内の酸素ガス
中の揮発性有機汚物や窒素の混入を防止すること
はオゾンを効率よく製造するために極めて重要で
ある。電気学会論文誌B,98巻2号17頁記載の様
に20容量%の窒素の混入は15%のオゾン発生効率
の低下を、また米国化学会発行
「OzoneChemisrtry and Technology」(1959年
発行)305頁記載のように1容量%の有機物の混
入は全くオゾンを発生させないほど大きな悪影響
をもたらす。従つて、脱気塔8を用いて原水中に
溶存している揮発性有機物や窒素がリサイクルガ
ス中に混入するのを防ぐことにより、初めて効率
よくオゾンが製造できるのである。
As mentioned above, it is extremely important to prevent volatile organic pollutants and nitrogen from being mixed into the oxygen gas in the oxygen recycling system in order to efficiently produce ozone. As stated in Journal of the Institute of Electrical Engineers of Japan B, Vol. 98, No. 2, p. 17, mixing 20% by volume of nitrogen causes a 15% decrease in ozone generation efficiency, and "Ozone Chemistry and Technology" published by the American Chemical Society (published in 1959) 305 As described on page 1, the incorporation of 1% by volume of organic matter has such a large adverse effect that no ozone is generated. Therefore, ozone can only be efficiently produced by using the degassing tower 8 to prevent volatile organic substances and nitrogen dissolved in the raw water from being mixed into the recycled gas.

第3図は第2の従来例で、図中1〜6は第2図
のもと同一もしくは相当の物を示す。14は内部
に加熱ヒーターもしくは紫外線を発するランプが
設けられた反応器であり、ブロア4と冷却除湿器
5の間に設けられる。
FIG. 3 shows a second conventional example, in which numerals 1 to 6 indicate the same or equivalent components as in FIG. 2. A reactor 14 is provided with a heater or a lamp that emits ultraviolet rays, and is provided between the blower 4 and the cooling dehumidifier 5.

この第2の従来例も第1の従来例と同様の動作
を行なうが、オゾン反応槽3に供給される原水は
脱気処理されておらず、溶存する揮発性有機物お
よび窒素はオゾン化酸素の曝気により追い出さ
れ、オゾン反応槽3から排出されるガスに同伴し
て反応器14に送入される。第1の従来例で説明
したようにリサイクルガス中に揮発性有機物が共
存するとオゾン発生効率が著しく低下するので、
反応器14内では揮発性有機物をオゾンと反応さ
せてオゾン発生にあまり影響を与えないかもしく
は反応器14以降の液路系内で除去できる炭酸ガ
スと水に分解する。反応器14の具体例は加熱
式、光反応式等が挙げられ、各々オゾン反応槽3
から回収された少量のオゾン、揮発性有機物、水
蒸気を含む酸素ガスに対して加熱や光照射の効果
とオゾンの酸化力により含有されている揮発性有
機物を水と炭酸ガスに酸化する。このようにし
て、オゾン発生に悪影響をもたらす揮発性有機物
を除去することにより、効率よくオゾンを製造で
きる。
This second conventional example also operates in the same way as the first conventional example, but the raw water supplied to the ozone reaction tank 3 is not degassed, and dissolved volatile organic matter and nitrogen are removed from ozonized oxygen. It is expelled by aeration and sent to the reactor 14 together with the gas discharged from the ozone reaction tank 3. As explained in the first conventional example, when volatile organic substances coexist in the recycled gas, the ozone generation efficiency decreases significantly.
In the reactor 14, the volatile organic substances are reacted with ozone and decomposed into carbon dioxide and water, which either do not significantly affect ozone generation or can be removed in the liquid path system after the reactor 14. Specific examples of the reactor 14 include a heating type, a photoreaction type, etc., and each ozone reaction tank 3
The small amount of ozone, volatile organic matter, and oxygen gas containing water vapor recovered from the gas is heated and irradiated with light, and the oxidizing power of ozone oxidizes the volatile organic matter contained therein into water and carbon dioxide gas. In this way, ozone can be efficiently produced by removing volatile organic substances that have an adverse effect on ozone generation.

なお、有機物の酸化に必要なオゾンの量がオゾ
ン反応槽3から回収される酸素中に含まれる量で
は不足の場合には、オゾン発生器2からオゾン反
応槽3へ送られるオゾン化酸素を分岐して分岐路
15、弁16を通して直接反応器14に補給する
こともある。
Note that if the amount of ozone necessary for oxidizing organic matter is insufficient in the amount contained in the oxygen recovered from the ozone reaction tank 3, the ozonized oxygen sent from the ozone generator 2 to the ozone reaction tank 3 is branched. In some cases, the reactor 14 is directly supplied through the branch line 15 and valve 16.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

オゾン発生に悪影響をもたらす揮発性有機物や
窒素を取り除くため、第1の従来例では減圧ポン
プ、脱気塔など複雑な構成と制御および動力を必
要とし、また第2の従来例では加熱もしくは光源
のための電力が必要で、オゾン発生のための消費
電力を増加させる。また第2の従来例では窒素の
除去が全くなされておらず、リサイクルガスへの
窒素の混入によるオゾン発生効率の低下が免れな
い等の問題を抱えている。
In order to remove volatile organic substances and nitrogen that have a negative effect on ozone generation, the first conventional example requires complicated configurations, controls, and power such as a vacuum pump and degassing tower, and the second conventional example requires a heating or light source. This increases the power consumption for ozone generation. Further, in the second conventional example, nitrogen is not removed at all, and there are problems such as a decrease in ozone generation efficiency due to the mixing of nitrogen into the recycled gas.

この発明は、上記のような問題点を解消するた
めになされたもので、構成も簡単でかつ全く動力
を使用せずに回収酸素への揮発性有機物や窒素の
混入を防止できる酸素リサイクルオゾン発生装置
を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and is an oxygen recycling ozone generation system that has a simple configuration and can prevent volatile organic matter and nitrogen from being mixed into recovered oxygen without using any power. The purpose is to obtain equipment.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係わる酸素リサイクルオゾン発生装
置は、オゾン反応槽を2槽以上で構成し、被処理
物を各オゾン反応槽に直列に通じ、オゾン化酸素
を各々のオゾン反応槽に並列に供給し、被処理物
が最初に供給される第1のオゾン反応槽からの排
気を系外に放出し、2段以降の第2のオゾン反応
槽からの排気を回収してリサイクルせしめるよう
にしたものである。
The oxygen recycling ozone generator according to the present invention comprises two or more ozone reaction tanks, the material to be treated is connected to each ozone reaction tank in series, and ozonated oxygen is supplied to each ozone reaction tank in parallel, The exhaust gas from the first ozone reaction tank to which the material to be treated is initially supplied is discharged outside the system, and the exhaust gas from the second ozone reaction tank from the second stage onward is collected and recycled. .

〔作用〕[Effect]

この発明においては、第1のオゾン反応槽にオ
ゾン化酸素を曝気することにより、被処理物に共
存している揮発性有機物や窒素を曝気ガス中に取
り込みオゾン反応槽外に取り出し、2段目以降の
オゾン反応槽からの排気中へのこれら揮発性有機
物や窒素の混入が防止でき、オゾン発生の効率を
常に高く保つことができる。
In this invention, by aerating ozonized oxygen into the first ozone reaction tank, volatile organic matter and nitrogen coexisting in the object to be treated are taken into the aeration gas and taken out of the ozone reaction tank. It is possible to prevent these volatile organic substances and nitrogen from being mixed into the subsequent exhaust gas from the ozone reaction tank, and the efficiency of ozone generation can be maintained at a high level at all times.

〔実施例〕〔Example〕

第1図は被処理物として液状物を対象にした時
のこの発明の一実施例による酸素リサイクルオゾ
ン発生装置を示す構成図であり、1,2,4〜6
は従来装置と同一のものである。3は内部に隔壁
を設け2槽の反応槽31および32に分割された
オゾン反応槽、7は廃オゾン分解器、21および
22は流量調整用の弁である。オゾン発生器2と
オゾン反応槽3を結ぶ流路は分岐し、弁21およ
び弁22を介してそれだれ分割された第1および
第2のオゾン反応槽31,32の下部に接続され
ている。また、反応槽への排気の管路は第1のオ
ゾン反応槽31は廃オゾン分解器7へ、第2のオ
ゾン反応槽32はブロア4に接続されている。
FIG. 1 is a block diagram showing an oxygen recycling ozone generator according to an embodiment of the present invention when a liquid material is to be treated.
is the same as the conventional device. 3 is an ozone reaction tank which is divided into two reaction tanks 31 and 32 by providing a partition inside thereof, 7 is a waste ozone decomposer, and 21 and 22 are flow rate adjustment valves. The flow path connecting the ozone generator 2 and the ozone reaction tank 3 branches and is connected via a valve 21 and a valve 22 to the lower portions of the first and second ozone reaction tanks 31 and 32, which are respectively divided. Furthermore, as for the exhaust pipes to the reaction tanks, the first ozone reaction tank 31 is connected to the waste ozone decomposer 7, and the second ozone reaction tank 32 is connected to the blower 4.

次に、第1図を用いてこの発明にもとずく上記
実施例の動作を説明する。原料ガス溜め1から出
た原料酸素はオゾン発生器2でオゾン化酸素(そ
のオゾン濃度は通常数%)になり、分岐されて後
弁21および22を経て第1のオゾン反応槽31
および第2のオゾン反応槽32の底部より微細気
泡として被処理液中に散気される。これにより上
記オゾン化酸素中のオゾンは液中に溶解して消費
される。第1のオゾン反応槽31および第2のオ
ゾン反応槽32は槽の下部を除いて隔壁によつて
仕切られており、第1のオゾン反応槽31および
第2のオゾン反応槽32に散気されてガスは互い
に混ざり合うことなくオゾン反応槽3の上部から
排気される。第1のオゾン反応槽31からの排気
は廃オゾン分解器7内で残留する未反応オゾンを
完全に分解した後系外に放出される。第2のオゾ
ン反応槽32からの排気はブロア4で吸引加圧さ
れた後、図示しない冷凍機より低温ブラインが送
られている冷却除湿器5で5℃位に冷却され、ガ
ス中に含まれていた水分は凝縮され、ドレインと
して除かれる。冷却除湿器5を出たガスは吸着式
ガス乾燥機6で露点が−40℃以下に乾燥され、再
び原料酸素として原料ガス溜め1に送られる。
Next, the operation of the above embodiment based on the present invention will be explained using FIG. The raw material oxygen discharged from the raw material gas reservoir 1 becomes ozonized oxygen (the ozone concentration is usually several percent) in the ozone generator 2, and is branched off to the first ozone reaction tank 31 via the rear valves 21 and 22.
Then, air is diffused into the liquid to be treated as fine bubbles from the bottom of the second ozone reaction tank 32. As a result, the ozone in the ozonized oxygen is dissolved in the liquid and consumed. The first ozone reaction tank 31 and the second ozone reaction tank 32 are separated by a partition wall except for the lower part of the tank, and air is diffused into the first ozone reaction tank 31 and the second ozone reaction tank 32. The gases are exhausted from the upper part of the ozone reaction tank 3 without mixing with each other. The exhaust gas from the first ozone reaction tank 31 completely decomposes unreacted ozone remaining in the waste ozone decomposer 7, and then is discharged to the outside of the system. After the exhaust gas from the second ozone reaction tank 32 is suctioned and pressurized by a blower 4, it is cooled to about 5°C by a cooling dehumidifier 5 to which low-temperature brine is sent from a refrigerator (not shown). The water that was present is condensed and removed as drain. The gas exiting the cooling dehumidifier 5 is dried in an adsorption type gas dryer 6 to a dew point of -40° C. or lower, and is again sent to the raw material gas reservoir 1 as raw material oxygen.

一方被処理液は、第1のオゾン反応槽31の上
部より流入し、第1のオゾン反応槽31および第
2のオゾン反応槽32の隔壁のない部分から第2
のオゾン反応槽32へ流入する。このようにして
第1のオゾン反応槽31および第2のオゾン反応
槽32内で充分オゾンと反応して処理液として系
外に流出する。
On the other hand, the liquid to be treated flows from the upper part of the first ozone reaction tank 31 and from the part of the first ozone reaction tank 31 and the second ozone reaction tank 32 without partition walls to the second ozone reaction tank 31.
into the ozone reaction tank 32. In this way, it reacts sufficiently with ozone in the first ozone reaction tank 31 and the second ozone reaction tank 32, and flows out of the system as a treatment liquid.

第1のオゾン反応槽31および第2のオゾン反
応槽32内における物質の収支について説明する
と、まずオゾンは気泡から液中に移動して液中の
還元性物質を酸化して消費される。気泡中の酸素
は主に第1のオゾン反応槽31で飽和状態まで溶
解し、第2のオゾン反応槽32では液中に溶解す
ることなく殆どが排気として回収される。また、
液中に共存する揮発性有機物や窒素は溶解平衡に
従つて第1のオゾン反応槽31内でその殆どが気
泡内に移動して系外に排出される。従つて、第2
のオゾン反応槽32内の被処理液が流入するとき
には揮発性有機物や窒素は被処理液には含まれて
おらず、第2のオゾン反応槽32から回収される
排気には上記揮発性有機物や窒素の混入が防止で
きる。
To explain the balance of substances in the first ozone reaction tank 31 and the second ozone reaction tank 32, ozone moves from bubbles into the liquid, oxidizes reducing substances in the liquid, and is consumed. The oxygen in the bubbles is mainly dissolved to a saturated state in the first ozone reaction tank 31, and most of it is recovered as exhaust gas in the second ozone reaction tank 32 without being dissolved in the liquid. Also,
Most of the volatile organic substances and nitrogen coexisting in the liquid move into bubbles in the first ozone reaction tank 31 according to dissolution equilibrium and are discharged to the outside of the system. Therefore, the second
When the liquid to be treated in the second ozone reaction tank 32 flows in, volatile organic substances and nitrogen are not contained in the liquid to be treated, and the exhaust gas recovered from the second ozone reaction tank 32 does not contain the above-mentioned volatile organic substances and nitrogen. Contamination with nitrogen can be prevented.

被処理物が粒状の固体もしくはスラリー状であ
つても、その空隙に充満していた空気は供給され
てくるオゾン化酸素と置換するので容易に系外に
排出できる。また、付着している揮発性有機物も
気相へ移動して除去できる。
Even if the object to be treated is in the form of granular solids or slurry, the air filling the voids is replaced by the supplied ozonized oxygen, so it can be easily discharged from the system. Further, attached volatile organic substances can also be transferred to the gas phase and removed.

なお、第1のオゾン反応槽31へのオゾン化酸
素の供給量は被処理液量や圧力、温度によつて異
るが、液中への酸素の溶解量以上であればよく、
また多い程効果的に揮発性有機物や窒素が除去で
きる。しかし、供給量が多過ぎると酸素の消費が
増しオゾン製造のコストが高くなる。これらの関
係から水溶液を対象にする場合にはガス・液比を
慨ね0.04から0.25に設定すると経済性を損ねるこ
となくオゾンを製造できる。
Note that the amount of ozonized oxygen supplied to the first ozone reaction tank 31 varies depending on the amount of liquid to be treated, pressure, and temperature, but it is sufficient that it is equal to or greater than the amount of oxygen dissolved in the liquid.
Also, the higher the amount, the more effectively volatile organic substances and nitrogen can be removed. However, if the supply amount is too large, oxygen consumption increases and the cost of ozone production increases. From these relationships, when using an aqueous solution, ozone can be produced without sacrificing economic efficiency by setting the gas/liquid ratio generally between 0.04 and 0.25.

補給ガスに関して、純酸素を用いなくても酸素
リサイクル方式を導入することにより空気原料の
オゾン発生装置より安価にオゾンが製造できる。
その場合の酸素濃度の下限は実験的に60容量%で
あることが分かつている。さらに、この実施例で
はオゾン反応槽3を隔壁で分割したものを示した
が、複数のオゾン反応槽が各々独立したものであ
つても同等の効果で得られることはいうまでもな
い。
Regarding supplementary gas, by introducing an oxygen recycling system, ozone can be produced at a lower cost than with an air-based ozone generator without using pure oxygen.
It has been experimentally determined that the lower limit of oxygen concentration in that case is 60% by volume. Further, in this embodiment, the ozone reaction tank 3 is divided by partition walls, but it goes without saying that the same effect can be obtained even if a plurality of ozone reaction tanks are each independent.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればオゾン反応槽
を2槽以上で構成し、被処理物を各オゾン反応槽
に直列に通じ、かつオゾン化酸素の流れを各々オ
ゾン反応槽に対して並列に供給し、被処理物が最
初に入る第1のオゾン反応槽からの排気を系外に
排出し、第2以降のオゾン反応槽からの排気をオ
ゾン発生器に循環させるようにしたので、被処理
物からの回収酸素へ揮発性有機物や窒素の混入が
防止でき、装置が安価にまた余分の動力を投入し
なくともオゾン発生を高効率に行なえる効果があ
る。
As described above, according to the present invention, the ozone reaction tank is composed of two or more tanks, the object to be treated is connected to each ozone reaction tank in series, and the flow of ozonated oxygen is connected to each ozone reaction tank in parallel. The exhaust from the first ozone reactor, into which the material to be treated first enters, is discharged to the outside of the system, and the exhaust from the second and subsequent ozone reactors is circulated to the ozone generator. This has the effect of preventing volatile organic matter and nitrogen from being mixed into the oxygen recovered from materials, making it possible to generate ozone with high efficiency at a low cost, and without using extra power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による酸素リサイ
クルオゾン発生装置を示す構成図、並びに第2図
および第3図は各々従来の酸素リサイクルオゾン
発生装置を示す構成図である。 図中、1は原料ガス溜め、2はオゾン発生器、
3はオゾン反応槽、31は第1のオゾン反応槽、
32は第2のオゾン反応槽、4はブロアである。
なお、図中、同一符号は同一又は相当部分を示
す。
FIG. 1 is a block diagram showing an oxygen recycling ozone generator according to an embodiment of the present invention, and FIGS. 2 and 3 are block diagrams showing conventional oxygen recycling ozone generators, respectively. In the figure, 1 is a raw material gas reservoir, 2 is an ozone generator,
3 is an ozone reaction tank, 31 is a first ozone reaction tank,
32 is a second ozone reaction tank, and 4 is a blower.
In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 オゾン発生器から出たオゾン化酸素をオゾン
反応槽に送り、このオゾン反応槽に送られる被処
理と反応させて排出される酸素を上記オゾン発生
器へ循環して原料酸素として利用する酸素リサイ
クルオゾン発生装置において、上記オゾン反応槽
を2槽以上で構成し、上記被処理物を上記各オゾ
ン反応槽に直列に通じ、かつ上記オゾン化酸素の
流れを上記各オゾン反応槽に対して並列に供給
し、上記被処理物が最初に入る第1のオゾン反応
槽からの排気を系外に排出し、第2以降のオゾン
反応槽からの排気を上記オゾン発生器に循環させ
るようにしたことを特徴とする酸素リサイクルオ
ゾン発生装置。 2 第1の反応槽に供給するオゾン化酸素の流量
をガス・液比で0.04〜0.25の範囲に設定すること
を特徴とする特許請求の範囲第1項記載の酸素リ
サイクルオゾン発生装置。 3 オゾン発生器に補給される原料ガス中の酸素
温度が60〜100%であることを特徴とする特許請
求の範囲第1項又は第2項記載の酸素リサイクル
オゾン発生装置。
[Claims] 1. Ozonated oxygen emitted from the ozone generator is sent to an ozone reaction tank, and is reacted with the treated material sent to the ozone reaction tank, and the discharged oxygen is circulated to the ozone generator to produce raw material. In an oxygen recycling ozone generator that is used as oxygen, the ozone reaction tank is composed of two or more tanks, the object to be treated is connected in series to each of the ozone reaction tanks, and the flow of the ozonized oxygen is passed through each of the ozone reactions. The ozone reactor is supplied in parallel to the tanks, the exhaust from the first ozone reaction tank into which the object to be treated first enters is discharged to the outside of the system, and the exhaust from the second and subsequent ozone reactors is circulated to the ozone generator. An oxygen recycling ozone generator characterized in that: 2. The oxygen recycling ozone generator according to claim 1, wherein the flow rate of ozonized oxygen supplied to the first reaction tank is set to a gas/liquid ratio in the range of 0.04 to 0.25. 3. The oxygen recycling ozone generator according to claim 1 or 2, wherein the oxygen temperature in the raw material gas supplied to the ozone generator is 60 to 100%.
JP13514286A 1986-06-10 1986-06-10 Oxygen recycling ozonizer Granted JPS62292604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13514286A JPS62292604A (en) 1986-06-10 1986-06-10 Oxygen recycling ozonizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13514286A JPS62292604A (en) 1986-06-10 1986-06-10 Oxygen recycling ozonizer

Publications (2)

Publication Number Publication Date
JPS62292604A JPS62292604A (en) 1987-12-19
JPH0472761B2 true JPH0472761B2 (en) 1992-11-19

Family

ID=15144786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13514286A Granted JPS62292604A (en) 1986-06-10 1986-06-10 Oxygen recycling ozonizer

Country Status (1)

Country Link
JP (1) JPS62292604A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135498A (en) * 1989-10-19 1991-06-10 Japan Steel Works Ltd:The Ozone reactor
DE102014118130A1 (en) 2014-12-08 2016-06-09 Technische Universität Berlin Fluid distribution device for a gas-liquid contactor, gas-liquid contactor and method for displacing a liquid with a gas

Also Published As

Publication number Publication date
JPS62292604A (en) 1987-12-19

Similar Documents

Publication Publication Date Title
US3923955A (en) Process for deodorising waste or exhaust gases
US20030145727A1 (en) Ozone storage method and ozone storage apparatus
Nakayama et al. Improved ozonation in aqueous systems
JP2008006336A (en) Water cleaning system
JP3954647B2 (en) Method and apparatus for purifying gas and liquid
JPH0472761B2 (en)
EP0242941B1 (en) Process and apparatus for the deodorization of air
JP5581090B2 (en) Method and apparatus for treating waste liquid containing acid or base and hydrogen peroxide
JPH10118444A (en) Ozone deodorizing apparatus
JPH09192658A (en) Manufacturing device of ultrapure water
JPH01275402A (en) Oxygen recycling ozonizer system
JP2820824B2 (en) Biological treatment of digestive gas
JPS6028884A (en) Process and apparatus for treating waste water including electrolysis
JPH09206769A (en) Downward injecting type ozone treating device
JP2002001366A (en) Method and system for treating organic substance in water
JPH09220560A (en) Ultrapure water making apparatus
JPS632883B2 (en)
JPH0661543B2 (en) Ozone water production equipment
JPS6035165B2 (en) Ozone decolorization and deodorization method
JPH01171621A (en) Decomposition of ozone
JPH10505054A (en) How to compost organic matter, especially waste
JPH09248582A (en) Ozone reactor
JPH04313319A (en) Deodorizing device
JPH10128350A (en) Method for treating wastewater containing coloring matter
JPS54125860A (en) Treating method of waste water that contain high cod and chromaticity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees