JPH01171621A - Decomposition of ozone - Google Patents

Decomposition of ozone

Info

Publication number
JPH01171621A
JPH01171621A JP62333617A JP33361787A JPH01171621A JP H01171621 A JPH01171621 A JP H01171621A JP 62333617 A JP62333617 A JP 62333617A JP 33361787 A JP33361787 A JP 33361787A JP H01171621 A JPH01171621 A JP H01171621A
Authority
JP
Japan
Prior art keywords
ozone
gas
liquid
decomposition
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62333617A
Other languages
Japanese (ja)
Other versions
JPH0815534B2 (en
Inventor
Kimiharu Matsumura
松村 公治
Yuji Kamikawa
裕二 上川
Kazutoshi Yoshioka
吉岡 和敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Kyushu Ltd
Original Assignee
Tokyo Electron Kyushu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Kyushu Ltd filed Critical Tokyo Electron Kyushu Ltd
Priority to JP62333617A priority Critical patent/JPH0815534B2/en
Publication of JPH01171621A publication Critical patent/JPH01171621A/en
Publication of JPH0815534B2 publication Critical patent/JPH0815534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To decompose ozone with high efficiency by heating even at low temp. and to prevent the increase of the cost by heating a gaseous mixture contg. ozone after adding a reactive material with ozone to the gaseous mixture. CONSTITUTION:A gas contg. ozone, such as waste gas from an ashing device of a semiconductor wafer, etc., is discharged to a gas-liquid mixing tank 6 through a pipe 7 from plural holes 10 of a gas dispersing plate 9. In this stage, a reaction liquid having reactivity with ozone, such as ethylene glycol, is stored previously in the gas-liquid mixing tank 6, and the reaction liquid is mixed with the ozone-contg. gas. The gaseous mixture accompanying only the vapor of the reaction liquid after removing the liquid in a gas-liquid separating device 15, is introduced into a chamber 16. In the chamber 16 heated by a heater 18, ozone is decomposed by heating, and an oxidation reaction with the vapor of the reaction liquid proceeds parallelly at the same time. Thus, ozone is decomposed easily to below a predetermined concn.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、オゾン分解方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to an ozone decomposition method.

(従来の技術) 一般にオゾンを使用する装置では残存オゾンを含むガス
が排出されるが、この残存オゾンの大気中への排気は人
体等に影響を及ぼさない程度に処理して排出することが
必要であり、この排出オゾン濃度は作業環境基準によれ
ば0・、ipp’a+以下に定められている。
(Prior technology) Generally, equipment that uses ozone releases gas containing residual ozone, but this residual ozone must be treated and discharged to the extent that it does not affect the human body, etc. According to the working environment standards, this emitted ozone concentration is set at 0., ipp'a+ or less.

オゾンを定められた濃度に分解する方法としては、活性
炭吸着分解法・接触分解法・加熱分解法が主流となって
いる。上記活性炭吸着分解法は。
The mainstream methods for decomposing ozone to a predetermined concentration are activated carbon adsorption decomposition, catalytic decomposition, and thermal decomposition. The above activated carbon adsorption decomposition method is.

活性炭表面にオゾンを供給することにより活性炭とオゾ
ンを反応させてCO,(二酸化炭素)として排気する。
By supplying ozone to the surface of activated carbon, the activated carbon and ozone are caused to react and are exhausted as CO, (carbon dioxide).

また、上記接触分解法は、二酸化ケイ素・酸化アルミニ
ウム・酸化鉄・二酸化マンガン・酸化ニッケル・白金・
銀等の貴金属或いは金属酸化物の触媒表面においてオゾ
ンが酸素へと分解される。また、上記加熱分解法は、オ
ゾンを含むガスを100〜500℃程度に加熱すること
によりオゾンを酸素に分解する。
In addition, the above catalytic cracking method can be applied to silicon dioxide, aluminum oxide, iron oxide, manganese dioxide, nickel oxide, platinum,
Ozone is decomposed into oxygen on the surface of a catalyst made of a noble metal such as silver or a metal oxide. Further, in the thermal decomposition method, ozone is decomposed into oxygen by heating a gas containing ozone to about 100 to 500°C.

(発明が解決しようとする問題点) しかしながら上記活性炭吸着分解法では活性炭が消耗さ
れるため交換が必要となり、上記接触分解法では触媒の
交換又は再生作業が必要となる。
(Problems to be Solved by the Invention) However, in the activated carbon adsorption and decomposition method, the activated carbon is consumed and needs to be replaced, and in the catalytic cracking method, the catalyst needs to be replaced or regenerated.

また、この活性炭吸着分解法及び接触分解法は共に能力
の経時変化があり、且つパーティクルの発生を抑止する
ことが困薙であるという問題がある。
Furthermore, both the activated carbon adsorption decomposition method and the catalytic decomposition method have the problem that their performance changes over time and that it is difficult to suppress the generation of particles.

上記加熱分解法は上記問題はないが、オゾンの分解を熱
分解のみに頼っているため、残存オゾンを定められた濃
度以下に低減させるためには400℃以上の高温が必要
となり、残存オゾンが高濃度となると定められた濃度以
下に分解することが困菫となる問題が発生した。この高
濃度の残存オゾンを高出力で加熱すると定められた濃度
以下にはなるが、コストが増大してしまう問題があった
The thermal decomposition method described above does not have the above problems, but since it relies solely on thermal decomposition, a high temperature of 400°C or higher is required to reduce the residual ozone below the specified concentration, and the residual ozone is When the concentration becomes high, a problem has arisen in which it is difficult to decompose it below the specified concentration. If this high concentration of residual ozone is heated with high output, the concentration will be reduced to below the prescribed concentration, but there is a problem in that the cost will increase.

本発明は上記点に対処してなされたもので、コストの増
大を抑止し、低温加熱でも効率良くオゾンを分解するこ
とを可能としたオゾン分解方法を得るものである。
The present invention has been made in view of the above-mentioned problems, and aims to provide an ozone decomposition method that suppresses increase in cost and makes it possible to efficiently decompose ozone even with low-temperature heating.

〔発明の構成〕 (問題点を解決するための手段) 本発明は、オゾンを含むガスを加熱してオゾンを分解す
るに際し、オゾンと反応性を有する物質を添加すること
を特徴とするオゾン分解方法を得るものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides an ozone decomposition method characterized by adding a substance reactive with ozone when heating gas containing ozone to decompose ozone. This is how you get it.

(作用効果) オゾンを含むガスを加熱してオゾンを分解するに際し、
オゾンと反応性を有する物質を添加することにより、オ
ゾンの熱分解のみならず、上記物質との酸化反応を並列
して進行させることができるため、加熱温度を200℃
以下の低温としても、定められた濃度である0、 lp
pm以下に分解することが可能となる。また、上記熱分
解及び物質との酸化反応を並列して進行させるため、残
存オゾン濃度が高くても上記0.lppm以下まで容易
に分解することができ、オゾン分解装置をコンパクトに
構成することもできる。
(Effect) When heating gas containing ozone to decompose ozone,
By adding a substance that is reactive with ozone, not only the thermal decomposition of ozone but also the oxidation reaction with the above substance can proceed in parallel, so the heating temperature can be increased to 200°C.
Even at low temperatures below the specified concentration of 0, lp
It becomes possible to decompose it to below pm. In addition, since the above thermal decomposition and oxidation reaction with substances proceed in parallel, even if the residual ozone concentration is high, the above 0. It can be easily decomposed to 1 ppm or less, and the ozone decomposition apparatus can be configured compactly.

また、活性炭や触媒等の交換及び再生作業も必要とせず
、パーティクルが発生することもない。
Furthermore, there is no need to replace or regenerate activated carbon or catalysts, and no particles are generated.

更に上記活性炭や触媒等を使用していないため、オゾン
分解能力の経時変化はなく、常に安定したオゾン分解能
力を得ることができる。
Furthermore, since the activated carbon, catalyst, etc. described above are not used, there is no change in ozone decomposition ability over time, and a stable ozone decomposition ability can always be obtained.

(実施例) 以下、本発明方法をオゾン分解装置に適用した実施例に
つき図面を参照して説明する。
(Example) Hereinafter, an example in which the method of the present invention is applied to an ozone decomposition apparatus will be described with reference to the drawings.

例えば半導体ウェハ表面のレジスト膜をオゾンアッシン
グする装置等から排気されるガスに残存しているオゾン
を、作業環境基準に定められたオゾン排気濃度である0
、lppm以下まで分解排気するオゾン分解装置■を第
1図に示す。このオゾン分解装置■の構成は、オゾンを
含むガスにこのオゾンと反応性を有する物質を添加する
混合部■と。
For example, ozone remaining in the gas exhausted from equipment that performs ozone ashing on resist films on the surface of semiconductor wafers is reduced to 0, which is the ozone exhaust concentration stipulated in the working environment standards.
Fig. 1 shows an ozone decomposition device (2) that decomposes and exhausts ozone to 1 ppm or less. This ozone decomposition device (2) consists of a mixing section (2) that adds a substance that is reactive with ozone to gas containing ozone.

この混合部■から供給される混合ガスを加熱してオゾン
を分解させる加熱部■から成っている。
It consists of a heating section (2) that heats the mixed gas supplied from this mixing section (2) to decompose ozone.

上記混合部■の構成は、オゾンを含むガスを排気する装
置例えば半導体ウェハのアッシング装置(図示せず)等
に接続している残存オゾン供給源(イ)が設けられてお
り、この残存オゾン供給源(イ)からのオゾンを含むガ
ス量を制御する気体流量調節器■を介して気液混合槽0
へ配管■により連設している。この気液混合槽0内には
オゾンと反応性を有する反応液(8)が蓄積され、上記
残存オゾン供給源に)から連設している配管■の端部は
この気液混合槽0の底部付近に位置し、この配管■端部
には上記気液混合槽0の内径より小さい散気板(9)が
接続されている。この散気板(9)内部は中空状態とな
っており、この中空状態による空間に上記配管■が接続
し2この配管■から供給されるオゾンを含むガスを上記
空間へ充填して上記散気板■に複数個設けられた孔(1
0)から上記気液混合槽0内へ放出する構造となってい
る。また、上記気液混合槽0には液体流量調節器(11
)を介して反応液供給源(12)が接続しており、気液
混合槽0内に蓄積した上記反応液■の補充を可能として
いる。この反応液(8)の補充は、上記気液混合槽0内
の反応液(8)の液位を検出する例えば液面センサー(
図示せず)を備えた液位制御装置(13)が上記液体流
量調節器(11)の制御を行ない、上記液位が一定値よ
り低くならないように設定している。この時この一定値
は、上記散気板(9)の孔(10)より高い位置に設定
されている。また、上記気液混合槽0の上部には配管(
14)が接続しており、この配管(14)は気体と液体
の分離を行なう気液分離装置(15)に連設している。
The configuration of the above-mentioned mixing section (2) includes a residual ozone supply source (a) connected to a device for exhausting ozone-containing gas, such as a semiconductor wafer ashing device (not shown). The gas-liquid mixing tank
It is connected to by piping ■. A reaction liquid (8) that is reactive with ozone is accumulated in this gas-liquid mixing tank 0, and the end of the piping A diffuser plate (9) smaller than the inner diameter of the gas-liquid mixing tank 0 is connected to the end of the pipe (1) located near the bottom. The interior of this air diffuser plate (9) is hollow, and the above-mentioned pipe (■) is connected to this hollow space, and the gas containing ozone supplied from this pipe (2) is filled into the above-mentioned space to perform the above-mentioned aeration. Multiple holes (1
0) into the gas-liquid mixing tank 0. In addition, the gas-liquid mixing tank 0 is equipped with a liquid flow rate regulator (11
) is connected to a reaction liquid supply source (12), making it possible to replenish the reaction liquid (1) accumulated in the gas-liquid mixing tank 0. This replenishment of the reaction liquid (8) is carried out by using, for example, a liquid level sensor that detects the liquid level of the reaction liquid (8) in the gas-liquid mixing tank 0.
A liquid level control device (13) equipped with a device (not shown) controls the liquid flow rate regulator (11) and sets the liquid level so that it does not fall below a certain value. At this time, this constant value is set at a position higher than the hole (10) of the air diffuser plate (9). In addition, there is a pipe (
14) is connected, and this pipe (14) is connected to a gas-liquid separator (15) that separates gas and liquid.

このようにして混合部■が構成されている。In this way, the mixing section (2) is constructed.

また、上記加熱部■の構成は、上記混合部■の気液分離
装置(15)と連設しているチャンバー(16)周囲に
は加熱制御装置(17)に接続して発熱自在なヒーター
(18)が設けられ、チャンバー(16)内部を加熱自
在としている。このチャンバー(16)には排気装置(
19)が接続されておりチャンバー(16)内部の排気
を自在としている。このようにして加熱部(3)が構成
され、この加熱部■及び上記混合部■がらオゾン分解装
置(υが構成されている。
In addition, the configuration of the heating section (2) is such that a heater (16) connected to a heating control device (17) that can freely generate heat is placed around a chamber (16) that is connected to the gas-liquid separator (15) of the mixing section (2). 18) is provided to freely heat the inside of the chamber (16). This chamber (16) has an exhaust system (
19) is connected so that the inside of the chamber (16) can be freely evacuated. In this way, the heating section (3) is constructed, and the heating section (2) and the mixing section (2) constitute an ozone decomposition device (υ).

次に、上述したオゾン分解装置■によるオゾンの分解方
法を説明する。
Next, a method of decomposing ozone using the above-mentioned ozone decomposition device (2) will be explained.

例えば半導体ウェハのアッシング装置の排気等、オゾン
を含むガスを残存オゾン供給源に)から供給し、気体流
量調節器(ハ)で所定流量例えば10〜50sQ/mi
n程度に調節し、配管■を介して散気板0へ供給してこ
の散気板(9)に設けられている複数個の孔(10)か
ら気液混合槽0内へ放出する。この時、気液混合槽0内
には予めオゾンと反応性を有する反応液■例えばエタノ
ール(C,H,OH)・エチレングリコール(IIOC
R,CI、OH)等のアルコール類、酢酸(CHlCO
OH)等のカルボン酸、ジメチルケトン(C)I、C0
CH,)等のケトン類、ジメチルエーテル(C1,0C
R3)等のエーテル類、酢酸メチル(CH,C00CH
,)等のエステル類で、常温常圧で液体のものであり、
更に物質がH,C,Oのうち少なくとも1種以上の原子
による結合から成るものを蓄積しておく。この反応液■
の上記気液混合槽0内における液位は、液位制御装置(
13)により散気板■よりも高い位置に制御されている
ため、この散気板■の複数の孔(10)からオゾンを含
むガスが放出され、バブリングされる。このバブリング
時の各バブル内では、反応液が飽和状態となるまで蒸発
し、上記オゾンを含むガスと混合され、この混合ガスが
配管(14)から気液分離装置(15)へ流通される。
For example, a gas containing ozone is supplied from a residual ozone supply source (e.g., the exhaust gas of a semiconductor wafer ashing device), and a gas flow rate controller (c) is used to set a predetermined flow rate of, for example, 10 to 50 sQ/mi.
n, and is supplied to the air diffuser plate 0 through the pipe (2) and discharged into the gas-liquid mixing tank 0 through a plurality of holes (10) provided in the air diffuser plate (9). At this time, in the gas-liquid mixing tank 0, there is a reaction liquid that is reactive with ozone.
Alcohols such as R, CI, OH), acetic acid (CHlCO
Carboxylic acids such as OH), dimethyl ketone (C)I, C0
Ketones such as CH,), dimethyl ether (C1,0C
ethers such as R3), methyl acetate (CH, C00CH
, ), etc., which are liquid at normal temperature and pressure.
Further, substances consisting of bonds formed by at least one type of atoms among H, C, and O are accumulated. This reaction solution ■
The liquid level in the gas-liquid mixing tank 0 is controlled by a liquid level control device (
13), the ozone-containing gas is released from the plurality of holes (10) in the air diffuser plate (2) and is bubbled. In each bubble during this bubbling, the reaction liquid evaporates until it reaches a saturated state and is mixed with the ozone-containing gas, and this mixed gas is distributed from the pipe (14) to the gas-liquid separator (15).

この気液分離装置(15)では、混合ガス内の液体微粒
子を排除し、ペーパーのみを上記オゾンを含有するガス
に同伴させる。この液体微粒子の排除は配管やチャンバ
ー(16)内等に液溜まりが発生することを防ぐために
行なわれ、分離された液体微粒子は上記気液混合槽0内
に戻される。この液体微粒子が排除された混合ガスはチ
ャンバー(16)内に導入され、ここで、加熱制御装置
(17)により予め200〜400℃程度に加熱された
ヒーター(18)により同温に設定されたチャンバー(
16)内部でオゾンが加熱分解され、同時に混合された
ペーパー状の反応液(ハ)が添加され酸化反応が並列し
て進行されて上記0.lppm以下の濃度まで容易に分
解することができる。この時、オゾンと反応を有する物
質即ち上記ペーパー状の反応液■はH,C,○のうち少
なくとも1種以上の原子から成っているため、上記オゾ
ンとの反応により酸化分解して二酸化炭素(CO□)及
び水(11□O)が生成され、排気装置(19)により
安全に排気及び排水が可能となる。このようなオゾンと
反応性を有する物質として例えばアルコール類であるエ
チレングリコール(IIOcII2CH20H)を上記
オゾンを含むガスに添加した場合のオゾンの分解と添加
しない場合のオゾンの分解類比較した特性例を第2図に
示す。これは縦軸にオゾン濃度、横軸に処理時間を示し
、加熱温度を200℃と設定した場合の特性例であり、
上記エチレングリコールを添加すると同時間でもオゾン
分解能力が優れていることが伴かり、オゾンと反応性を
有する物質の添加によりオゾンの分解が促進されること
となる。
In this gas-liquid separator (15), liquid particles in the mixed gas are removed, and only the paper is entrained in the ozone-containing gas. This liquid particulate removal is carried out to prevent liquid pooling from occurring in the piping, the chamber (16), etc., and the separated liquid particulates are returned to the gas-liquid mixing tank 0. The mixed gas from which liquid particles have been removed is introduced into the chamber (16), where the temperature is set to the same temperature by the heater (18), which is preheated to approximately 200 to 400°C by the heating control device (17). Chamber(
16) Ozone is thermally decomposed inside, and at the same time, the mixed paper-like reaction liquid (c) is added and the oxidation reaction proceeds in parallel, resulting in the above 0. It can be easily decomposed to a concentration of 1 ppm or less. At this time, since the substance that reacts with ozone, that is, the paper-like reaction liquid (2), consists of at least one type of atoms among H, C, and O, it is oxidized and decomposed by the reaction with the ozone, resulting in carbon dioxide ( CO□) and water (11□O) are produced, which can be safely evacuated and drained by the exhaust system (19). The following is a characteristic example comparing the decomposition of ozone when ethylene glycol (IIOcII2CH20H), which is an alcohol, is added to the ozone-containing gas as a substance that is reactive with ozone, and the decomposition of ozone when it is not added. Shown in Figure 2. This is an example of the characteristics when the vertical axis shows the ozone concentration and the horizontal axis shows the processing time, and the heating temperature is set at 200°C.
Addition of the above-mentioned ethylene glycol results in excellent ozone decomposition ability even at the same time, and the addition of a substance that is reactive with ozone promotes ozone decomposition.

次に、他の実施例を第3図に示す。Next, another embodiment is shown in FIG.

上記と同様に、残存オゾン供給源に)からオゾンを含む
ガスを流し、そのガスを気体流量調節器(ハ)で流量調
節してインジェクター(20)に供給する。
Similarly to the above, a gas containing ozone is flowed from the residual ozone supply source (), and the gas is supplied to the injector (20) after adjusting the flow rate with the gas flow rate regulator (c).

また、一方では反応液供給源(12)からオゾンと反応
性を有する反応液を液体流量調節器(11)により流量
調節して上記インジェクター(20)に供給する。
On the other hand, a reaction liquid having reactivity with ozone is supplied from a reaction liquid supply source (12) to the injector (20) after adjusting its flow rate with a liquid flow rate regulator (11).

このインジェクター(20)にて上記反応液をオゾンを
含むガスに添加し、この添加したガスをチャンバー(1
6)内へ供給して、以下同様に加熱分解して二酸化炭素
と水及び酸素を排気装置(19)から排出する。このよ
うにオゾンを含むガスに、オゾンと反応性を有する物質
を添加し、混合する手段としてバブリングに限定するも
のではなく、上記したようにインジェクターによる手段
でも同様な効果が得られる。
The above reaction liquid is added to the ozone-containing gas using this injector (20), and the added gas is transferred to the chamber (1).
6) and then thermally decomposed in the same manner as above to exhaust carbon dioxide, water and oxygen from the exhaust device (19). As described above, the means for adding and mixing a substance reactive with ozone to the ozone-containing gas is not limited to bubbling, and the same effect can be obtained by using an injector as described above.

以上述べたようにこの実施例によればオゾンを含むガス
を加熱してオゾンを分解するに際し、オゾンと反応性を
有する物質を添加することにより、オゾンの熱分解のみ
ならず、上記物質との酸化反応を並列して進行させるこ
とができるため、加熱温度を200℃以下の低温として
も、定められた濃度である0、lppm以下に分解する
ことが可能となる。
As described above, according to this embodiment, when gas containing ozone is heated to decompose ozone, by adding a substance that is reactive with ozone, it is possible to not only thermally decompose ozone but also to decompose ozone with the above substance. Since the oxidation reaction can proceed in parallel, it is possible to decompose it to a predetermined concentration of 0.1 ppm or less even if the heating temperature is as low as 200° C. or less.

また、上記熱分解及び物質との酸化反応を並列して進行
させるため、残存オゾン濃度が高くても上記0.lpp
m以下まで容易に分解することができ、オゾン分解装置
をコンパクトに構成することができる。
In addition, since the above thermal decomposition and oxidation reaction with substances proceed in parallel, even if the residual ozone concentration is high, the above 0. lpp
The ozone decomposition device can be easily decomposed to a size of less than m, and the ozone decomposition device can be configured compactly.

また、活性炭や触媒等の交換及び再生作業も必要とせず
、パーティクルが発生することもない。
Furthermore, there is no need to replace or regenerate activated carbon or catalysts, and no particles are generated.

更に上記活性炭や触媒等を使用していないため、オゾン
分解能力の経時変化はなく、常に安定した分解能力を得
ることができる。
Furthermore, since the activated carbon, catalyst, etc. described above are not used, there is no change in ozone decomposition ability over time, and a stable decomposition ability can always be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を説明するためのオゾン
分解装置の構成図、第2図は第1図の特性例を示す曲線
図、第3図は本発明方法の他の実施例説明図である。 1・・・オゾン分解装置、 2・・・混合部、3・・・
加熱部、     6・・・気液混合槽。 8100反応液、     9・・・散気板。 12・・・反応液供給源、  16・・・チャンバー、
17・・・加熱制御装置、  18・・・ヒーター。 20・・・インジェクター。
Fig. 1 is a block diagram of an ozone decomposition apparatus for explaining one embodiment of the method of the present invention, Fig. 2 is a curve diagram showing an example of the characteristics of Fig. 1, and Fig. 3 is another embodiment of the method of the present invention. It is an explanatory diagram. 1... Ozone decomposition device, 2... Mixing section, 3...
heating section, 6... gas-liquid mixing tank; 8100 reaction liquid, 9... air diffuser plate. 12... Reaction liquid supply source, 16... Chamber,
17... Heating control device, 18... Heater. 20...Injector.

Claims (3)

【特許請求の範囲】[Claims] (1)オゾンを含むガスを加熱してオゾンを分解するに
際し、オゾンに反応性を有する物質を添加することを特
徴とするオゾン分解方法。
(1) An ozone decomposition method characterized by adding a reactive substance to ozone when heating gas containing ozone to decompose ozone.
(2)オゾンと反応性を有する物質は、H、C、Oのう
ち少なくとも1種以上の原子から成る特許請求の範囲第
1項記載のオゾン分解方法。
(2) The ozone decomposition method according to claim 1, wherein the substance reactive with ozone comprises at least one type of atoms among H, C, and O.
(3)オゾンと反応性を有する物質は、オゾンとの反応
によって二酸化炭素及び水を生成することを特徴とする
特許請求の範囲第1項記載のオゾン分解方法。
(3) The ozone decomposition method according to claim 1, wherein the substance reactive with ozone generates carbon dioxide and water by reaction with ozone.
JP62333617A 1987-12-25 1987-12-25 Ozone decomposition method Expired - Fee Related JPH0815534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62333617A JPH0815534B2 (en) 1987-12-25 1987-12-25 Ozone decomposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62333617A JPH0815534B2 (en) 1987-12-25 1987-12-25 Ozone decomposition method

Publications (2)

Publication Number Publication Date
JPH01171621A true JPH01171621A (en) 1989-07-06
JPH0815534B2 JPH0815534B2 (en) 1996-02-21

Family

ID=18268053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62333617A Expired - Fee Related JPH0815534B2 (en) 1987-12-25 1987-12-25 Ozone decomposition method

Country Status (1)

Country Link
JP (1) JPH0815534B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705468A (en) * 1996-11-18 1998-01-06 Quantum Technologies, Inc. Vehicle and method for storing ozone
JP2010259722A (en) * 2009-05-11 2010-11-18 Hitachi Plant Technologies Ltd Sterilizer and method
CN108144406A (en) * 2018-01-22 2018-06-12 淮阴师范学院 A kind of safe resolving device of ozone gas
CN109876618A (en) * 2019-04-11 2019-06-14 大连海事大学 A kind of flue gas pollutant removal system and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705468A (en) * 1996-11-18 1998-01-06 Quantum Technologies, Inc. Vehicle and method for storing ozone
WO1998022386A1 (en) * 1996-11-18 1998-05-28 Quantum Technologies, Inc. A vehicle and method for storing ozone
JP2010259722A (en) * 2009-05-11 2010-11-18 Hitachi Plant Technologies Ltd Sterilizer and method
CN108144406A (en) * 2018-01-22 2018-06-12 淮阴师范学院 A kind of safe resolving device of ozone gas
CN108144406B (en) * 2018-01-22 2024-01-16 淮阴师范学院 Ozone gas safety decomposition equipment
CN109876618A (en) * 2019-04-11 2019-06-14 大连海事大学 A kind of flue gas pollutant removal system and method

Also Published As

Publication number Publication date
JPH0815534B2 (en) 1996-02-21

Similar Documents

Publication Publication Date Title
KR100962695B1 (en) Method and apparatus for treating exhaust gas
KR100637884B1 (en) Method and apparatus for treating waste gas containing fluorochemical
JP2001137659A (en) Method and device for treating waste gas containing fluorine-containing compound
JP3765354B2 (en) Method for producing hydrogen-containing ultrapure water
JP3214698B2 (en) Removal method of gaseous hydride
CN102049182A (en) Method for purifying epoxypropane-containing organic waste gas
JPH01171621A (en) Decomposition of ozone
JPH11319485A (en) Treatment of perfluoride and treating device therefor
JP6379339B2 (en) Gas purification method
CN212532415U (en) Wastewater treatment system
JP3476039B2 (en) How to remove dissolved oxygen
KR20050069674A (en) Gas treatment apparatus of wet scrubber and gas treatment method
JP2505985B2 (en) Removal method of CVD exhaust gas
JPH09192658A (en) Manufacturing device of ultrapure water
JP3910190B2 (en) Cleaning device
JP2000167366A (en) Ozone water production apparatus and ozone treating apparatus
JPS6128603B2 (en)
WO2023199410A1 (en) Method for treating exhaust gas containing nitrogen compound, and apparatus for said method
JP2001085421A (en) Method and device for thermal oxidation
JP2002239533A (en) Wastewater treatment method
JPH11181493A (en) Cleaning water for electronic material
JP2005095730A (en) Decomposition agent and decomposition method for fluorine compound
JPH0710334B2 (en) NF3 Exhaust gas treatment method and device
JP2002370028A (en) Method for producing ruthenium catalyst by using oxygen-containing ruthenium compound
JPH04122419A (en) Organic halide compound decomposing method and decomposing catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees