JP3910190B2 - Cleaning device - Google Patents

Cleaning device Download PDF

Info

Publication number
JP3910190B2
JP3910190B2 JP2004146638A JP2004146638A JP3910190B2 JP 3910190 B2 JP3910190 B2 JP 3910190B2 JP 2004146638 A JP2004146638 A JP 2004146638A JP 2004146638 A JP2004146638 A JP 2004146638A JP 3910190 B2 JP3910190 B2 JP 3910190B2
Authority
JP
Japan
Prior art keywords
water vapor
substrate
ozone
oxygen
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004146638A
Other languages
Japanese (ja)
Other versions
JP2005327992A (en
Inventor
元 小野田
和俊 渡辺
建 服部
Original Assignee
オメガセミコン電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オメガセミコン電子株式会社 filed Critical オメガセミコン電子株式会社
Priority to JP2004146638A priority Critical patent/JP3910190B2/en
Publication of JP2005327992A publication Critical patent/JP2005327992A/en
Application granted granted Critical
Publication of JP3910190B2 publication Critical patent/JP3910190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

この発明は、半導体基板等を洗浄する洗浄装置に関する。 The present invention relates to a cleaning apparatus for cleaning a semiconductor substrate or the like.

半導体基板の洗浄方法として、過酸化水素と水酸化アンモニウムのSC−1溶液と、過酸化水素と希塩酸のSC−2溶液を用いたRCA洗浄法が知られている。このRCA洗浄法では半導体基板を洗浄槽に浸漬させて洗浄するため、半導体基板を洗浄したときに洗浄液中の金属不純物が半導体基板の表面に付着したり、半導体基板の表面から一度除去された金属不純物が再付着する問題があった。そして、近年の半導体基板の大口径化、微細プロセス化、新配線材料導入の動きも出てきており、従来のRCA洗浄法の見直しが検討されている。   As a method for cleaning a semiconductor substrate, an RCA cleaning method using an SC-1 solution of hydrogen peroxide and ammonium hydroxide and an SC-2 solution of hydrogen peroxide and dilute hydrochloric acid is known. In this RCA cleaning method, a semiconductor substrate is immersed in a cleaning bath for cleaning, so that when the semiconductor substrate is cleaned, metal impurities in the cleaning liquid adhere to the surface of the semiconductor substrate or are removed once from the surface of the semiconductor substrate. There was a problem that impurities reattached. In recent years, there have been movements for increasing the diameter of semiconductor substrates, making fine processes, and introducing new wiring materials, and a review of conventional RCA cleaning methods is being considered.

また、地球環境に対する負荷を低減するという観点から大量の薬液・超純水を使用する従来の洗浄プロセスを見直す必要が出てきており、これらの諸問題を解決する方法として、半導体基板を一枚ごとに洗浄する枚葉方式による洗浄方法に関心が高まっている。そして、短い洗浄時間で半導体基板上のパーティクル、金属汚染、有機汚染を除去するためにオゾン水、といった洗浄用機能水を利用した洗浄装置が開発され使用されている。   In addition, from the viewpoint of reducing the burden on the global environment, it is necessary to review the conventional cleaning process that uses a large amount of chemicals and ultrapure water. As a method for solving these problems, a single semiconductor substrate is used. There is a growing interest in cleaning methods using a single wafer cleaning method. In order to remove particles, metal contamination, and organic contamination on the semiconductor substrate in a short cleaning time, a cleaning device using functional water for cleaning such as ozone water has been developed and used.

半導体デバイスの製造プロセスにおいて使用されるオゾン水には、水に溶解しているオゾン濃度が高いこと及びクリーン度が高く、不純物を含まないことが要求される。通常、オゾン水は、純水の電気分解や酸素ガスの放電式で生成されたオゾンガスを純水または超純水と接触させてオゾンガス中のオゾンを純水に溶解させて生成する。オゾンガスの製造原料として高純度酸素ガスを使用し、オゾン水の製造原料として純水または超純水を使用するのは、オゾンガスから不純物を排除し、オゾン水中の不純物を低減するために他ならない。   The ozone water used in the semiconductor device manufacturing process is required to have a high concentration of ozone dissolved in water, a high degree of cleanness, and no impurities. Usually, ozone water is generated by bringing ozone gas generated by electrolysis of pure water or an oxygen gas discharge method into contact with pure water or ultrapure water to dissolve ozone in the ozone gas in pure water. The use of high-purity oxygen gas as the raw material for producing ozone gas and the use of pure water or ultrapure water as the raw material for producing ozone water are none other than eliminating impurities from ozone gas and reducing impurities in ozone water.

しかしながら、オゾンの超純水に対する溶解度は低い。例えば、枚葉式洗浄に使用される場合は、30ppm程度であり、オゾンの溶解量が少ないために満足できるような洗浄力が得られず、使用範囲が限定されるとともに、迅速な洗浄が困難となっている。   However, the solubility of ozone in ultrapure water is low. For example, when used for single wafer cleaning, it is about 30 ppm, and since the amount of dissolved ozone is small, satisfactory cleaning power cannot be obtained, the range of use is limited, and quick cleaning is difficult. It has become.

よって、オゾンの溶解度をいかに高めるかが大きな課題となっている。また、オゾンは純水中では比較的不安定なため、純水に溶けたオゾンは自己分解し易く濃度の維持が困難という固有の問題がある。原水である超純水の純度などにも依存するが、10ppm以上のオゾン水の濃度は、配管を20m通すと2ppm以下まで下がることが確認されている。このため、オゾン水洗浄においては、洗浄機のできるだけ近くにオゾン水供給設備を配置する必要がある。また、安定した濃度を得るためには、使用・不使用に関わらず、オゾン水が連続供給されることになり、不使用の場合は、半導体基板に触れることなくブロー排水される。   Therefore, how to increase the solubility of ozone is a major issue. Further, since ozone is relatively unstable in pure water, there is an inherent problem that ozone dissolved in pure water is easily decomposed and it is difficult to maintain the concentration. Although depending on the purity of ultrapure water, which is raw water, it has been confirmed that the concentration of ozone water of 10 ppm or more drops to 2 ppm or less when 20 m is passed through the pipe. For this reason, in ozone water cleaning, it is necessary to arrange ozone water supply equipment as close as possible to the cleaning machine. In order to obtain a stable concentration, ozone water is continuously supplied regardless of whether it is used or not. When not used, blow water is discharged without touching the semiconductor substrate.

前述したようにオゾン水では純水に対する溶解度が低い。また、配管を通すだけでさらに溶解度が下がることが確認されている。従って、高溶解度のオゾン水を作り、配管を通しても溶解度が下がらないようにすることが課題となっている。   As described above, ozone water has low solubility in pure water. Moreover, it has been confirmed that the solubility is further lowered by simply passing the pipe. Therefore, it is an issue to make ozone water with high solubility so that the solubility does not decrease even through piping.

この発明は、前記事情に着目してなされたもので、その目的とするところは、基板上に水蒸気を噴射させ、基板上の微粒子、有機物、金属粉等を除去することができる洗浄装置を提供することにある。 The present invention has been made by paying attention to the above circumstances, and an object of the present invention is to provide a cleaning device capable of ejecting water vapor onto a substrate and removing fine particles, organic matter, metal powder, etc. on the substrate. There is to do.

この発明は、前記目的を達成するために、請求項1は、洗浄すべき基板を載置する載置台と、水素と酸素を燃焼させ、酸素とオゾンとラジカル酸素を含んだ水蒸気を生成するとともに、前記載置台と離間して設置された容器と、一端部が前記容器と接続され、他端部に前記載置台の基板の表面に対向する水蒸気供給ノズルを有し、前記容器内で生成された水蒸気を連続的または間歇的に供給し、前記水蒸気供給ノズルによって前記基板の表面に噴射させて洗浄する水蒸気供給管とを具備したことを特徴とする洗浄装置にある。 In order to achieve the above object, according to a first aspect of the present invention, there is provided a mounting table on which a substrate to be cleaned is mounted, hydrogen and oxygen are burned, and water vapor containing oxygen, ozone and radical oxygen is generated. A container installed at a distance from the mounting table, and having one end connected to the container and a water vapor supply nozzle facing the surface of the substrate of the mounting table at the other end, and is generated in the container A cleaning apparatus comprising: a steam supply pipe that continuously or intermittently supplies the steam and sprays the steam on the surface of the substrate by the steam supply nozzle.

請求項2は、請求項1の前記水蒸気供給管は、前記容器内で生成された酸素とオゾンとラジカル酸素を含んだ水蒸気を供給中に混合撹拌する螺旋状の水蒸気通路を有していることを特徴とする。 According to a second aspect of the present invention, the water vapor supply pipe according to the first aspect has a spiral water vapor passage that mixes and stirs oxygen generated in the container, water vapor containing ozone and radical oxygen during supply. It is characterized by.

請求項3は、請求項1の前記水蒸気供給管は、有機溶剤の供給源と接続される蒸気供給管を内部に有し、前記水蒸気供給ノズルから有機溶剤を前記基板の表面に噴射させ、前記水蒸気の凝縮を防止して基板上の水膜を有機溶剤で置換するようにしたことを特徴とする。 According to a third aspect of the present invention, the water vapor supply pipe according to the first aspect has a vapor supply pipe connected to a supply source of the organic solvent inside, the organic solvent is sprayed from the water vapor supply nozzle onto the surface of the substrate, and The condensation of water vapor is prevented, and the water film on the substrate is replaced with an organic solvent.

この発明によれば、基板の表面の洗浄において、容器内で水素と酸素を燃焼させ、燃焼後の水蒸気を基板の表面に噴射することを特徴とするものである。したがって、オゾン発生から基板までの配管を長くしても、自己分解することなく高濃度のオゾンを基板に供給することができ、基板を任意の位置に設置することができる。 According to this invention, in cleaning the surface of the substrate, hydrogen and oxygen are combusted in a container, and the water vapor after combustion is jetted onto the surface of the substrate. Therefore, even if the piping from the generation of ozone to the substrate is lengthened, high-concentration ozone can be supplied to the substrate without self-decomposition, and the substrate can be installed at an arbitrary position.

以下、この発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1はオゾン水蒸気洗浄装置の全体構成を示し、高純度水素と高純度酸素を燃焼させて水蒸気を生成させるための石英ガラス製の円筒状の容器1が設けられている。容器1の外周部には容器1を囲繞するようにヒーター2が設けられ、容器1内を常時600℃以上に加熱できるようになっている。容器1及びヒーター2のさらに外周にはヒーター2からの輻射熱及び容器1内の燃焼炎から発生する輻射熱を吸収するための水冷ジャケット3が設けられている。   FIG. 1 shows an overall configuration of an ozone water vapor cleaning apparatus, which is provided with a cylindrical container 1 made of quartz glass for burning high purity hydrogen and high purity oxygen to generate water vapor. A heater 2 is provided on the outer periphery of the container 1 so as to surround the container 1 so that the inside of the container 1 can be constantly heated to 600 ° C. or higher. A water cooling jacket 3 for absorbing radiant heat from the heater 2 and radiant heat generated from the combustion flame in the container 1 is provided on the outer periphery of the container 1 and the heater 2.

また、容器1内の燃焼炎を監視する目的で、水冷ジャケット3には炎検出器4が設けられている。さらに、水冷ジャケット3を貫通して容器1には水素供給管5及び酸素供給管6が設けられ、水素供給管5及び酸素供給管6には容器1の内部に位置する水素ノズル7及び酸素ノズル8が設けられている。   Further, a flame detector 4 is provided in the water cooling jacket 3 for the purpose of monitoring the combustion flame in the container 1. Further, a hydrogen supply pipe 5 and an oxygen supply pipe 6 are provided in the container 1 through the water cooling jacket 3, and a hydrogen nozzle 7 and an oxygen nozzle located inside the container 1 are provided in the hydrogen supply pipe 5 and the oxygen supply pipe 6. 8 is provided.

水素供給管5及び酸素供給管6は水素・酸素流量制御装置9の水素供給口10及び酸素供給口11と配管接続されている。また、水素供給管5、酸素供給管6は、窒素供給口12、13とも配管接続されている。水素・酸素流量制御装置9には水素供給口10と水素供給源14とを接続する配管15が設けられ、この配管15には水素弁16及び水素マスフローコントローラ17が設けられている。さらに、窒素供給口12と窒素供給源18とを接続する配管19には窒素弁20が設けられている。   The hydrogen supply pipe 5 and the oxygen supply pipe 6 are connected to the hydrogen supply port 10 and the oxygen supply port 11 of the hydrogen / oxygen flow control device 9 by piping. Further, the hydrogen supply pipe 5 and the oxygen supply pipe 6 are connected to the nitrogen supply ports 12 and 13 by piping. The hydrogen / oxygen flow control device 9 is provided with a pipe 15 for connecting the hydrogen supply port 10 and the hydrogen supply source 14, and the pipe 15 is provided with a hydrogen valve 16 and a hydrogen mass flow controller 17. Furthermore, a nitrogen valve 20 is provided in a pipe 19 that connects the nitrogen supply port 12 and the nitrogen supply source 18.

また、水素・酸素流量制御装置9には酸素供給口11と酸素供給源21とを接続する配管22が設けられ、この配管22には酸素弁23及び酸素マスフローコントローラ24が設けられている。さらに、窒素供給口13と窒素供給源18とを接続する配管25には窒素弁26が設けられている。   The hydrogen / oxygen flow control device 9 is provided with a pipe 22 for connecting the oxygen supply port 11 and the oxygen supply source 21, and an oxygen valve 23 and an oxygen mass flow controller 24 are provided in the pipe 22. Furthermore, a nitrogen valve 26 is provided in the pipe 25 connecting the nitrogen supply port 13 and the nitrogen supply source 18.

容器1は水蒸気供給管29を介してチャンバ30に接続されている。水蒸気供給管29の入口側には多数の小孔を穿設した複数枚の板を組み合わせた撹拌混合板31が設けられ、水蒸気HOとオゾンO3、ラジカル酸素ROが通過する際に混合撹拌されるようになっている。また、水蒸気供給管29の内部に石英棒32を螺旋構造に溶接して水蒸気供給管29の内部には螺旋状の水蒸気通路33が形成されている。そして、水蒸気HOとオゾンO、ラジカル酸素ROが水蒸気供給管29の内部で、より混合撹拌されたオゾン水蒸気HO+Oとなって水蒸気供給管29の出口からチャンバ30内に噴射されるように構成されている。 The container 1 is connected to the chamber 30 via a water vapor supply pipe 29. On the inlet side of the water vapor supply pipe 29, there is provided a stirring and mixing plate 31 that is a combination of a plurality of plates having a plurality of small holes, and is mixed when the water vapor H 2 O, ozone O 3 and radical oxygen RO pass through. It is designed to be stirred. Further, a quartz rod 32 is welded in a spiral structure inside the water vapor supply pipe 29, and a helical water vapor passage 33 is formed inside the water vapor supply pipe 29. Then, water vapor H 2 O, ozone O 3 , and radical oxygen RO are injected into the chamber 30 from the outlet of the water vapor supply pipe 29 as ozone water vapor H 2 O + O 3 that is further mixed and stirred inside the water vapor supply pipe 29. It is comprised so that.

チャンバ30の内部には回転軸35を中心として回転する基板載置台36が設けられ、この基板載置台36には半導体ウェハ等の基板37が載置されている。そして、基板37の上面の中央部には水蒸気供給管29の出口に設けられた水蒸気供給ノズル38が対向して設けられている。基板37と水蒸気供給管29の距離Hは数mmに設定され、そして、オゾン水蒸気HO+Oの飛散防止と共に、基板37上の内部圧力を上げ、オゾン水蒸気HO+Oが効率良く均一に基板37の表面へ供給されるように構成されている。 A substrate mounting table 36 that rotates about a rotation shaft 35 is provided inside the chamber 30, and a substrate 37 such as a semiconductor wafer is mounted on the substrate mounting table 36. A water vapor supply nozzle 38 provided at the outlet of the water vapor supply pipe 29 is provided at the center of the upper surface of the substrate 37 so as to be opposed thereto. The distance H between the substrate 37 and the water vapor supply pipe 29 is set to several millimeters, and the ozone water vapor H 2 O + O 3 is efficiently dispersed uniformly by preventing the ozone water vapor H 2 O + O 3 from scattering and increasing the internal pressure on the substrate 37. It is configured to be supplied to the surface of the substrate 37.

また、水蒸気供給管29の内部には有機溶剤の一例として、イソプロピルアルコール(isopropyl alcohol :以下IPAと呼ぶ)を供給するIPA蒸気供給管39が設けられている。IPA蒸気供給管39は、基端部にIPA供給口40及び純水供給口41を有し、先端部は水蒸気供給ノズル38に対向している。そして、水蒸気供給管29の内部を流れる数百℃のオゾン水蒸気HO+OによってIPA蒸気供給管39を加温し、IPA蒸気供給管39内でIPA蒸気が凝縮することなく、水蒸気供給ノズル38から噴射することができるようになっている。なお、IPA蒸気Vはオゾン水蒸気HO+Oと同時、またはオゾン水蒸気HO+Oの供給前(供給停止後)に単独でIPA蒸気供給ノズル38から噴射することが可能である。 In addition, an IPA vapor supply pipe 39 for supplying isopropyl alcohol (hereinafter referred to as IPA) as an example of an organic solvent is provided inside the water vapor supply pipe 29. The IPA vapor supply pipe 39 has an IPA supply port 40 and a pure water supply port 41 at a base end portion, and a distal end portion faces the water vapor supply nozzle 38. Then, the IPA vapor supply pipe 39 is heated by ozone water vapor H 2 O + O 3 of several hundred degrees Celsius flowing inside the water vapor supply pipe 29, and the IPA vapor is not condensed in the IPA vapor supply pipe 39, and the water vapor supply nozzle 38 is used. Can be sprayed from. Incidentally, IPA vapor V is capable of jetting the ozone water vapor H 2 O + O 3 simultaneously or ozone water vapor H 2 O + O 3 IPA vapor supply nozzle 38 alone supplies before (after outage) of.

次に、前述のように構成されたオゾン水蒸気生成装置の作用について説明する。   Next, the operation of the ozone water vapor generating apparatus configured as described above will be described.

水素・酸素流量制御装置9は、容器1内に供給する水素、酸素の供給(停止)制御及び水素、酸素の流量制御を行う。酸素流量と水素流量の流量比は、1:1.2〜1:2.02の範囲で、好ましくは、1:1.5〜1:1.9の範囲である。   The hydrogen / oxygen flow control device 9 performs supply (stop) control of hydrogen and oxygen supplied into the container 1 and flow control of hydrogen and oxygen. The flow rate ratio between the oxygen flow rate and the hydrogen flow rate is in the range of 1: 1.2 to 1: 2.02, and preferably in the range of 1: 1.5 to 1: 1.9.

蒸気の生成を必要とする時には、水素・酸素流量制御装置9の水素弁16及び酸素弁23を開き、水素マスフローコントローラ17及び酸素マスフローコントローラ24で流量制御された水素H2を水素供給口10、酸素O2を酸素供給口11からそれぞれ水素供給管5、酸素供給管6に供給して容器1内の水素ノズル7及び酸素ノズル8から噴出する。 When it is necessary to generate steam, the hydrogen valve 16 and the oxygen valve 23 of the hydrogen / oxygen flow control device 9 are opened, and hydrogen H 2 whose flow rate is controlled by the hydrogen mass flow controller 17 and the oxygen mass flow controller 24 is supplied to the hydrogen supply port 10, Oxygen O 2 is supplied from the oxygen supply port 11 to the hydrogen supply pipe 5 and the oxygen supply pipe 6, respectively, and ejected from the hydrogen nozzle 7 and the oxygen nozzle 8 in the container 1.

このとき、容器1内は、水素H2の着火温度以上の600℃以上となっているため、容器1内の温度が水素着火源となり、容器1の内部で水素H2と酸素O2の水素燃焼炎27が生じ、清浄な水蒸気28が生成される。水蒸気28の生成量は、酸素マスフローコントローラ24で制御されている水素流量で決定され、水蒸気供給管29から噴射される水蒸気28の温度は、表1の通り、燃焼時の水素流量の増加と共に増加する。ただし、水蒸気供給管29の延長と共に蒸気温度は減少する。 At this time, since the temperature inside the container 1 is 600 ° C. which is higher than the ignition temperature of hydrogen H 2 , the temperature inside the container 1 becomes a hydrogen ignition source, and hydrogen H 2 and oxygen O 2 are contained inside the container 1. A hydrogen combustion flame 27 is generated, and clean water vapor 28 is generated. The amount of water vapor 28 generated is determined by the hydrogen flow rate controlled by the oxygen mass flow controller 24, and the temperature of the water vapor 28 injected from the water vapor supply pipe 29 increases as the hydrogen flow rate during combustion increases as shown in Table 1. To do. However, the steam temperature decreases with the extension of the steam supply pipe 29.

Figure 0003910190
Figure 0003910190

オゾンの生成方法の一つとして、紫外線の中でも波長の短いオゾン発生線と呼ばれる240nm以下の紫外線を酸素分子に照射すると、酸素分子が解離して酸素原子が2個発生し、この酸素原子が他の酸素分子と結合してオゾンOが生成される。簡単には下記の通りである。 As one of the methods of generating ozone, when an ultraviolet ray of 240 nm or less, called an ozone generation line having a short wavelength, is irradiated to oxygen molecules, the oxygen molecules are dissociated to generate two oxygen atoms. bonded to the oxygen molecules of ozone O 3 is generated. Briefly, it is as follows.

+紫外線(240nm)=O+O
前記酸素原子が他の酸素と結合して、
+O=O(オゾン)
オゾン生成手段は、適正な容器1内で、適正な酸素・水素の燃焼比で燃焼させることにより、容器1内に燃焼に寄与しなかった過剰酸素Oを発生させ、この過剰酸素OがオゾンOの生成に必要な酸素となる。そして、オゾンOの生成に必要な240nm以下の紫外線は水素燃焼炎27から照射される。
O 2 + UV (240 nm) = O + O
The oxygen atom combines with other oxygen,
O 2 + O = O 3 (ozone)
Ozone generating means is a proper vessel 1, by burning in a combustion ratio of the proper oxygen and hydrogen, the excess oxygen O 2 which has not contributed to the combustion in the container 1 is generated, this excess oxygen O 2 It becomes oxygen necessary for the production of ozone O 3 . Then, ultraviolet light having a wavelength of 240 nm or less necessary for generating ozone O 3 is irradiated from the hydrogen combustion flame 27.

具体的には、水素H2と酸素O2が燃焼して蒸気が生成される燃焼反応式は下記の通りであり、
2H+O=2H
水素2体積と酸素1体積から蒸気2体積が生成される。すなわち、水素2体積と酸素1体積で完全燃焼した場合、水素、酸素が残留することなく水蒸気だけが生成される。完全燃焼時の体積比;水素/酸素=2
よって、オゾン生成手段は、燃焼時の水素、酸素の体積比を1.9程度となるように、水素H2、酸素O2の流量を酸素マスフローコントロール24、水素マスフローコントローラ17で設定し、燃焼時にオゾン生成に必要な過剰酸素Oを発生させる。この過剰酸素Oが、水素燃焼炎27から放射される240nm以下の紫外線を吸収して、2個の酸素原子に解離し、酸素原子が他の過剰酸素Oと結合して、オゾンOが生成される。
Specifically, the combustion reaction formula in which hydrogen H 2 and oxygen O 2 are combusted to generate steam is as follows:
2H 2 + O 2 = 2H 2 O
Two volumes of steam are generated from two volumes of hydrogen and one volume of oxygen. That is, in the case of complete combustion with 2 volumes of hydrogen and 1 volume of oxygen, only water vapor is generated without hydrogen and oxygen remaining. Volume ratio during complete combustion; hydrogen / oxygen = 2
Therefore, the ozone generation means sets the flow rates of hydrogen H 2 and oxygen O 2 with the oxygen mass flow control 24 and the hydrogen mass flow controller 17 so that the volume ratio of hydrogen and oxygen during combustion is about 1.9, and combustion Oxygen O 2 is sometimes generated to generate ozone. This excess oxygen O 2 absorbs ultraviolet light of 240 nm or less emitted from the hydrogen combustion flame 27 and dissociates into two oxygen atoms, and the oxygen atoms are combined with other excess oxygen O 2, and ozone O 3 Is generated.

オゾンOは254nmの紫外線、或いは400℃程度以上の熱を吸収することによって瞬時に分解され、励起酸素原子(ラジカル酸素RO)を生成する。このラジカル酸素ROが有機物を酸化させて、二酸化炭素(CO)と水(HO)に分解し揮発除去する。 Ozone O 3 is instantaneously decomposed by absorbing ultraviolet rays of 254 nm or heat of about 400 ° C. or more, and generates excited oxygen atoms (radical oxygen RO). This radical oxygen RO oxidizes the organic substance, decomposes it into carbon dioxide (CO 2 ) and water (H 2 O), and volatilizes and removes it.

前記の通り、有機物はラジカル酸素ROによって酸化され、二酸化炭素と水になり、揮発除去される化学反応であるため、有機物の除去速度は高温に強く依存し、高温オゾンが有効である。   As described above, the organic matter is a chemical reaction that is oxidized by radical oxygen RO to carbon dioxide and water, and is volatilized and removed. Therefore, the removal rate of the organic matter strongly depends on the high temperature, and high-temperature ozone is effective.

一般的に、基板洗浄としてオゾンOを使用する場合は、基板37を加熱して化学反応を促進している。また、オゾンO+紫外線の場合と、オゾンO+紫外線+水蒸気28と比較した場合、本プロセスにおいては、オゾンOが水に溶けて、OH基が生成され、これが有機物除去に大きく関与する。 In general, when ozone O 3 is used for substrate cleaning, the substrate 37 is heated to promote a chemical reaction. Further, in the case of ozone O 3 + UV when compared to ozone O 3 + UV + steam 28, in this process, ozone O 3 is dissolved in water, OH groups are generated, which largely involved in removing organic substances To do.

ラジカル酸素ROを生成する手段は、適正な容器1内で、適正な酸素O2・水素H2の燃焼比で燃焼させることにより、水素燃焼炎27から240nm以下の紫外線の放射と同時に254nmの紫外線も放射されている。また、水素燃焼炎27の熱放射温度は、数百℃以上となっている。よって、燃焼時に生成されたオゾンOは、水素燃焼炎27から放射された254nmの紫外線を吸収してまたは、水素燃焼炎27からの放射される数百℃以上の熱を吸収してラジカル酸素ROを生成する。 The means for generating radical oxygen RO is to burn 254 nm ultraviolet light simultaneously with radiation of 240 nm or less from the hydrogen combustion flame 27 by burning in a proper container 1 with a proper combustion ratio of oxygen O 2 / hydrogen H 2. Has also been radiated. Further, the heat radiation temperature of the hydrogen combustion flame 27 is several hundred degrees Celsius or more. Therefore, the ozone O 3 generated during combustion absorbs 254 nm ultraviolet rays emitted from the hydrogen combustion flame 27 or absorbs heat of several hundred degrees Celsius or more emitted from the hydrogen combustion flame 27 to generate radical oxygen. Generate RO.

ラジカル酸素ROは、400℃以上と高温のため、基板37を加熱して化学反応を促進する必要がない。また、オゾンOは、水蒸気HOの生成と同時に生成されるため、水蒸気HOを別ラインから供給する必要がない。 Since the radical oxygen RO is a high temperature of 400 ° C. or higher, it is not necessary to heat the substrate 37 to promote a chemical reaction. Also, ozone O 3 is to be generated simultaneously with the generation of steam H 2 O, there is no need to supply water vapor H 2 O from another line.

水蒸気HOとオゾンO3、ラジカル酸素30は撹拌混合板32を通過する際に混合撹拌され、さらに水蒸気供給管29の内部で混合撹拌されたオゾン水蒸気HO+Oとなって水蒸気供給管29の出口から噴射される。水蒸気供給管29の出口から噴射されるオゾン水蒸気HO+Oのオゾン濃度は、酸素マスフローコントローラ24で制御されている水素流量で決定され、表2の通り、燃焼時の水素流量の増加と共に増加する。 Water vapor H 2 O, ozone O 3, and radical oxygen 30 are mixed and stirred when passing through the stirring and mixing plate 32, and further become ozone water vapor H 2 O + O 3 mixed and stirred inside the water vapor supply pipe 29. Injected from 29 outlets. The ozone concentration of ozone water vapor H 2 O + O 3 injected from the outlet of the water vapor supply pipe 29 is determined by the hydrogen flow rate controlled by the oxygen mass flow controller 24, and increases as the hydrogen flow rate during combustion increases as shown in Table 2. To do.

Figure 0003910190
Figure 0003910190

表2の通り、水素流量50L/minで燃焼した場合の水蒸気供給管29の出口から噴射されるオゾン濃度は、100〜120ppm程度であるが、実際には数百ppm程度のオゾンが生成されている。このオゾン濃度の減少分が、ラジカル酸素ROの生成に寄与する。   As shown in Table 2, the ozone concentration injected from the outlet of the water vapor supply pipe 29 when burned at a hydrogen flow rate of 50 L / min is about 100 to 120 ppm, but actually ozone of several hundred ppm is generated. Yes. This decrease in ozone concentration contributes to the generation of radical oxygen RO.

加熱窒素ガスを供給する手段は、酸素供給管6に窒素供給口13から窒素を供給することにより、酸素ノズル8から容器1内に供給される。容器1内は600℃以上となっているため、容器1内の温度で加熱窒素ガスが生成され、水蒸気供給管29の窒素供給ノズル38から基板37の表面へ噴射することが可能である。   The means for supplying heated nitrogen gas is supplied from the oxygen nozzle 8 into the container 1 by supplying nitrogen from the nitrogen supply port 13 to the oxygen supply pipe 6. Since the temperature inside the container 1 is 600 ° C. or higher, heated nitrogen gas is generated at the temperature inside the container 1 and can be injected from the nitrogen supply nozzle 38 of the water vapor supply pipe 29 onto the surface of the substrate 37.

窒素供給ノズル38から噴射される加熱ガス温度は、表3の通り、加熱窒素ガス流量の増加と共に増加する。ただし、水蒸気供給管29の延長と共に加熱窒素ガス温度は減少する。   The temperature of the heated gas injected from the nitrogen supply nozzle 38 increases as the heated nitrogen gas flow rate increases as shown in Table 3. However, the heating nitrogen gas temperature decreases with the extension of the water vapor supply pipe 29.

Figure 0003910190
Figure 0003910190

図2は、図1のオゾン水蒸気生成装置を利用し、基板37上の微粒子、有機物、金属除去を行う枚葉式基板洗浄装置の実施形態を説明するためのフローチャートである。   FIG. 2 is a flowchart for explaining an embodiment of a single wafer cleaning apparatus for removing fine particles, organic substances, and metals on the substrate 37 using the ozone water vapor generating apparatus of FIG.

具体的に、オゾン水蒸気生成装置を使用した枚葉スピン洗浄方式による基板洗浄方法を、図2のフローチャート及び図3〜図8を用いて詳細に説明する。図3に示すように、基板37を基板載置台36にセットする(ステップS1)。次に、オゾン水蒸気生成装置を矢印方向に回転させて、水蒸気供給管29のチャンバ30を基板37の真上位置まで矢印方向に下降させ、チャンバ30が基板37を完全に覆う所定の位置まで下げる(ステップS2)。   Specifically, a substrate cleaning method using a single wafer spin cleaning method using an ozone water vapor generating apparatus will be described in detail with reference to the flowchart of FIG. 2 and FIGS. As shown in FIG. 3, the substrate 37 is set on the substrate mounting table 36 (step S1). Next, the ozone water vapor generating device is rotated in the direction of the arrow to lower the chamber 30 of the water vapor supply pipe 29 to the position just above the substrate 37 in the direction of the arrow, and to a predetermined position where the chamber 30 completely covers the substrate 37. (Step S2).

図4に示すように、水蒸気供給管29を所定位置に設置完了後、回転軸35を中心として基板載置台36上の基板37を水平状態で回転させつつ、IPA蒸気供給管39から基板37上に純水を噴射する(ステップS3)。そして基板37上に水膜を形成する(ステップS4)。   As shown in FIG. 4, after the water vapor supply pipe 29 is installed at a predetermined position, the substrate 37 on the substrate mounting table 36 is rotated in a horizontal state around the rotation shaft 35, and the IPA vapor supply pipe 39 to the substrate 37 is rotated. Pure water is injected into the water (step S3). Then, a water film is formed on the substrate 37 (step S4).

次に、図5に示すように、容器1内に水素H2と酸素O2を供給して容器1内で燃焼を開始する(ステップS5)。そして、容器1内で水蒸気28の生成と同時に、オゾンO、ラジカル酸素ROを生成し、撹拌混合板31、水蒸気供給管29を通過する際に混合撹拌してオゾン蒸気HO+Oが生成する。このオゾン蒸気HO+Oが水蒸気供給管29の水蒸気供給ノズル38から基板37上に噴射する(ステップS6)。 Next, as shown in FIG. 5, hydrogen H 2 and oxygen O 2 are supplied into the container 1 to start combustion in the container 1 (step S5). Simultaneously with the generation of the water vapor 28 in the container 1, ozone O 3 and radical oxygen RO are generated, and mixed with stirring when passing through the stirring and mixing plate 31 and the water vapor supply pipe 29 to generate ozone vapor H 2 O + O 3. To do. This ozone vapor H 2 O + O 3 is sprayed onto the substrate 37 from the water vapor supply nozzle 38 of the water vapor supply pipe 29 (step S6).

基板37の水膜にオゾン水蒸気HO+Oを高い濃度で溶解させつつ、基板37上にオゾン水を形成する(ステップS7)。基板38上のFe、Al、Cu等の金属原子は、このオゾン水でイオン化され、オゾン水中に溶解して除去される。また、基板37上の有機物においても、オゾン水の高い酸化力によって分解されオゾン水中に溶解し除去される(ステップS8)。 Ozone water is formed on the substrate 37 while dissolving ozone water vapor H 2 O + O 3 at a high concentration in the water film of the substrate 37 (step S7). Metal atoms such as Fe, Al, and Cu on the substrate 38 are ionized by the ozone water, and dissolved and removed in the ozone water. Also, the organic matter on the substrate 37 is decomposed by the high oxidizing power of ozone water and dissolved and removed in the ozone water (step S8).

なお、オゾン水蒸気HO+Oのみによる基板洗浄を必要とする場合は、基板37上に純水を噴射して水膜を形成する工程を省いて、基板37上にオゾン水蒸気HO+Oのみを噴射して、たとえば、基板37上の有機物はラジカル酸素によって酸化し、二酸化炭素と水にして揮発除去する。 In addition, when the substrate cleaning with only the ozone water vapor H 2 O + O 3 is required, the step of forming a water film by injecting pure water onto the substrate 37 is omitted, and only the ozone water vapor H 2 O + O 3 is formed on the substrate 37. , For example, the organic matter on the substrate 37 is oxidized by radical oxygen, and volatilized and removed as carbon dioxide and water.

前記の通り、オゾンOは、水蒸気28の生成と同時に生成されるため、基板37上に凝縮した水膜にオゾンが溶けて、OH基が生成され、これが有機物除去に大きく関与する。また、前記オゾンO、ラジカル酸素は400℃以上と高温のため、酸化反応を促進するために基板37をあらかじめ加熱する必要がない。また、オゾン水蒸気HO+O及び純水を基板37上に噴射中、水蒸気供給管27を、基板37上の中心部から基板37の端部に向かって回転することも可能である。 As described above, since ozone O 3 is generated simultaneously with the generation of the water vapor 28, ozone is dissolved in the water film condensed on the substrate 37, and OH groups are generated, which is greatly involved in organic matter removal. Further, since the ozone O 3 and radical oxygen are as high as 400 ° C. or higher, it is not necessary to heat the substrate 37 in advance in order to promote the oxidation reaction. It is also possible to rotate the water vapor supply pipe 27 from the central portion on the substrate 37 toward the end of the substrate 37 while ozone water vapor H 2 O + O 3 and pure water are jetted onto the substrate 37.

次に、所定時間だけ基板37上にオゾン水蒸気HO+O及び純水を噴射する(ステップS9)。その後、容器1内に供給している水素H2と酸素O2の供給及び純水40を停止する(ステップS10)。 Next, ozone water vapor H 2 O + O 3 and pure water are sprayed onto the substrate 37 for a predetermined time (step S9). Thereafter, the supply of hydrogen H 2 and oxygen O 2 and pure water 40 supplied into the container 1 are stopped (step S10).

次に、図6に示すように、IPA蒸気発生装置からIPA蒸気をIPA蒸気供給管39に供給してIPA蒸気供給ノズル38から基板37上にIPA蒸気を噴射する(ステップS11)し、基板37上にIPAを凝縮(ステップS12)して基板37上の水膜をIPAに置換する(ステップS13)。なお、IPA蒸気を基板37上に噴射中、水蒸気供給管29を基板37上の中心部から基板37の端部に向かって回転することも可能である。   Next, as shown in FIG. 6, IPA vapor is supplied from the IPA vapor generator to the IPA vapor supply pipe 39, and the IPA vapor is injected from the IPA vapor supply nozzle 38 onto the substrate 37 (step S <b> 11). IPA is condensed thereon (step S12), and the water film on the substrate 37 is replaced with IPA (step S13). It is also possible to rotate the water vapor supply pipe 29 from the central portion on the substrate 37 toward the end portion of the substrate 37 while the IPA vapor is jetted onto the substrate 37.

次に、図7に示すように、所定時間だけ基板37上にIPA蒸気を噴射した後、基板37上の水膜をIPAに置換完了後、IPA蒸気供給管29に供給しているIPA蒸気の供給を停止する(ステップS14)。窒素供給口11に配管接続されている酸素供給管6から容器1内の壁面に向けて窒素N2を供給する。容器1内は600℃以上となっているため、容器1内の温度が生成され、水蒸気供給管29を通して窒素供給ノズル38から基板37上に100℃以上の加熱窒素を噴射する(ステップS15)。 Next, as shown in FIG. 7, after the IPA vapor is sprayed onto the substrate 37 for a predetermined time, the water film on the substrate 37 is replaced with IPA, and then the IPA vapor supplied to the IPA vapor supply pipe 29 is replaced. Supply is stopped (step S14). Nitrogen N 2 is supplied from the oxygen supply pipe 6 connected to the nitrogen supply port 11 toward the wall surface in the container 1. Since the temperature in the container 1 is 600 ° C. or higher, the temperature in the container 1 is generated, and heated nitrogen of 100 ° C. or higher is sprayed from the nitrogen supply nozzle 38 onto the substrate 37 through the water vapor supply pipe 29 (step S15).

よって、基板37上のIPAが発散され基板37表面が乾燥される(ステップS16)。なお、加熱窒素を基板37上に噴射中、水蒸気供給管29を基板37上の中心部から基板37の端部に向かって回転することも可能である。   Therefore, the IPA on the substrate 37 is diverged and the surface of the substrate 37 is dried (step S16). It is also possible to rotate the water vapor supply pipe 29 from the central portion on the substrate 37 toward the end portion of the substrate 37 while jetting heated nitrogen onto the substrate 37.

図8に示すように、基板37の表面が乾燥した後、窒素の供給を停止(ステップS17)し、オゾン水蒸気生成装置を所定位置まで上昇、回転させて、水蒸気供給管29を基板37上から上方へ移動する。移動完了後、基板37を枚葉スピン洗浄機から搬出する。   As shown in FIG. 8, after the surface of the substrate 37 is dried, the supply of nitrogen is stopped (step S <b> 17), the ozone water vapor generating device is raised to a predetermined position and rotated, and the water vapor supply pipe 29 is moved from above the substrate 37. Move upward. After the movement is completed, the substrate 37 is unloaded from the single wafer spin cleaning machine.

前述したように、水素H2と酸素O2を燃焼させ、燃焼後の水蒸気28を連続的または間歇的に生成させることにより、基板37上の微粒子、有機物、金属粉等を効率的に除去することができる。さらに、オゾン発生から基板37までの配管を長くしても、自己分解することなく高濃度のオゾンを基板に供給することができ、基板を任意の位置に設置することができる。 As described above, hydrogen H 2 and oxygen O 2 are combusted, and the water vapor 28 after combustion is generated continuously or intermittently, whereby fine particles, organic matter, metal powder, etc. on the substrate 37 are efficiently removed. be able to. Furthermore, even if the piping from the generation of ozone to the substrate 37 is lengthened, high-concentration ozone can be supplied to the substrate without self-decomposition, and the substrate can be installed at an arbitrary position.

なお、この発明は前記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、前記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を組合わせてもよい。   The present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, the constituent elements over different embodiments may be combined.

この発明の第1の実施形態を示し、オゾン水蒸気生成装置の概略的構成図。BRIEF DESCRIPTION OF THE DRAWINGS The 1st Embodiment of this invention is shown, The schematic block diagram of an ozone water vapor generating apparatus. 同実施形態のオゾン水蒸気生成装置の作用を示すフローチャート。The flowchart which shows the effect | action of the ozone water vapor generating apparatus of the embodiment. 同実施形態のオゾン水蒸気生成装置の作用説明図。Action | operation explanatory drawing of the ozone water vapor generating apparatus of the embodiment. 同実施形態のオゾン水蒸気生成装置の作用説明図。Action | operation explanatory drawing of the ozone water vapor generating apparatus of the embodiment. 同実施形態のオゾン水蒸気生成装置の作用説明図。Action | operation explanatory drawing of the ozone water vapor generating apparatus of the embodiment. 同実施形態のオゾン水蒸気生成装置の作用説明図。Action | operation explanatory drawing of the ozone water vapor generating apparatus of the embodiment. 同実施形態のオゾン水蒸気生成装置の作用説明図。Action | operation explanatory drawing of the ozone water vapor generating apparatus of the embodiment. 同実施形態のオゾン水蒸気生成装置の作用説明図。Action | operation explanatory drawing of the ozone water vapor generating apparatus of the embodiment.

符号の説明Explanation of symbols

1…容器、5…水素供給管、6…酸素供給管、29…水蒸気供給管、37…基板 DESCRIPTION OF SYMBOLS 1 ... Container, 5 ... Hydrogen supply pipe, 6 ... Oxygen supply pipe, 29 ... Water vapor supply pipe, 37 ... Substrate

Claims (3)

洗浄すべき基板を載置する載置台と、A mounting table for mounting a substrate to be cleaned;
水素と酸素を燃焼させ、酸素とオゾンとラジカル酸素を含んだ水蒸気を生成するとともに、前記載置台と離間して設置された容器と、  Burning hydrogen and oxygen to produce water vapor containing oxygen, ozone and radical oxygen, and a container installed away from the mounting table,
一端部が前記容器と接続され、他端部に前記載置台の基板の表面に対向する水蒸気供給ノズルを有し、前記容器内で生成された水蒸気を連続的または間歇的に供給し、前記水蒸気供給ノズルによって前記基板の表面に噴射させて洗浄する水蒸気供給管と、  One end is connected to the container, and the other end has a water vapor supply nozzle facing the surface of the substrate of the mounting table, and continuously or intermittently supplies water vapor generated in the container. A water vapor supply pipe for spraying and cleaning the surface of the substrate by a supply nozzle;
を具備したことを特徴とする洗浄装置。  A cleaning apparatus comprising:
前記水蒸気供給管は、前記容器内で生成された酸素とオゾンとラジカル酸素を含んだ水蒸気を供給中に混合撹拌する螺旋状の水蒸気通路を有していることを特徴とする請求項1記載の洗浄装置。2. The water vapor supply pipe according to claim 1, wherein the water vapor supply pipe has a spiral water vapor passage that mixes and stirs the water containing oxygen, ozone, and radical oxygen generated in the container during supply. Cleaning device. 前記水蒸気供給管は、有機溶剤の供給源と接続される蒸気供給管を内部に有し、前記水蒸気供給ノズルから有機溶剤を前記基板の表面に噴射させ、前記水蒸気の凝縮を防止して基板上の水膜を有機溶剤で置換するようにしたことを特徴とする請求項1記載の洗浄装置。The water vapor supply pipe has a vapor supply pipe connected to a supply source of the organic solvent inside, and sprays the organic solvent from the water vapor supply nozzle onto the surface of the substrate to prevent the water vapor from condensing on the substrate. The cleaning apparatus according to claim 1, wherein the water film is replaced with an organic solvent.
JP2004146638A 2004-05-17 2004-05-17 Cleaning device Expired - Fee Related JP3910190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004146638A JP3910190B2 (en) 2004-05-17 2004-05-17 Cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004146638A JP3910190B2 (en) 2004-05-17 2004-05-17 Cleaning device

Publications (2)

Publication Number Publication Date
JP2005327992A JP2005327992A (en) 2005-11-24
JP3910190B2 true JP3910190B2 (en) 2007-04-25

Family

ID=35474073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004146638A Expired - Fee Related JP3910190B2 (en) 2004-05-17 2004-05-17 Cleaning device

Country Status (1)

Country Link
JP (1) JP3910190B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705937B2 (en) * 2007-08-01 2011-06-22 オメガセミコン電子株式会社 Vapor dryer
KR101935581B1 (en) * 2017-06-12 2019-01-04 (주)엔피홀딩스 All-in-one nozzle for forming steam
KR102099433B1 (en) * 2018-08-29 2020-04-10 세메스 주식회사 Apparatus and method of processing stripping a substrate

Also Published As

Publication number Publication date
JP2005327992A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
US6591845B1 (en) Apparatus and method for processing the surface of a workpiece with ozone
US6551409B1 (en) Method for removing organic contaminants from a semiconductor surface
JP3869566B2 (en) Photoresist film removal method and apparatus
TWI795559B (en) Production method of ozone water
WO2012073574A1 (en) Method for removal of photoresist
JP2008537018A (en) Apparatus and method for supercritical fluid removal or deposition processes
JP4863897B2 (en) Substrate cleaning apparatus, substrate cleaning method, and substrate cleaning program
JP2009219995A (en) Gas-dissolved water supply system
WO2015198608A1 (en) Method for manufacturing reaction product in which phase interface reaction is employed, phase interface reactor, and method for manufacturing secondary reaction product
JP2003309100A (en) Resist film removing device and method and organic matter removing device and method therefor
JP2002110611A (en) Method and apparatus for cleaning semiconductor wafer
WO2003088337A1 (en) Resist removing apparatus and method of removing resist
JP3910190B2 (en) Cleaning device
JP2002270575A (en) Etching method, semiconductor device fabricated by that method and etching system
JP2007048983A (en) Substrate treatment method and substrate treatment device
JP2004241414A (en) Stripper/cleaner
JP2004241726A (en) Method and device for treating resist
JP5126478B2 (en) Cleaning liquid manufacturing method, cleaning liquid supply apparatus and cleaning system
JP4236073B2 (en) Substrate processing equipment
JP2007266636A (en) Substrate treatment device
JP2000058496A5 (en)
JP2017202474A (en) Ozone dissolved water production apparatus
JP2001230246A (en) Method and apparatus for thermally oxidizing semiconductor
JP3392789B2 (en) Thermal oxidation method and apparatus
KR20050069674A (en) Gas treatment apparatus of wet scrubber and gas treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees