WO2023199410A1 - Method for treating exhaust gas containing nitrogen compound, and apparatus for said method - Google Patents

Method for treating exhaust gas containing nitrogen compound, and apparatus for said method Download PDF

Info

Publication number
WO2023199410A1
WO2023199410A1 PCT/JP2022/017627 JP2022017627W WO2023199410A1 WO 2023199410 A1 WO2023199410 A1 WO 2023199410A1 JP 2022017627 W JP2022017627 W JP 2022017627W WO 2023199410 A1 WO2023199410 A1 WO 2023199410A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
nitrogen compound
gas treatment
column member
treatment device
Prior art date
Application number
PCT/JP2022/017627
Other languages
French (fr)
Japanese (ja)
Inventor
啓志 今村
道彦 柳澤
Original Assignee
カンケンテクノ株式会社
北京康肯▲環▼保▲設▼▲備▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カンケンテクノ株式会社, 北京康肯▲環▼保▲設▼▲備▼有限公司 filed Critical カンケンテクノ株式会社
Priority to PCT/JP2022/017627 priority Critical patent/WO2023199410A1/en
Priority to TW112101765A priority patent/TW202400290A/en
Publication of WO2023199410A1 publication Critical patent/WO2023199410A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact

Definitions

  • the present invention relates to a treatment method and apparatus suitable for abatement treatment of exhaust gas containing nitrogen compounds such as N 2 O and NF 3 .
  • N 2 O nitrogen oxide
  • NF 3 nitrogen trifluoride
  • the global warming potential (GWP) of nitrogen compounds such as N 2 O and NF 3 is hundreds to tens of thousands of times higher than that of CO 2 , so if they are emitted as is, they will cause great damage to the global environment. It has been known. For this reason, various technologies are being developed to remove used N 2 O, NF 3 and the like from exhaust gas.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-57262 discloses that ammonia is added as a reducing agent to exhaust gas containing N 2 O.
  • a method is disclosed in which N 2 O in exhaust gas is reduced and removed by mixing them and contacting them with a catalyst in which 0.1 to 6 wt% iron is supported on ⁇ -zeolite at a temperature range of 350 to 500°C.
  • the above-mentioned conventional technology has the following problems. That is, by adding a reducing agent to exhaust gas containing N 2 O and bringing it into contact with a Fe zeolite catalyst at a predetermined temperature range, N 2 O is directly converted into harmless nitrogen (N 2 ) and water (H 2 O). ), but the removal rate of N 2 O by this method is approximately 60%. For this reason, there is a problem in that it is not suitable for treating exhaust gas, such as exhaust gas from semiconductor manufacturing processes, where a large amount of N 2 O must be reduced below a predetermined TLV value.
  • the main purpose of the present invention is to ensure that even if a large amount of nitrogen compounds are contained in the exhaust gas, they can be decomposed and harmed, and that NOx produced by the decomposition can also be reliably removed from the exhaust gas.
  • An object of the present invention is to provide a method for treating exhaust gas containing nitrogen compounds and an apparatus therefor.
  • the present invention provides a method for eliminating nitrogen compounds in nitrogen compound-containing exhaust gas as follows. That is, the first step is to heat the nitrogen compound-containing exhaust gas E1 to a temperature higher than the thermal decomposition temperature of the nitrogen compound to thermally decompose the nitrogen compound, and to add water to the high temperature treated gas E2 in which the nitrogen compound has been thermally decomposed. and a second step of passing through the column member 18 filled with the porous particulate material. The second step is characterized by cooling so that the temperature of the treated gas E2 at the outlet of the column member 18 is below 100°C, more preferably below 50°C.
  • the nitrogen compounds are thermally decomposed in the first step, a large amount of NO is generated, but in the subsequent second step, water is added to the high temperature treated gas E2 containing a large amount of NO.
  • NO in the treated gas E2 is converted to NO 2 that is easily soluble in water.
  • the temperature of the treated gas E2 at the outlet of the column member 18 is cooled to below 100°C, more preferably below 50°C, thereby converting the NO 2 into the form of HNO 3 or HNO 2 . It is absorbed into the liquid phase and removed from the treated gas E2.
  • the porous granular material is zeolite and/or activated carbon.
  • the column it is possible to use the column continuously for a long period of time in an environment where the column member 18 is constantly exposed to high temperatures, and the internal specific surface area of the column member 18 is increased to allow the adsorption of NO in the treated gas E2 within the column member 18. Density and adsorption amount can be maximized. Furthermore, various catalytic metals can be supported, and the conversion of NO to NO 2 can be performed even more efficiently.
  • the conversion efficiency and conversion rate from NO to NO 2 in the treated gas E2 can be maximized, and the removal rate of nitrogen components (nitrogen compounds) from the treated gas E2 can be further improved. can be improved.
  • the apparatus according to the second invention is an apparatus for carrying out the above-mentioned method, and for example, as shown in FIG. 1, the exhaust gas treatment apparatus is configured as follows. That is, the exhaust gas treatment furnace 12 has an exhaust gas decomposition chamber 12a formed therein for thermally decomposing the nitrogen compound-containing exhaust gas E1, and the tip thereof is connected to the exhaust gas treatment furnace 12, and the exhaust gas decomposition chamber 12a contains the nitrogen compound-containing exhaust gas.
  • An inflow piping system 14 that supplies exhaust gas E1 is connected at its base end to a gas outlet 12b provided at the bottom of the exhaust gas treatment furnace 12, and discharges the treated gas E2 that has been thermally decomposed in the exhaust gas decomposition chamber 12a.
  • a discharge piping system 16 is provided.
  • a column member 18 filled with porous particulate material is interposed between the exhaust gas decomposition chamber 12a and the gas outlet 12b, and the column member 18 is gas-permeable.
  • a nozzle 20 for supplying water is provided on the inlet side in the flow direction.
  • a wet inlet scrubber 22 is preferably attached to the inlet piping system 14, and a wet outlet scrubber 24 is preferably attached to the outlet piping system 16.
  • the nitrogen compound-containing exhaust gas E1 can be washed with water before being thermally decomposed, and dust and water-soluble substances in the nitrogen compound-containing exhaust gas E1 can be removed in advance. It is possible to prevent problems such as adhesion and accumulation of dust and water-soluble substances, which prevents sufficient thermal decomposition.
  • a cooling device 26 for cooling the column member 18 so that the temperature of the treated gas E2 at the outlet of the column member 18 is 50° C. or less. In this case, more nitrogen components (nitrogen compounds) in the treated gas E2 discharged from the exhaust gas treatment furnace 12 can be reliably absorbed into the liquid phase and removed from the treated gas E2.
  • the nozzle 20 supplies oxygen and/or hydrogen peroxide in addition to water.
  • a method and apparatus for treating nitrogen compound-containing exhaust gas can be provided.
  • FIG. 1 is an explanatory diagram showing an overview of an exhaust gas treatment device according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing an overview of an embodiment of an exhaust gas treatment apparatus 10 that executes the method for treating nitrogen compound-containing exhaust gas E1 of the present invention.
  • the exhaust gas treatment device 10 of the present embodiment is roughly composed of an exhaust gas treatment furnace 12, an inlet piping system 14, an exhaust piping system 16, and the like.
  • the exhaust gas treatment furnace 12 is a device that thermally decomposes the nitrogen compound-containing exhaust gas E1 containing nitrogen compounds such as N 2 O and NF 3 to generate a treated gas E2, and has a cylindrical furnace body 12X.
  • An exhaust gas decomposition chamber 12a is provided inside the furnace body 12X, and one or more electric heaters 28 are vertically installed in the exhaust gas decomposition chamber 12a.
  • the furnace body 12X of the exhaust gas treatment furnace 12 has a cylindrical outer jacket made of steel (not shown), and a lining member made of a refractory material and covering the entire inner circumference of the outer jacket, An exhaust gas decomposition chamber 12a is formed inside the lining member.
  • the tip of an inflow piping system 14 made of a metal pipe 30 with excellent heat resistance and corrosion resistance is installed, and an electric heater 28 surrounds the tip. It is arranged like this.
  • the tip (downstream end) of the inflow piping system 14 erected in the exhaust gas decomposition chamber 12a from the bottom of the exhaust gas treatment furnace 12 extends to near the ceiling of the exhaust gas treatment furnace 12.
  • a gas outlet 12b is provided at the bottom of the exhaust gas treatment furnace 12, and the upstream end of the exhaust piping system 16 is connected to the gas outlet 12b. Then, a column member 18, which will be described later, is attached to a position in the exhaust gas treatment furnace 12 in contact with the gas outlet 12b.
  • the electric heater 28 heats the inside of the exhaust gas decomposition chamber 12a to a predetermined temperature that is higher than the thermal decomposition temperature of the components to be removed (nitrogen compounds, etc.) in the nitrogen compound-containing exhaust gas E1 (specifically, about 600°C to 1300°C). It is for thermally decomposing the nitrogen compound-containing exhaust gas E1, and is formed of a solid or hollow rod-shaped heating element made of silicon carbide. Note that the electric heater 28 is not limited to this silicon carbide material, but may be any material that can raise the temperature to the above-mentioned predetermined temperature.
  • the column member 18 is a cylindrical member whose interior is filled with porous particulate material and allows gas and liquid to flow through it.
  • the column member 18 is a cylindrical metal member with fluid entrances and exits provided at the upper and lower bottom surfaces.
  • a container filled with porous granules is used.
  • This column member 18 is interposed between the exhaust gas decomposition chamber 12a and the gas outlet 12b so as to communicate the two.
  • the porous particles filled inside the column member 18 are preferably those having an average particle diameter of 0.15 mm to 10 mm and a specific surface area of 250 m 2 /g to 2000 m 2 /g (BET method).
  • BET method a specific surface area of 250 m 2 /g to 2000 m 2 /g
  • the porous particles constituting the column member 18 may have catalyst metals such as platinum, silver, rhodium, iron, and rubidium supported on their
  • a nozzle 20 is provided in the exhaust gas treatment furnace 12 for supplying water toward the inlet side of the column member 18 in the gas flow direction.
  • the amount of water supplied from the nozzle 20 is appropriately determined depending on the flow rate of the nitrogen compound-containing exhaust gas E1 supplied to the exhaust gas treatment furnace 12, the amount of nitrogen compounds in the exhaust gas E1, and the like.
  • the flow rate of water supplied from this nozzle 20 is 5%. It is preferably in the range of ⁇ 50 L/min.
  • oxygen and/or hydrogen peroxide can also be supplied from this nozzle 20 as needed.
  • the column member 18 is provided with a cooling device 26 as necessary, which cools the column member 18 with cooling water C so that the temperature of the treated gas E2 at the outlet of the column member 18 is 50° C. or less. It will be installed.
  • the temperature of the treated gas E2 at the inlet of the column member 18 is 300°C or less, more preferably 200°C or less. It is preferable to provide a cooling means for cooling the processed gas E2.
  • the water supplied from the nozzle 20 also functions as this cooling means.
  • the exhaust gas treatment furnace 12 configured as described above is equipped with a temperature measuring means such as a thermocouple for detecting the temperature of the exhaust gas decomposition chamber 12a, and the temperature data ( A temperature signal) is supplied to a control means including a CPU (Central Processing Unit), memory, input device, display device, etc. via a signal line.
  • a control means including a CPU (Central Processing Unit), memory, input device, display device, etc. via a signal line.
  • a power supply unit (not shown) or the like is also connected to this control means.
  • the inflow piping system 14 has its tip (downstream end) inserted into the exhaust gas treatment furnace 12 (as described above), and its base end (upstream end) connected to a source of nitrogen compound-containing exhaust gas E1 such as semiconductor manufacturing equipment (not shown).
  • a source of nitrogen compound-containing exhaust gas E1 such as semiconductor manufacturing equipment (not shown).
  • This is a piping system that introduces the nitrogen compound-containing exhaust gas E1 into the exhaust gas decomposition chamber 12a by connecting it.
  • a wet inlet scrubber 22 is provided in the middle of this inflow piping system 14 as required.
  • the inlet scrubber 22 is a wet type scrubber that removes dust and water-soluble components contained in the nitrogen compound-containing exhaust gas E1 introduced into the exhaust gas treatment furnace 12.
  • the scrubber body 22a includes a spray nozzle 22b that is installed near the top inside the scrubber body 22a and sprays a chemical solution such as water in the form of a spray.
  • This inlet scrubber 22 is installed upright on the chemical liquid tank 32 (see FIG. 1), or is installed separately from the chemical liquid tank 32 (not shown), and both are connected by piping so that the waste liquid can be used as a chemical liquid. It is designed to be sent into a tank 32.
  • a circulation pump 34 is installed between the spray nozzle 22b and the chemical tank 32, and lifts the stored chemical in the chemical tank 32 to the spray nozzle 22b.
  • reference numeral 36 in FIG. 1 is a "partition wall" that partitions the nitrogen compound-containing exhaust gas E1 washed by the inlet scrubber 22 from flowing into the exhaust piping system 16 side without passing through the exhaust gas treatment furnace 12.
  • the discharge piping system 16 is a piping system for discharging the treated gas E2 generated in the exhaust gas decomposition chamber 12a into the atmosphere.
  • An exhaust fan 38 is installed in the middle of the exhaust piping system 16 to suck the treated gas E2 in the exhaust gas decomposition chamber 12a and release it into the atmosphere.
  • a wet outlet scrubber 24 is provided between the two as required.
  • the outlet scrubber 24 is a wet-type scrubber that cools the treated gas E2 after thermal decomposition that has passed through the exhaust gas treatment furnace 12, and finally removes dust, water-soluble components, etc. produced by the thermal decomposition from the treated gas E2.
  • This is a scrubber.
  • the outlet scrubber 24 is connected to the gas outlet of the exhaust gas treatment furnace 12 via "a space surrounded by the liquid level of the chemical tank 32, the ceiling surface, and the partition wall 36," which is a part of the exhaust piping system 16. 12b, and a downward spray nozzle 24b that is installed near the top inside the scrubber body 24a and sprays a chemical solution such as water so as to face the flow direction of the treated gas E2. including.
  • the outlet scrubber 24 is erected above the chemical liquid tank 32 so that waste water is sent into the chemical liquid tank 32.
  • the spray nozzle 24b is connected to the discharge side of the circulation pump 34 to lift the stored chemical solution in the chemical solution tank 32 to the spray nozzle 24b.
  • new chemical solution such as fresh water may be supplied to the spray nozzle 24b.
  • other parts of the exhaust gas treatment device 10 of this embodiment other than the exhaust gas treatment furnace 12 contain nitric acid, hydrofluoric acid, etc. contained in the nitrogen compound-containing exhaust gas E1 or generated by thermal decomposition of the nitrogen compound-containing exhaust gas E1.
  • a corrosion-resistant lining or coating made of vinyl chloride, polyethylene, unsaturated polyester resin, fluororesin, or the like.
  • the exhaust fan 38 is activated. Introduction of the exhaust gas E into the processing device 10 is started. Then, the nitrogen compound-containing exhaust gas E1 passes through the inlet scrubber 22, the exhaust gas treatment furnace 12, and the outlet scrubber 24 in this order, and the components targeted for abatement (i.e., N 2 O, NF 3 , etc.) in the nitrogen compound-containing exhaust gas E1 are removed. be harmed. Further, a control means (not shown) controls the amount of electric power supplied to the electric heater 28 of the exhaust gas treatment furnace 12 so that the temperature in the exhaust gas treatment chamber 12a is maintained at a predetermined temperature.
  • a treated gas E2 containing a large amount of NO is generated (in accordance with the treatment method). 1st step).
  • NO in the treated gas E2 is removed by a small amount of oxygen radicals contained in the water vapor. It is converted to NO2, which is easily soluble in water.
  • the remaining NO is adsorbed in a high density state on the adsorption sites on the surface of the porous granules, and reacts with the O 2 brought in from the exhaust gas E1 and the oxygen radicals or OH radicals contained in the water vapor mentioned above, and is converted to NO 2 . be done.
  • NO 2 is absorbed into the liquid phase in the form of HNO 3 or HNO 2 and the treated gas E2 is removed from the inside (second step of the treatment method).
  • the treated gas E2 when approximately 70,000 ppm of NOx (NO) is generated in the first step of the above treatment method, if only water is supplied from the nozzle 20 in the second step of the above treatment method, the treated gas E2 The amount of NOx inside can be reduced to approximately 1,500 to 2,000 ppm. Furthermore, when oxygen or hydrogen peroxide is supplied in addition to water from the nozzle 20 in the second step of the above treatment method, the conversion of NO to NO 2 is further accelerated, and the amount of NOx in the treated gas E2 is approximately reduced. It can be reduced to 100-200 ppm.
  • the above-mentioned illustrated embodiment shows the case where the exhaust gas treatment device 10 is equipped with both the inlet scrubber 22 and the outlet scrubber 24, for example, when the amount of dust and water-soluble components in the nitrogen compound-containing exhaust gas E1 is small,
  • the inlet scrubber 22 may be omitted, and the outlet scrubber 24 may be omitted if the treated gas E2 contains little dust or water-soluble components.
  • the case where the temperature of the treated gas E2 at the outlet of the column member 18 is cooled to 50° C. or lower is shown, but for example, If the maximum amount of NO X can be sufficiently removed.
  • the cooling means at this time water and hydrogen peroxide solution supplied from the nozzle 20 can be used.
  • a case is shown in which a cylindrical metal container with fluid inlets and outlets provided at the upper and lower bottom surfaces and filled with porous granular material is used as the column member 18.
  • 18 may be any cylindrical member whose interior is filled with porous particles and allows gas or liquid to flow therethrough; for example, the inner surface of a cylindrical or rectangular honeycomb member. It may also be one in which the above-mentioned porous particulate material is supported on the substrate.
  • Exhaust gas treatment device 10: Exhaust gas treatment device, 12: Exhaust gas treatment furnace, 12a: Exhaust gas decomposition chamber, 12b: Gas outlet, 14: Inflow piping system, 16: Discharge piping system, 18: Column member, 20: Nozzle, 22: Inlet scrubber, 24 : Outlet scrubber, 26: Cooling device, E1: Nitrogen compound-containing exhaust gas, E2: Treated gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)

Abstract

The present invention is a method for detoxifying a nitrogen compound in an exhaust gas containing the nitrogen compound, the method comprising: a first step for heating the exhaust gas (E1) containing the nitrogen compound to a temperature equal to or higher than the thermal decomposition temperature of the nitrogen compound to thermally decompose the nitrogen compound; and a second step for adding water to a high-temperature treated gas (E2) in which the nitrogen compound has been thermally decomposed and then allowing the resultant mixture to pass through a column member (18) in which a porous granular material is filled. The method is characterized in that, in the second step, cooling is performed in such a manner that the temperature of the treated gas (E2) at the outlet of the column member (18) becomes lower than 100°C.

Description

窒素化合物含有排ガスの処理方法及びその装置Method and device for treating exhaust gas containing nitrogen compounds
 本発明は、NOやNFなどの窒素化合物を含む排ガスの除害処理に好適な処理方法とその装置とに関する。 The present invention relates to a treatment method and apparatus suitable for abatement treatment of exhaust gas containing nitrogen compounds such as N 2 O and NF 3 .
 高純度のNO(亜酸化窒素)は、従前より半導体CVDプロセスで絶縁酸化膜形成用ガスとして使用されてきたが、近年、液晶ディスプレイ製造時の酸化膜の酸素源としての用途が拡大しているため、消費量が大きく伸びており、排出量も増加傾向にある。また、NF(三フッ化窒素)は、シリコンウェハーのプラズマエッチングに加え、液晶ディスプレイやシリコンベースの太陽電池フィルム用のプラズマCVD処理室の洗浄などに使われている。ここで、これらのNOやNFなどの窒素化合物は、地球温暖化係数(GWP)がCOの数百~数万倍であることから、そのまま排出すると地球環境に大きなダメージを与えることが知られている。このため、使用済みとなったNOやNFなどを排ガス中から除害する様々な技術の開発が行われている。 High-purity N 2 O (nitrous oxide) has long been used as a gas for forming insulating oxide films in semiconductor CVD processes, but in recent years its use as an oxygen source for oxide films during the manufacture of liquid crystal displays has expanded. As a result, consumption is increasing significantly, and emissions are also on the rise. In addition to plasma etching of silicon wafers, NF 3 (nitrogen trifluoride) is used for cleaning plasma CVD processing chambers for liquid crystal displays and silicon-based solar cell films. The global warming potential (GWP) of nitrogen compounds such as N 2 O and NF 3 is hundreds to tens of thousands of times higher than that of CO 2 , so if they are emitted as is, they will cause great damage to the global environment. It has been known. For this reason, various technologies are being developed to remove used N 2 O, NF 3 and the like from exhaust gas.
 このような窒素化合物を含む排ガスを除害する技術として、例えば、下記の特許文献1(日本国・特開平8-57262号公報)には、NOを含有する排ガスに還元剤としてアンモニアを混合し、これをβ形ゼオライトに鉄を0.1~6wt%担持した触媒と350~500℃の温度域で接触させて排ガス中のNOを還元除去する方法が開示されている。 As a technology for abatement of exhaust gas containing such nitrogen compounds, for example, the following Patent Document 1 (Japanese Patent Application Laid-Open No. 8-57262) discloses that ammonia is added as a reducing agent to exhaust gas containing N 2 O. A method is disclosed in which N 2 O in exhaust gas is reduced and removed by mixing them and contacting them with a catalyst in which 0.1 to 6 wt% iron is supported on β-zeolite at a temperature range of 350 to 500°C.
特開平8-57262号公報Japanese Patent Application Publication No. 8-57262
 しかしながら、上記の従来技術には次のような課題があった。すなわち、NOを含有する排ガスに還元剤を加え、これを所定の温度域でFeゼオライト触媒と接触させることによって、NOを直接、無害な窒素(N)と水(HO)とに分解させることができるものの、かかる方法でのNOの除去率は概ね60%程度である。このため、半導体製造プロセスでの排ガスのように、多量に含まれるNOを所定のTLV値未満にしなければならない排ガスの処理には適さないと言う問題があった。 However, the above-mentioned conventional technology has the following problems. That is, by adding a reducing agent to exhaust gas containing N 2 O and bringing it into contact with a Fe zeolite catalyst at a predetermined temperature range, N 2 O is directly converted into harmless nitrogen (N 2 ) and water (H 2 O). ), but the removal rate of N 2 O by this method is approximately 60%. For this reason, there is a problem in that it is not suitable for treating exhaust gas, such as exhaust gas from semiconductor manufacturing processes, where a large amount of N 2 O must be reduced below a predetermined TLV value.
 それゆえに、本発明の主たる目的は、排ガス中に多量の窒素化合物が含まれる場合であっても、これを確実に分解除害できると共に、分解によって生じるNOもその排ガス中から確実に除去することが可能な窒素化合物含有排ガスの処理方法とその装置とを提供することにある。 Therefore, the main purpose of the present invention is to ensure that even if a large amount of nitrogen compounds are contained in the exhaust gas, they can be decomposed and harmed, and that NOx produced by the decomposition can also be reliably removed from the exhaust gas. An object of the present invention is to provide a method for treating exhaust gas containing nitrogen compounds and an apparatus therefor.
 上記目的を達成するため、本発明は、窒素化合物含有排ガス中の窒素化合物を除害処理する方法を次のように構成した。
 すなわち、窒素化合物含有排ガスE1をその窒素化合物の熱分解温度以上の温度に加熱して窒素化合物を加熱分解させる第1ステップと、上記の窒素化合物が加熱分解された高温の処理済みガスE2に水を加えて多孔質粒材が充填されたカラム部材18を通過させる第2ステップとを備える。その第2ステップでは、カラム部材18の出口における処理済みガスE2の温度が100℃未満、より好ましくは50℃以下となるように冷却する、ことを特徴とする。
In order to achieve the above object, the present invention provides a method for eliminating nitrogen compounds in nitrogen compound-containing exhaust gas as follows.
That is, the first step is to heat the nitrogen compound-containing exhaust gas E1 to a temperature higher than the thermal decomposition temperature of the nitrogen compound to thermally decompose the nitrogen compound, and to add water to the high temperature treated gas E2 in which the nitrogen compound has been thermally decomposed. and a second step of passing through the column member 18 filled with the porous particulate material. The second step is characterized by cooling so that the temperature of the treated gas E2 at the outlet of the column member 18 is below 100°C, more preferably below 50°C.
 この発明では、前記の第1ステップで窒素化合物を加熱分解すると、一旦大量のNOが生じるようになるが、続く前記の第2ステップで、大量のNOを含む高温の処理済みガスE2に水を加えて多孔質粒材が充填されたカラム部材18を通過させることにより、処理済みガスE2中のNOが水に易溶なNOへと変換される。そして、それと同時にカラム部材18の出口での処理済みガスE2の温度が100℃未満、より好ましくは50℃以下となるように冷却することによって、上記のNOは、HNO又はHNOの形で液相へと吸収されて処理済みガスE2中から除去されるようになる。 In this invention, once the nitrogen compounds are thermally decomposed in the first step, a large amount of NO is generated, but in the subsequent second step, water is added to the high temperature treated gas E2 containing a large amount of NO. In addition, by passing through the column member 18 filled with porous particulate material, NO in the treated gas E2 is converted to NO 2 that is easily soluble in water. At the same time, the temperature of the treated gas E2 at the outlet of the column member 18 is cooled to below 100°C, more preferably below 50°C, thereby converting the NO 2 into the form of HNO 3 or HNO 2 . It is absorbed into the liquid phase and removed from the treated gas E2.
 本発明においては、前記の多孔質粒材が、ゼオライト及び/又は活性炭であるのが好ましい。
 この場合、常に高温に曝される環境下での長期間連続使用が可能になると共に、カラム部材18の内部の比表面積を増大させてカラム部材18内での処理済みガスE2中のNOの吸着密度と吸着量とを極大化させることができる。又、様々な触媒金属を担持させることができ、NOからNOへの変換などをより一層効率的に行うこともできるようになる。
In the present invention, it is preferable that the porous granular material is zeolite and/or activated carbon.
In this case, it is possible to use the column continuously for a long period of time in an environment where the column member 18 is constantly exposed to high temperatures, and the internal specific surface area of the column member 18 is increased to allow the adsorption of NO in the treated gas E2 within the column member 18. Density and adsorption amount can be maximized. Furthermore, various catalytic metals can be supported, and the conversion of NO to NO 2 can be performed even more efficiently.
 また、本発明においては、前記の第2ステップで前記の高温の処理済ガスE2に水を加える際に、酸素及び/又は過酸化水素水を更に加えるのが好ましい。
 この場合、処理済みガスE2中でのNOからNOへの変換効率とその変換速度とを極大化させることができ、処理済みガスE2中からの窒素成分(窒素化合物)の除去率をより一層向上させることができる。なお、この場合において、カラム部材18内におけるNOと酸素との反応(2NO+O→2NO)の活性化エネルギー(Ea=-4.41kJ/mol)を考慮すると、前記カラム部材18の入口における処理済みガスE2の温度が300℃以下、より好ましくは200℃以下となるように冷却するのがより好ましい。
Further, in the present invention, when adding water to the high temperature treated gas E2 in the second step, it is preferable to further add oxygen and/or hydrogen peroxide solution.
In this case, the conversion efficiency and conversion rate from NO to NO 2 in the treated gas E2 can be maximized, and the removal rate of nitrogen components (nitrogen compounds) from the treated gas E2 can be further improved. can be improved. In this case, considering the activation energy (Ea = -4.41 kJ/mol) of the reaction between NO and oxygen (2NO + O 2 → 2NO 2 ) in the column member 18, the treated at the inlet of the column member 18 It is more preferable to cool the gas E2 so that the temperature thereof becomes 300°C or less, more preferably 200°C or less.
 また、第2の発明に係る装置は、上述した方法を実施するための装置であって、例えば図1に示すように、排ガス処理装置を次のように構成したものである。
 すなわち、内部に窒素化合物含有排ガスE1を加熱分解する排ガス分解室12aが形成された排ガス処理炉12と、先端が上記の排ガス処理炉12に接続され、上記の排ガス分解室12a内に窒素化合物含有排ガスE1を供給する流入配管系14と、基端が上記の排ガス処理炉12の底部に設けられたガス出口12bに接続され、上記の排ガス分解室12aで加熱分解された処理済みガスE2を排出する排出配管系16とを備える。上記の排ガス処理炉12内には、上記の排ガス分解室12aと上記ガス出口12bとの間に、多孔質粒材が充填されたカラム部材18が介設されると共に、そのカラム部材18のガス通流方向の入口側に水を供給するノズル20が設けられる。
Moreover, the apparatus according to the second invention is an apparatus for carrying out the above-mentioned method, and for example, as shown in FIG. 1, the exhaust gas treatment apparatus is configured as follows.
That is, the exhaust gas treatment furnace 12 has an exhaust gas decomposition chamber 12a formed therein for thermally decomposing the nitrogen compound-containing exhaust gas E1, and the tip thereof is connected to the exhaust gas treatment furnace 12, and the exhaust gas decomposition chamber 12a contains the nitrogen compound-containing exhaust gas. An inflow piping system 14 that supplies exhaust gas E1 is connected at its base end to a gas outlet 12b provided at the bottom of the exhaust gas treatment furnace 12, and discharges the treated gas E2 that has been thermally decomposed in the exhaust gas decomposition chamber 12a. A discharge piping system 16 is provided. In the exhaust gas treatment furnace 12, a column member 18 filled with porous particulate material is interposed between the exhaust gas decomposition chamber 12a and the gas outlet 12b, and the column member 18 is gas-permeable. A nozzle 20 for supplying water is provided on the inlet side in the flow direction.
 本発明においては、前記の流入配管系14に湿式の入口スクラバー22を取り付けるのが好ましく、又、前記の排出配管系16に湿式の出口スクラバー24を取り付けるのが好ましい。
 上記の入口スクラバー22を取り付けた場合、窒素化合物含有排ガスE1を加熱分解する前に水洗し、窒素化合物含有排ガスE1中の粉塵や水溶性物質を予め除去できるので、前記の排ガス処理炉12内に粉塵や水溶性物質が付着・堆積し、加熱分解が十分に行なえなくなるといったトラブルを防止することができる。一方、上記の出口スクラバー24を取り付けた場合、窒素化合物含有排ガスE1の加熱分解によって生じた処理済みガスE2中の粉塵や水溶性成分などを除去することができ、最終的に大気中へと排出する処理済みガスE2の清浄度をより一層向上させることができる。
In accordance with the present invention, a wet inlet scrubber 22 is preferably attached to the inlet piping system 14, and a wet outlet scrubber 24 is preferably attached to the outlet piping system 16.
When the above-mentioned inlet scrubber 22 is installed, the nitrogen compound-containing exhaust gas E1 can be washed with water before being thermally decomposed, and dust and water-soluble substances in the nitrogen compound-containing exhaust gas E1 can be removed in advance. It is possible to prevent problems such as adhesion and accumulation of dust and water-soluble substances, which prevents sufficient thermal decomposition. On the other hand, when the above-mentioned outlet scrubber 24 is installed, it is possible to remove dust and water-soluble components from the treated gas E2 generated by thermal decomposition of the nitrogen compound-containing exhaust gas E1, and finally discharge it into the atmosphere. The cleanliness of the treated gas E2 can be further improved.
 また、本発明においては、前記カラム部材18の出口における処理済みガスE2の温度が50℃以下となるように上記カラム部材18を冷却する冷却装置26を設けるのが好ましい。
 この場合、前記の排ガス処理炉12より排出される処理済みガスE2中の窒素成分(窒素化合物)をより多く確実に液相へと吸収させて処理済みガスE2中から除去することができる。
Further, in the present invention, it is preferable to provide a cooling device 26 for cooling the column member 18 so that the temperature of the treated gas E2 at the outlet of the column member 18 is 50° C. or less.
In this case, more nitrogen components (nitrogen compounds) in the treated gas E2 discharged from the exhaust gas treatment furnace 12 can be reliably absorbed into the liquid phase and removed from the treated gas E2.
 さらに、本発明においては、前記ノズル20で、水に加えて酸素及び/又は過酸化水素水を供給するのが好ましい。なお、この場合には、前記カラム部材18の入口における処理済みガスE2の温度が300℃以下となるように上記の処理済ガスE2を冷却する冷却手段を設けるのがより好ましい。 Furthermore, in the present invention, it is preferable that the nozzle 20 supplies oxygen and/or hydrogen peroxide in addition to water. In this case, it is more preferable to provide a cooling means for cooling the processed gas E2 so that the temperature of the processed gas E2 at the inlet of the column member 18 is 300° C. or less.
 本発明によれば、排ガス中に多量の窒素化合物が含まれる場合であっても、これを確実に分解除害できると共に、分解によって生じるNOもその排ガス中から確実に除去することが可能な窒素化合物含有排ガスの処理方法とその装置とを提供することができる。 According to the present invention, even if a large amount of nitrogen compounds are contained in the exhaust gas, it is possible to reliably decompose the nitrogen compounds and remove them from the exhaust gas. A method and apparatus for treating nitrogen compound-containing exhaust gas can be provided.
本発明の一実施形態の排ガス処理装置の概要を示す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing an overview of an exhaust gas treatment device according to an embodiment of the present invention.
 以下、本発明の一実施形態を図1によって説明する。図1は、本発明の窒素化合物含有排ガスE1の処理方法を実行する排ガス処理装置10の一実施形態の概要を示す図である。この図が示すように、本実施形態の排ガス処理装置10は、大略、排ガス処理炉12,流入配管系14,排出配管系16などで構成される。 Hereinafter, one embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing an overview of an embodiment of an exhaust gas treatment apparatus 10 that executes the method for treating nitrogen compound-containing exhaust gas E1 of the present invention. As shown in this figure, the exhaust gas treatment device 10 of the present embodiment is roughly composed of an exhaust gas treatment furnace 12, an inlet piping system 14, an exhaust piping system 16, and the like.
 排ガス処理炉12は、NOやNFなどの窒素化合物を含有する窒素化合物含有排ガスE1を加熱分解して処理済みガスE2を生成する装置であり、円筒状の炉本体12Xを有する。この炉本体12Xの内部には排ガス分解室12aが設けられており、その排ガス分解室12aには1又は複数本の電熱ヒーター28が垂設されている。 The exhaust gas treatment furnace 12 is a device that thermally decomposes the nitrogen compound-containing exhaust gas E1 containing nitrogen compounds such as N 2 O and NF 3 to generate a treated gas E2, and has a cylindrical furnace body 12X. An exhaust gas decomposition chamber 12a is provided inside the furnace body 12X, and one or more electric heaters 28 are vertically installed in the exhaust gas decomposition chamber 12a.
 この排ガス処理炉12の炉本体12Xは、(図示しないが)スチール製で円筒状の外皮ジャケットと、耐火材で形成され、外皮ジャケットの内周全面を覆う内張部材とを有しており、内張部材の内部に排ガス分解室12aが形成される。 The furnace body 12X of the exhaust gas treatment furnace 12 has a cylindrical outer jacket made of steel (not shown), and a lining member made of a refractory material and covering the entire inner circumference of the outer jacket, An exhaust gas decomposition chamber 12a is formed inside the lining member.
 また、排ガス処理炉12の底部中央には、耐熱性・耐腐食性に優れた金属パイプ30で構成された流入配管系14の先端部が立設されており、その周囲を電熱ヒーター28が取り巻くように配設されている。ここで、排ガス処理炉12の底面から排ガス分解室12a内に立設された流入配管系14の先端(下流端)は、排ガス処理炉12の天井近傍まで延設される。 Further, in the center of the bottom of the exhaust gas treatment furnace 12, the tip of an inflow piping system 14 made of a metal pipe 30 with excellent heat resistance and corrosion resistance is installed, and an electric heater 28 surrounds the tip. It is arranged like this. Here, the tip (downstream end) of the inflow piping system 14 erected in the exhaust gas decomposition chamber 12a from the bottom of the exhaust gas treatment furnace 12 extends to near the ceiling of the exhaust gas treatment furnace 12.
 そして、排ガス処理炉12の底部にはガス出口12bが穿設され、そのガス出口12bに排出配管系16の上流端が連結されると共に、上記の排ガス分解室12aとガス出口12bの間、換言すれば、排ガス処理炉12内のガス出口12bに接する位置に、後述するカラム部材18が取着される。 A gas outlet 12b is provided at the bottom of the exhaust gas treatment furnace 12, and the upstream end of the exhaust piping system 16 is connected to the gas outlet 12b. Then, a column member 18, which will be described later, is attached to a position in the exhaust gas treatment furnace 12 in contact with the gas outlet 12b.
 電熱ヒーター28は、排ガス分解室12a内を窒素化合物含有排ガスE1中の除害対象成分(窒素化合物など)の熱分解温度以上(具体的には600℃~1300℃程度)の所定の温度に加熱して、当該窒素化合物含有排ガスE1を加熱分解させるためのものであり、炭化珪素からなる中実あるいは中空の棒状の発熱体で形成されている。なお、電熱ヒーター28は、この炭化珪素からなる物に限定されるものではなく、上述した所定の温度に昇温可能な物であれば如何なるものであっても良い。 The electric heater 28 heats the inside of the exhaust gas decomposition chamber 12a to a predetermined temperature that is higher than the thermal decomposition temperature of the components to be removed (nitrogen compounds, etc.) in the nitrogen compound-containing exhaust gas E1 (specifically, about 600°C to 1300°C). It is for thermally decomposing the nitrogen compound-containing exhaust gas E1, and is formed of a solid or hollow rod-shaped heating element made of silicon carbide. Note that the electric heater 28 is not limited to this silicon carbide material, but may be any material that can raise the temperature to the above-mentioned predetermined temperature.
 カラム部材18は、その内部に多孔質粒材が充填され、気体や液体の通流が可能な筒状の部材であり、本実施形態では、上下の底面に流体の出入口が設けられた筒状金属容器の中に多孔質粒材が充填されたものが用いられている。このカラム部材18は、排ガス分解室12aとガス出口12bとの間にて両者を連通するように介設される。なお、このカラム部材18の内部に充填される多孔質粒材としては、平均粒径0.15mm~10mm、比表面積250m/g~2000m/g(BET法)のものが好適である。また、上述の通り、この多孔質粒材としては、ゼオライト及び/又は活性炭からなるものを用いるのが好ましい。更に、このカラム部材18を構成する多孔質粒材には、必要に応じて、その表面に白金,銀,ロジウム,鉄,およびルビジウムなどの触媒金属を担持させるようにしてもよい。 The column member 18 is a cylindrical member whose interior is filled with porous particulate material and allows gas and liquid to flow through it. In this embodiment, the column member 18 is a cylindrical metal member with fluid entrances and exits provided at the upper and lower bottom surfaces. A container filled with porous granules is used. This column member 18 is interposed between the exhaust gas decomposition chamber 12a and the gas outlet 12b so as to communicate the two. The porous particles filled inside the column member 18 are preferably those having an average particle diameter of 0.15 mm to 10 mm and a specific surface area of 250 m 2 /g to 2000 m 2 /g (BET method). Furthermore, as described above, it is preferable to use zeolite and/or activated carbon as the porous granular material. Furthermore, the porous particles constituting the column member 18 may have catalyst metals such as platinum, silver, rhodium, iron, and rubidium supported on their surfaces, if necessary.
 また、排ガス処理炉12内には、上記カラム部材18のガス通流方向の入口側に向けて水を供給するためのノズル20が設けられている。ここで、ノズル20より供給する水の量は、排ガス処理炉12へと供給される窒素化合物含有排ガスE1の流量やその排ガスE1中の窒素化合物の量などに応じて適宜決定される。例えば、排ガス処理炉12に与えられる窒素化合物含有排ガスE1が7%のNOを含むものであって、その風量が100L/分である場合、このノズル20から供給される水の流量は5~50L/分の範囲であるのが好ましい。また、このノズル20からは、必要に応じて酸素及び/又は過酸化水素水も供給することができる。 Furthermore, a nozzle 20 is provided in the exhaust gas treatment furnace 12 for supplying water toward the inlet side of the column member 18 in the gas flow direction. Here, the amount of water supplied from the nozzle 20 is appropriately determined depending on the flow rate of the nitrogen compound-containing exhaust gas E1 supplied to the exhaust gas treatment furnace 12, the amount of nitrogen compounds in the exhaust gas E1, and the like. For example, when the nitrogen compound-containing exhaust gas E1 supplied to the exhaust gas treatment furnace 12 contains 7% N 2 O and the air flow rate is 100 L/min, the flow rate of water supplied from this nozzle 20 is 5%. It is preferably in the range of ~50 L/min. Additionally, oxygen and/or hydrogen peroxide can also be supplied from this nozzle 20 as needed.
 さらに、上記カラム部材18には、冷却水Cによってカラム部材18を冷却し、このカラム部材18の出口における処理済みガスE2の温度が50℃以下となるように冷却する冷却装置26が必要に応じて設置される。また、特に上述のようにノズル20から酸素及び/又は過酸化水素水も供給する場合には、カラム部材18の入口における処理済みガスE2の温度が300℃以下、より好ましくは200℃以下となるように当該処理済ガスE2を冷却する冷却手段を設けるのが好適である。本実施形態では、ノズル20より供給される水がこの冷却手段としても機能している。 Further, the column member 18 is provided with a cooling device 26 as necessary, which cools the column member 18 with cooling water C so that the temperature of the treated gas E2 at the outlet of the column member 18 is 50° C. or less. It will be installed. In addition, especially when oxygen and/or hydrogen peroxide solution is also supplied from the nozzle 20 as described above, the temperature of the treated gas E2 at the inlet of the column member 18 is 300°C or less, more preferably 200°C or less. It is preferable to provide a cooling means for cooling the processed gas E2. In this embodiment, the water supplied from the nozzle 20 also functions as this cooling means.
 以上のように構成された排ガス処理炉12には、図示しないが、例えば排ガス分解室12aの温度を検出する熱電対などの温度計測手段が取り付けられると共に、この温度計測手段で検出した温度データ(温度信号)が、信号線を介して、CPU[Central Processing Unit;中央処理装置],メモリ,入力装置及び表示装置などからなる制御手段へと与えられるようになっている。なお、この制御手段には、図示しない電源ユニットなども接続される。 Although not shown, the exhaust gas treatment furnace 12 configured as described above is equipped with a temperature measuring means such as a thermocouple for detecting the temperature of the exhaust gas decomposition chamber 12a, and the temperature data ( A temperature signal) is supplied to a control means including a CPU (Central Processing Unit), memory, input device, display device, etc. via a signal line. Note that a power supply unit (not shown) or the like is also connected to this control means.
 流入配管系14は、先端(下流端)を(上述したように)排ガス処理炉12内に挿入し、基端(上流端)を図示しない半導体製造装置などの窒素化合物含有排ガスE1の発生源に接続することによって、排ガス分解室12aに窒素化合物含有排ガスE1を導入する配管系である。この流入配管系14の途中には、必要に応じて湿式の入口スクラバー22が設けられる。 The inflow piping system 14 has its tip (downstream end) inserted into the exhaust gas treatment furnace 12 (as described above), and its base end (upstream end) connected to a source of nitrogen compound-containing exhaust gas E1 such as semiconductor manufacturing equipment (not shown). This is a piping system that introduces the nitrogen compound-containing exhaust gas E1 into the exhaust gas decomposition chamber 12a by connecting it. A wet inlet scrubber 22 is provided in the middle of this inflow piping system 14 as required.
 入口スクラバー22は、排ガス処理炉12に導入する窒素化合物含有排ガスE1に含まれる粉塵や水溶性成分などを除去する湿式のスクラバーであり、本実施形態では、直管型のスクラバー本体22aと、このスクラバー本体22a内部の頂部近傍に設置され、水などの薬液を噴霧状にして撒布するスプレーノズル22bとを備える。 The inlet scrubber 22 is a wet type scrubber that removes dust and water-soluble components contained in the nitrogen compound-containing exhaust gas E1 introduced into the exhaust gas treatment furnace 12. The scrubber body 22a includes a spray nozzle 22b that is installed near the top inside the scrubber body 22a and sprays a chemical solution such as water in the form of a spray.
 この入口スクラバー22は、薬液タンク32上に立設されており(図1参照)、或いは(図示しないが)薬液タンク32と別個に配設されると共に両者が配管で接続されて排液が薬液タンク32に送り込まれるようになっている。そして、スプレーノズル22bと薬液タンク32との間には循環ポンプ34が設置されており、薬液タンク32内の貯留薬液をスプレーノズル22bに揚上するようになっている。 This inlet scrubber 22 is installed upright on the chemical liquid tank 32 (see FIG. 1), or is installed separately from the chemical liquid tank 32 (not shown), and both are connected by piping so that the waste liquid can be used as a chemical liquid. It is designed to be sent into a tank 32. A circulation pump 34 is installed between the spray nozzle 22b and the chemical tank 32, and lifts the stored chemical in the chemical tank 32 to the spray nozzle 22b.
 なお、図1に示す本実施形態では、入口スクラバー22の排液のみならず、液洗後の窒素化合物含有排ガスE1も薬液タンク32へと送り込まれるようになっており、この薬液タンク32の液面と天井面との間の空間(上部空間)が流入配管系14の一部として利用されている。ここで、図1における符合36は、入口スクラバー22で液洗した窒素化合物含有排ガスE1が排ガス処理炉12を経ずに排出配管系16側へと流入しないように区画する「隔壁」である。 In the present embodiment shown in FIG. 1, not only the waste liquid from the inlet scrubber 22 but also the nitrogen compound-containing exhaust gas E1 after liquid washing is sent to the chemical tank 32. The space between the surface and the ceiling surface (upper space) is used as part of the inflow piping system 14. Here, reference numeral 36 in FIG. 1 is a "partition wall" that partitions the nitrogen compound-containing exhaust gas E1 washed by the inlet scrubber 22 from flowing into the exhaust piping system 16 side without passing through the exhaust gas treatment furnace 12.
 排出配管系16は、排ガス分解室12aにて生成した処理済みガスE2を大気中へと排出するための配管系である。この排出配管系16の途中には、排ガス分解室12a内の処理済みガスE2を吸引して大気中へと放出する排気ファン38が取付けられると共に、この排気ファン38の吸込み側と排ガス処理炉12との間に、必要に応じて湿式の出口スクラバー24が設けられる。 The discharge piping system 16 is a piping system for discharging the treated gas E2 generated in the exhaust gas decomposition chamber 12a into the atmosphere. An exhaust fan 38 is installed in the middle of the exhaust piping system 16 to suck the treated gas E2 in the exhaust gas decomposition chamber 12a and release it into the atmosphere. A wet outlet scrubber 24 is provided between the two as required.
 出口スクラバー24は、排ガス処理炉12を通過した加熱分解後の処理済みガスE2を冷却すると共に、加熱分解によって副生した粉塵や水溶性成分等を最終的に処理済みガスE2中から除去する湿式のスクラバーである。本実施形態では、この出口スクラバー24が、排出配管系16の一部である「薬液タンク32の液面と天井面と隔壁36とで囲まれた空間」を介して排ガス処理炉12のガス出口12bに連通する直管型のスクラバー本体24aと、このスクラバー本体24a内部の頂部近傍に設置され、処理済みガスE2の通流方向に対向するように水などの薬液を噴霧する下向きのスプレーノズル24bとを含む。この出口スクラバー24は薬液タンク32上に立設され、排水が薬液タンク32に送り込まれるようになっている。 The outlet scrubber 24 is a wet-type scrubber that cools the treated gas E2 after thermal decomposition that has passed through the exhaust gas treatment furnace 12, and finally removes dust, water-soluble components, etc. produced by the thermal decomposition from the treated gas E2. This is a scrubber. In this embodiment, the outlet scrubber 24 is connected to the gas outlet of the exhaust gas treatment furnace 12 via "a space surrounded by the liquid level of the chemical tank 32, the ceiling surface, and the partition wall 36," which is a part of the exhaust piping system 16. 12b, and a downward spray nozzle 24b that is installed near the top inside the scrubber body 24a and sprays a chemical solution such as water so as to face the flow direction of the treated gas E2. including. The outlet scrubber 24 is erected above the chemical liquid tank 32 so that waste water is sent into the chemical liquid tank 32.
 また、本実施形態の出口スクラバー24では、上述した入口スクラバー22と同様に、このスプレーノズル24bを循環ポンプ34の吐出側に連通接続させて薬液タンク32内の貯留薬液をスプレーノズル24bへと揚上させるようにしているが、このスプレーノズル24bへは新水などの新しい薬液を供給するようにしてもよい。 In addition, in the outlet scrubber 24 of this embodiment, similarly to the inlet scrubber 22 described above, the spray nozzle 24b is connected to the discharge side of the circulation pump 34 to lift the stored chemical solution in the chemical solution tank 32 to the spray nozzle 24b. Although the spray nozzle 24b is made to rise up, new chemical solution such as fresh water may be supplied to the spray nozzle 24b.
 なお、本実施形態の排ガス処理装置10における排ガス処理炉12を除く他の部分には、窒素化合物含有排ガスE1に含まれる、或いは、当該窒素化合物含有排ガスE1の加熱分解によって生じる硝酸やフッ酸などの腐食性成分による腐食から各部を守るため、塩化ビニル,ポリエチレン,不飽和ポリエステル樹脂及びフッ素樹脂などによる耐食性のライニングやコーティングを施すのが好ましい。 In addition, other parts of the exhaust gas treatment device 10 of this embodiment other than the exhaust gas treatment furnace 12 contain nitric acid, hydrofluoric acid, etc. contained in the nitrogen compound-containing exhaust gas E1 or generated by thermal decomposition of the nitrogen compound-containing exhaust gas E1. In order to protect each part from corrosion caused by corrosive components, it is preferable to apply a corrosion-resistant lining or coating made of vinyl chloride, polyethylene, unsaturated polyester resin, fluororesin, or the like.
 次に、以上のように構成された排ガス処理装置10を用いて窒素化合物含有排ガスE1の除害処理を行う際には、まず始めに、当該処理装置10の運転スイッチ(図示せず)をオンにして排ガス処理炉12の電熱ヒーター28を作動させ、排ガス処理炉12内の排ガス分解室12aの加熱を開始する。 Next, when performing abatement treatment on the nitrogen compound-containing exhaust gas E1 using the exhaust gas treatment device 10 configured as described above, first, turn on the operation switch (not shown) of the treatment device 10. The electric heater 28 of the exhaust gas treatment furnace 12 is activated to start heating the exhaust gas decomposition chamber 12a in the exhaust gas treatment furnace 12.
 そして、排ガス分解室12a内の温度が、600℃~1300℃の範囲内であって、処理対象の窒素化合物含有排ガスE1の種類に応じた所定の温度に達すると、排気ファン38が作動し、処理装置10への排ガスEの導入が開始される。すると、窒素化合物含有排ガスE1は、入口スクラバー22、排ガス処理炉12及び出口スクラバー24をこの順に通過して窒素化合物含有排ガスE1中の除害対象成分(すなわちNOやNFなど)が除害される。また、図示しない制御手段によって、排ガス処理室12a内の温度が所定の温度を保持するように排ガス処理炉12の電熱ヒーター28に供給する電力量が制御される。 Then, when the temperature in the exhaust gas decomposition chamber 12a reaches a predetermined temperature within the range of 600° C. to 1300° C. depending on the type of nitrogen compound-containing exhaust gas E1 to be treated, the exhaust fan 38 is activated. Introduction of the exhaust gas E into the processing device 10 is started. Then, the nitrogen compound-containing exhaust gas E1 passes through the inlet scrubber 22, the exhaust gas treatment furnace 12, and the outlet scrubber 24 in this order, and the components targeted for abatement (i.e., N 2 O, NF 3 , etc.) in the nitrogen compound-containing exhaust gas E1 are removed. be harmed. Further, a control means (not shown) controls the amount of electric power supplied to the electric heater 28 of the exhaust gas treatment furnace 12 so that the temperature in the exhaust gas treatment chamber 12a is maintained at a predetermined temperature.
 本実施形態の排ガス処理装置10によれば、排ガス分解室12aで窒素化合物含有排ガスE1中の窒素化合物を加熱分解すると、一旦大量のNOを含む処理済みガスE2が生じるようになる(処理方法の第1ステップ)。しかしながら、大量のNOを含む高温の処理済みガスE2に水を供給すると共に、多孔質粒材からなるカラム部材18を通過させると、水蒸気に含まれるわずかな酸素ラジカルによって処理済みガスE2中のNOが水に易溶なNOに変換される。また、残ったNOは多孔質粒材表面の吸着サイトに高密度状態で吸着し、排ガスE1からの持ち込みOや上記の水蒸気に含まれる酸素ラジカル或いはOHラジカルなどと反応してNOへと変換される。そして、カラム部材18の出口での処理済ガスE2の温度が50℃以下となるように冷却することによって、NOがHNO又はHNOの形で液相へと吸収されて処理済みガスE2中から除去される(処理方法の第2ステップ)。具体的には、上記の処理方法の第1ステップで概ね7万ppmのNO(NO)が発生した場合、上記の処理方法の第2ステップでノズル20から水のみを供給すると処理済みガスE2中のNOx量を概ね1500~2000ppmにまで減少させることができる。更に、上記の処理方法の第2ステップでノズル20から水に加えて酸素又は過酸化水素水を供給すると、NOからNOへの変換がさらに加速され、処理済みガスE2中のNOx量を概ね100~200ppmにまで減少させることができる。 According to the exhaust gas treatment device 10 of the present embodiment, once the nitrogen compounds in the nitrogen compound-containing exhaust gas E1 are thermally decomposed in the exhaust gas decomposition chamber 12a, a treated gas E2 containing a large amount of NO is generated (in accordance with the treatment method). 1st step). However, when water is supplied to the high-temperature treated gas E2 containing a large amount of NO and it is passed through the column member 18 made of porous granular material, NO in the treated gas E2 is removed by a small amount of oxygen radicals contained in the water vapor. It is converted to NO2, which is easily soluble in water. In addition, the remaining NO is adsorbed in a high density state on the adsorption sites on the surface of the porous granules, and reacts with the O 2 brought in from the exhaust gas E1 and the oxygen radicals or OH radicals contained in the water vapor mentioned above, and is converted to NO 2 . be done. By cooling the treated gas E2 at the outlet of the column member 18 to a temperature of 50° C. or less, NO 2 is absorbed into the liquid phase in the form of HNO 3 or HNO 2 and the treated gas E2 is removed from the inside (second step of the treatment method). Specifically, when approximately 70,000 ppm of NOx (NO) is generated in the first step of the above treatment method, if only water is supplied from the nozzle 20 in the second step of the above treatment method, the treated gas E2 The amount of NOx inside can be reduced to approximately 1,500 to 2,000 ppm. Furthermore, when oxygen or hydrogen peroxide is supplied in addition to water from the nozzle 20 in the second step of the above treatment method, the conversion of NO to NO 2 is further accelerated, and the amount of NOx in the treated gas E2 is approximately reduced. It can be reduced to 100-200 ppm.
 なお、上述の図示実施形態では、排ガス処理装置10が入口スクラバー22と出口スクラバー24の両方を備える場合を示しているが、例えば、窒素化合物含有排ガスE1中の粉塵や水溶性成分が少ない場合には入口スクラバー22を省略してもよいし、処理済みガスE2中の粉塵や水溶性成分が少ない場合には出口スクラバー24を省略してもよい。 In addition, although the above-mentioned illustrated embodiment shows the case where the exhaust gas treatment device 10 is equipped with both the inlet scrubber 22 and the outlet scrubber 24, for example, when the amount of dust and water-soluble components in the nitrogen compound-containing exhaust gas E1 is small, The inlet scrubber 22 may be omitted, and the outlet scrubber 24 may be omitted if the treated gas E2 contains little dust or water-soluble components.
 また、上述の実施形態では、カラム部材18の出口での処理済ガスE2の温度が50℃以下となるように冷却する場合を示したが、例えば、窒素化合物含有排ガスE1を加熱分解して生じるNOの最大量が数千ppm未満と比較的少ない場合には、カラム部材18の出口での処理済みガスE2の温度が100℃未満となるように冷却すれば、処理済みガスE2中からNOを十分に除去することができる。この際の冷却手段としては、ノズル20から供給される水や過酸化水素水を挙げることができる。 Further, in the above-described embodiment, the case where the temperature of the treated gas E2 at the outlet of the column member 18 is cooled to 50° C. or lower is shown, but for example, If the maximum amount of NO X can be sufficiently removed. As the cooling means at this time, water and hydrogen peroxide solution supplied from the nozzle 20 can be used.
 さらに、上述の実施形態では、カラム部材18として、上下の底面に流体の出入口が設けられた筒状金属容器の中に多孔質粒材が充填されたものを用いる場合を示したが、このカラム部材18は、その内部に多孔質粒材が充填され、気体や液体の通流が可能な筒状の部材であれば如何なるものであってもよく、例えば、円筒状或いは角筒状のハニカム部材の内面に上述の多孔質粒材を担持させたものなどであってもよい。 Furthermore, in the above-described embodiment, a case is shown in which a cylindrical metal container with fluid inlets and outlets provided at the upper and lower bottom surfaces and filled with porous granular material is used as the column member 18. 18 may be any cylindrical member whose interior is filled with porous particles and allows gas or liquid to flow therethrough; for example, the inner surface of a cylindrical or rectangular honeycomb member. It may also be one in which the above-mentioned porous particulate material is supported on the substrate.
 その他に、当業者が想定できる範囲で種々の変更を行えることは勿論である。 It goes without saying that various other changes can be made within the scope of those skilled in the art.
 10:排ガス処理装置,12:排ガス処理炉,12a:排ガス分解室,12b:ガス出口,14:流入配管系,16:排出配管系,18:カラム部材,20:ノズル,22:入口スクラバー,24:出口スクラバー,26:冷却装置,E1:窒素化合物含有排ガス,E2:処理済みガス. 10: Exhaust gas treatment device, 12: Exhaust gas treatment furnace, 12a: Exhaust gas decomposition chamber, 12b: Gas outlet, 14: Inflow piping system, 16: Discharge piping system, 18: Column member, 20: Nozzle, 22: Inlet scrubber, 24 : Outlet scrubber, 26: Cooling device, E1: Nitrogen compound-containing exhaust gas, E2: Treated gas.

Claims (15)

  1.  窒素化合物含有排ガス中の窒素化合物を除害処理する方法であって、
     窒素化合物含有排ガス(E1)をその窒素化合物の熱分解温度以上の温度に加熱して窒素化合物を加熱分解させる第1ステップと、
     上記の窒素化合物が加熱分解された高温の処理済みガス(E2)に水を加えて多孔質粒材が充填されたカラム部材(18)を通過させる第2ステップとを備え、
     上記の第2ステップでは、カラム部材(18)の出口における処理済みガス(E2)の温度が100℃未満となるように冷却する、ことを特徴とする窒素化合物含有排ガスの処理方法。
    A method for eliminating nitrogen compounds in nitrogen compound-containing exhaust gas, the method comprising:
    A first step of heating the nitrogen compound-containing exhaust gas (E1) to a temperature higher than the thermal decomposition temperature of the nitrogen compound to thermally decompose the nitrogen compound;
    a second step of adding water to the high-temperature treated gas (E2) in which the nitrogen compound has been thermally decomposed and passing it through a column member (18) filled with porous particulate material;
    A method for treating a nitrogen compound-containing exhaust gas, characterized in that in the second step, the treated gas (E2) at the outlet of the column member (18) is cooled to a temperature of less than 100°C.
  2.  請求項1の窒素化合物含有排ガスの処理方法において、
     前記の多孔質粒材が、ゼオライト及び/又は活性炭である、ことを特徴とする窒素化合物含有排ガスの処理方法。
    The method for treating nitrogen compound-containing exhaust gas according to claim 1,
    A method for treating nitrogen compound-containing exhaust gas, characterized in that the porous particulate material is zeolite and/or activated carbon.
  3.  請求項1又は2の窒素化合物含有排ガスの処理方法において、
     前記カラム部材(18)の出口における処理済みガス(E2)の温度が50℃以下となるように冷却する、ことを特徴とする窒素化合物含有排ガスの処理方法。
    The method for treating nitrogen compound-containing exhaust gas according to claim 1 or 2,
    A method for treating nitrogen compound-containing exhaust gas, characterized in that the treated gas (E2) at the outlet of the column member (18) is cooled so that the temperature thereof becomes 50° C. or less.
  4.  請求項1又は2の窒素化合物含有排ガスの処理方法において、
     前記の第2ステップでは、前記の高温の処理済ガス(E2)に水を加える際に、酸素及び/又は過酸化水素水を更に加える、ことを特徴とする窒素化合物含有排ガスの処理方法。
    The method for treating nitrogen compound-containing exhaust gas according to claim 1 or 2,
    A method for treating exhaust gas containing nitrogen compounds, characterized in that in the second step, when adding water to the high temperature treated gas (E2), oxygen and/or hydrogen peroxide solution is further added.
  5.  請求項3の窒素化合物含有排ガスの処理方法において、
     前記の第2ステップでは、前記の高温の処理済ガス(E2)に水を加える際に、酸素及び/又は過酸化水素水を更に加える、ことを特徴とする窒素化合物含有排ガスの処理方法。
    The method for treating nitrogen compound-containing exhaust gas according to claim 3,
    A method for treating exhaust gas containing nitrogen compounds, characterized in that in the second step, when adding water to the high temperature treated gas (E2), oxygen and/or hydrogen peroxide solution is further added.
  6.  請求項4の窒素化合物含有排ガスの処理方法において、
     前記カラム部材(18)の入口における処理済みガス(E2)の温度が300℃以下となるように冷却する、ことを特徴とする窒素化合物含有排ガスの処理方法。
    The method for treating nitrogen compound-containing exhaust gas according to claim 4,
    A method for treating nitrogen compound-containing exhaust gas, characterized in that the treated gas (E2) is cooled so that the temperature of the treated gas (E2) at the inlet of the column member (18) is 300° C. or less.
  7.  請求項5の窒素化合物含有排ガスの処理方法において、
     前記カラム部材(18)の入口における処理済みガス(E2)の温度が300℃以下となるように冷却する、ことを特徴とする窒素化合物含有排ガスの処理方法。
    The method for treating nitrogen compound-containing exhaust gas according to claim 5,
    A method for treating nitrogen compound-containing exhaust gas, characterized in that the treated gas (E2) is cooled so that the temperature of the treated gas (E2) at the inlet of the column member (18) is 300° C. or less.
  8.  内部に窒素化合物含有排ガス(E1)を加熱分解する排ガス分解室(12a)が形成された排ガス処理炉(12)と、
     先端が上記の排ガス処理炉(12)に接続され、上記の排ガス分解室(12a)内に窒素化合物含有排ガス(E1)を供給する流入配管系(14)と、
     基端が上記の排ガス処理炉(12)の底部に設けられたガス出口(12b)に接続され、上記の排ガス分解室(12a)で加熱分解された処理済みガス(E2)を排出する排出配管系(16)とを備える排ガス処理装置であって、
     上記の排ガス処理炉(12)内には、上記の排ガス分解室(12a)と上記ガス出口(12b)との間に、多孔質粒材が充填されたカラム部材(18)が介設されると共に、そのカラム部材(18)のガス通流方向の入口側に水を供給するノズル(20)が設けられる、ことを特徴とする排ガス処理装置。
    an exhaust gas treatment furnace (12) in which an exhaust gas decomposition chamber (12a) for thermally decomposing nitrogen compound-containing exhaust gas (E1) is formed;
    an inflow piping system (14) whose tip is connected to the exhaust gas treatment furnace (12) and supplies the nitrogen compound-containing exhaust gas (E1) into the exhaust gas decomposition chamber (12a);
    An exhaust pipe whose base end is connected to the gas outlet (12b) provided at the bottom of the exhaust gas treatment furnace (12) and discharges the treated gas (E2) that has been thermally decomposed in the exhaust gas decomposition chamber (12a). An exhaust gas treatment device comprising a system (16),
    In the exhaust gas treatment furnace (12), a column member (18) filled with porous particulate material is interposed between the exhaust gas decomposition chamber (12a) and the gas outlet (12b). An exhaust gas treatment device characterized in that a nozzle (20) for supplying water is provided on the inlet side of the column member (18) in the gas flow direction.
  9.  請求項8の排ガス処理装置において、
     前記の流入配管系(14)には、湿式の入口スクラバー(22)が取り付けられる、ことを特徴とする排ガス処理装置。
    The exhaust gas treatment device according to claim 8,
    An exhaust gas treatment device characterized in that a wet inlet scrubber (22) is attached to the inlet piping system (14).
  10.  請求項8の排ガス処理装置において、
     前記の排出配管系(16)には、湿式の出口スクラバー(24)が取り付けられる、ことを特徴とする排ガス処理装置。
    The exhaust gas treatment device according to claim 8,
    An exhaust gas treatment device characterized in that a wet outlet scrubber (24) is attached to the exhaust piping system (16).
  11.  請求項8乃至10の何れかの排ガス処理装置において、
     前記カラム部材(18)の出口における処理済みガス(E2)の温度が50℃以下となるように上記カラム部材(18)を冷却する冷却装置(26)が設けられる、ことを特徴とする排ガス処理装置。
    The exhaust gas treatment device according to any one of claims 8 to 10,
    An exhaust gas treatment characterized in that a cooling device (26) is provided to cool the column member (18) so that the temperature of the treated gas (E2) at the outlet of the column member (18) is 50° C. or less. Device.
  12.  請求項8乃至10の何れかの排ガス処理装置において、
     前記のノズル(20)では、水に加えて酸素及び/又は過酸化水素水が供給される、ことを特徴とする排ガス処理装置。
    The exhaust gas treatment device according to any one of claims 8 to 10,
    An exhaust gas treatment device characterized in that the nozzle (20) is supplied with oxygen and/or hydrogen peroxide in addition to water.
  13.  請求項11の排ガス処理装置において、
     前記のノズル(20)では、水に加えて酸素及び/又は過酸化水素水が供給される、ことを特徴とする排ガス処理装置。
    The exhaust gas treatment device according to claim 11,
    An exhaust gas treatment device characterized in that the nozzle (20) is supplied with oxygen and/or hydrogen peroxide in addition to water.
  14.  請求項12の排ガス処理装置において、
     前記カラム部材(18)の入口における処理済みガス(E2)の温度が300℃以下となるようにその処理済ガス(E2)を冷却する冷却手段が設けられる、ことを特徴とする排ガス処理装置。
    The exhaust gas treatment device according to claim 12,
    An exhaust gas treatment device characterized in that a cooling means is provided for cooling the treated gas (E2) so that the temperature of the treated gas (E2) at the inlet of the column member (18) is 300° C. or less.
  15.  請求項13の排ガス処理装置において、
     前記カラム部材(18)の入口における処理済みガス(E2)の温度が300℃以下となるようにその処理済ガス(E2)を冷却する冷却手段が設けられる、ことを特徴とする排ガス処理装置。
    The exhaust gas treatment device according to claim 13,
    An exhaust gas treatment device characterized in that a cooling means is provided for cooling the treated gas (E2) so that the temperature of the treated gas (E2) at the inlet of the column member (18) is 300° C. or less.
PCT/JP2022/017627 2022-04-12 2022-04-12 Method for treating exhaust gas containing nitrogen compound, and apparatus for said method WO2023199410A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/017627 WO2023199410A1 (en) 2022-04-12 2022-04-12 Method for treating exhaust gas containing nitrogen compound, and apparatus for said method
TW112101765A TW202400290A (en) 2022-04-12 2023-01-16 Method for treating exhaust gas containing nitrogen compound, and apparatus for said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017627 WO2023199410A1 (en) 2022-04-12 2022-04-12 Method for treating exhaust gas containing nitrogen compound, and apparatus for said method

Publications (1)

Publication Number Publication Date
WO2023199410A1 true WO2023199410A1 (en) 2023-10-19

Family

ID=88329286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017627 WO2023199410A1 (en) 2022-04-12 2022-04-12 Method for treating exhaust gas containing nitrogen compound, and apparatus for said method

Country Status (2)

Country Link
TW (1) TW202400290A (en)
WO (1) WO2023199410A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027762A (en) * 1973-07-12 1975-03-22
JPS5211164A (en) * 1975-07-17 1977-01-27 Unitika Ltd Process for removing nitrogen oxides
JPH11114372A (en) * 1997-10-20 1999-04-27 Mitsubishi Kakoki Kaisha Ltd Wet denitrification method
JP2002336649A (en) * 2001-05-21 2002-11-26 Nec Kyushu Ltd Industrial pretreatment equipment
JP2005118681A (en) * 2003-10-17 2005-05-12 Taisei Corp Nitrogen oxide removal device
JP2005125285A (en) * 2003-10-27 2005-05-19 Kanken Techno Co Ltd Method and apparatus for treatment of exhaust gas containing n2o
WO2008072392A1 (en) * 2006-12-15 2008-06-19 Kanken Techno Co., Ltd. Method of treating discharge gas and apparatus therefor
CN108826308A (en) * 2018-05-24 2018-11-16 无锡洁安洁通用设备有限公司 A kind of exhaust processor
GB2571793A (en) * 2018-03-09 2019-09-11 Edwards Ltd Abatement
WO2020095358A1 (en) * 2018-11-06 2020-05-14 カンケンテクノ株式会社 Exhaust gas introduction nozzle, water treatment device, and exhaust gas treatment device
CN112121588A (en) * 2020-10-12 2020-12-25 武汉更日敦科技有限公司 Electric heating water washing type waste gas treatment device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027762A (en) * 1973-07-12 1975-03-22
JPS5211164A (en) * 1975-07-17 1977-01-27 Unitika Ltd Process for removing nitrogen oxides
JPH11114372A (en) * 1997-10-20 1999-04-27 Mitsubishi Kakoki Kaisha Ltd Wet denitrification method
JP2002336649A (en) * 2001-05-21 2002-11-26 Nec Kyushu Ltd Industrial pretreatment equipment
JP2005118681A (en) * 2003-10-17 2005-05-12 Taisei Corp Nitrogen oxide removal device
JP2005125285A (en) * 2003-10-27 2005-05-19 Kanken Techno Co Ltd Method and apparatus for treatment of exhaust gas containing n2o
WO2008072392A1 (en) * 2006-12-15 2008-06-19 Kanken Techno Co., Ltd. Method of treating discharge gas and apparatus therefor
GB2571793A (en) * 2018-03-09 2019-09-11 Edwards Ltd Abatement
CN108826308A (en) * 2018-05-24 2018-11-16 无锡洁安洁通用设备有限公司 A kind of exhaust processor
WO2020095358A1 (en) * 2018-11-06 2020-05-14 カンケンテクノ株式会社 Exhaust gas introduction nozzle, water treatment device, and exhaust gas treatment device
CN112121588A (en) * 2020-10-12 2020-12-25 武汉更日敦科技有限公司 Electric heating water washing type waste gas treatment device

Also Published As

Publication number Publication date
TW202400290A (en) 2024-01-01

Similar Documents

Publication Publication Date Title
JP5307556B2 (en) Gas processing equipment
KR100509304B1 (en) Method for processing perfluoride and apparatus for treating same
US7976807B2 (en) Method for detoxifying HCD gas and apparatus therefor
EP1198283A1 (en) Effluent gas stream treatment system having utility for oxidation treatment of semiconductor manufacturing effluent gases
JP2016020801A (en) Exhaust gas treatment device
JP3217034B2 (en) Perfluorinated compound processing method and apparatus
WO2023199410A1 (en) Method for treating exhaust gas containing nitrogen compound, and apparatus for said method
US20030161774A1 (en) Processes and apparatuses for treating halogen-containing gases
KR20090011467A (en) A exhaust gas disposal appartus of semiconductor
US8231851B2 (en) Method for processing perfluorocarbon, and apparatus therefor
KR100808618B1 (en) Process and apparatus for treating gas containing fluorine-containing compounds and co
JP2015016434A (en) Exhaust gas treatment method and exhaust gas treatment device
JP7021730B1 (en) Semiconductor manufacturing exhaust gas treatment equipment
JP4629967B2 (en) Method and apparatus for treating N2O-containing exhaust gas
US20230233982A1 (en) Gas processing furnace and exhaust gas processing device in which same is used
WO2022208901A1 (en) Treatment device for semiconductor manufacturing exhaust gas
WO2023084595A1 (en) Gas processing furnace and exhaust gas processing device using same
JP3817428B2 (en) Perfluoride decomposition equipment
JP7221057B2 (en) Apparatus and method for treating gas containing nitrogen oxides
WO2024075312A1 (en) Gas removal apparatus and gas treatment method
JP2005218911A (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP2007237150A (en) Catalyst detoxifying treatment method of emission gas
JP2010017636A (en) Scrubber and waste gas detoxification apparatus using the same
JPH0710335B2 (en) NF3 Exhaust gas treatment method and device
JPH02194817A (en) Waste gas treatment for urban energy system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937389

Country of ref document: EP

Kind code of ref document: A1