WO2022208901A1 - Treatment device for semiconductor manufacturing exhaust gas - Google Patents

Treatment device for semiconductor manufacturing exhaust gas Download PDF

Info

Publication number
WO2022208901A1
WO2022208901A1 PCT/JP2021/016592 JP2021016592W WO2022208901A1 WO 2022208901 A1 WO2022208901 A1 WO 2022208901A1 JP 2021016592 W JP2021016592 W JP 2021016592W WO 2022208901 A1 WO2022208901 A1 WO 2022208901A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
exhaust gas
semiconductor manufacturing
scrubber
reducing
Prior art date
Application number
PCT/JP2021/016592
Other languages
French (fr)
Japanese (ja)
Inventor
啓志 今村
Original Assignee
カンケンテクノ株式会社
北京康肯▲環▼保▲設▼▲備▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カンケンテクノ株式会社, 北京康肯▲環▼保▲設▼▲備▼有限公司 filed Critical カンケンテクノ株式会社
Priority to KR1020237022650A priority Critical patent/KR20230116036A/en
Priority to JP2021540441A priority patent/JP7021730B1/en
Priority to US18/274,277 priority patent/US20240082782A1/en
Priority to CN202180003384.0A priority patent/CN115461131B/en
Priority to TW110133589A priority patent/TWI821745B/en
Publication of WO2022208901A1 publication Critical patent/WO2022208901A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds

Definitions

  • the present invention relates to a treatment apparatus suitable for abatement treatment of persistent semiconductor manufacturing exhaust gases containing PFCs (perfluoro compounds), N 2 O, and the like.
  • fluorine compound gases are used as cleaning gases, etching gases, and the like in the manufacturing processes of semiconductor devices and liquid crystal displays.
  • fluorine compounds are called " PFCs ", and typical ones are perfluorocarbons such as CF4 , C2F6 , C3F8 , C4F8 , C5F8 , CHF3 and inorganic fluorine - containing compounds such as SF6 and NF3.
  • N 2 O (nitrous oxide) or the like is used as a material gas for manufacturing a nitride film.
  • the ratio of PFCs and N 2 O in the whole exhaust gas is small compared to other gases such as N 2 and Ar, but these PFCs and N 2 O have a global warming potential (GWP) is thousands to tens of thousands of times greater than that of CO 2 , and its lifetime in the atmosphere is several thousand to tens of thousands of years longer than that of CO 2 . becomes enormous.
  • GWP global warming potential
  • perfluorocarbons represented by CF 4 and C 2 F 6 are not easily decomposed because the CF bond is stable (the bond energy is as large as 130 kcal/mol). For this reason, various techniques have been developed for removing PFCs, N 2 O, etc., which have become used, from the exhaust gas.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-188810 describes harmful exhaust gas with an inlet scrubber. After removing the dust contained in the exhaust gas, the exhaust gas is thermally decomposed in an exhaust gas processing tower equipped with an electric heater, and the decomposed gas is detoxified by gas-liquid contact with a wet outlet scrubber. .
  • the above prior art has the following problems.
  • the electric heater when the PFCs in the exhaust gas are mainly composed of persistent CF 4 , the electric heater must be used at a very high temperature of 1500 ° C or higher.
  • the physical properties of the heating element material are also close to the limit, and there is a problem that continuous operation over a long period of time is difficult.
  • the “2030 Agenda for Sustainable Development” was adopted at the United Nations Summit in September 2015, and since then various discussions and studies have been conducted regarding the efficient use of energy in the future. Under these circumstances, there is an increasing need for higher efficiency and energy saving associated with the exhaust gas treatment apparatus equipped with the above-mentioned conventional electric heater, which consumes a relatively large amount of electric power for heating. It can easily be expected to come.
  • the main object of the present invention is to have the advantages of the conventional exhaust gas treatment apparatus using an electric heater as they are, and to achieve more efficient use of electric energy, which is the most efficient PFCs.
  • An object of the present invention is to provide a semiconductor manufacturing exhaust gas treatment apparatus capable of remarkably improving the detoxification efficiency of semiconductor manufacturing exhaust gas mainly composed of CF 4 which is difficult to decompose.
  • the present invention for example, as shown in FIG. That is, an inlet scrubber 12 for liquid washing the exhaust gas E discharged from the semiconductor manufacturing process, a gas processing furnace 14 for thermally decomposing the exhaust gas E that has passed through the inlet scrubber 12, and the gas processing furnace 14 for thermal decomposition. and an outlet scrubber 16 for washing the exhaust gas E described above.
  • the gas processing furnace 14 includes an outer cylinder 18 having a closed cylindrical main body 18a with a gas processing space 18b formed therein and a gas introduction port 18c formed in the bottom surface of the main body 18a.
  • the inner cylinder 20 is attached to the inner bottom surface of the main body 18a so as to surround the gas processing space 18b, the other end is open, and the inner cylinder 20 extends to a position close to the ceiling surface of the main body 18a so as to cross the gas processing space 18b. and an electric heater 22 vertically installed from the ceiling portion 18d of the main body 18a and having a long rod-shaped heating element 22a arranged in the inner space of the inner cylinder 20.
  • a narrowing portion 24 is provided for rapidly narrowing the inner diameter of the flow path of the exhaust gas E after passing through the inlet scrubber 12 to the diameter of the gas introduction port 18c or less.
  • a reducing gas for supplying a predetermined amount of reducing gas G toward the exhaust gas E in the vicinity of the upstream end portion in the exhaust gas flow direction of the throttle portion 24.
  • Supply means 26 are provided before the gas introduction port 18c.
  • the present invention has, for example, the following effects.
  • the reducing gas G supplied from the reducing gas supply means 26 to the washed exhaust gas E after passing through the inlet scrubber 12 increases in flow velocity when passing through the throttle section 24, and simultaneously removes the exhaust gas E.
  • the chances of coming into contact with PFCs, N 2 O, etc., which are harmful (thermally decomposed) components, will increase.
  • the exhaust gas E and the reducing gas G supplied into the gas treatment furnace 14 through the gas introduction port 18c in a state where the flow velocity is increased are heated by the heating element of the electric heater 22 arranged in the inner cylinder 20.
  • CF4 which is the most difficult to decompose among PFCs, can be decomposed by 99.9% or more at a lower heating temperature than before, such as 1250 ° C to 1350 ° C. Become.
  • the flow rate of the reducing gas G supplied from the reducing gas supply means 26 is the same as that of the exhaust gas E supplied to the gas treatment furnace 14.
  • a ratio of 0.1 to 5 parts by volume per 100 parts by volume of the flow rate is preferable.
  • the reducing gas G is preferably hydrogen or ammonia.
  • the reducing gas G is preferably hydrogen or ammonia.
  • the amount of NOx (nitrogen oxides) discharged after the N 2 O is thermally decomposed can be significantly reduced.
  • an exhaust gas treatment apparatus that employs a conventional electric heater as it is, and it is possible to use electric energy more efficiently, and it is the most difficult PFCs to decompose. It is possible to provide a semiconductor manufacturing exhaust gas treatment apparatus capable of remarkably improving the removal efficiency of semiconductor manufacturing exhaust gas mainly composed of CF 4 .
  • FIG. 1 is a schematic cross-sectional view showing an example of an apparatus for treating semiconductor manufacturing exhaust gas according to an embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view showing an example of an apparatus 10 for treating semiconductor manufacturing exhaust gas according to an embodiment of the present invention.
  • This semiconductor manufacturing exhaust gas treatment apparatus 10 is an apparatus for thermally decomposing and detoxifying an exhaust gas E containing PFCs, N 2 O, and the like discharged from an emission source (semiconductor manufacturing process) (not shown). It consists of a scrubber 12 , a gas treatment furnace 14 and an outlet scrubber 16 .
  • the inlet scrubber 12 is a wet scrubber that removes dust and water-soluble components contained in the exhaust gas E introduced into the gas treatment furnace 14.
  • a spray nozzle 12b is installed near the top of the inside and sprays a chemical solution such as water in the form of a spray.
  • the inlet scrubber 12 communicates with an exhaust gas generating source (not shown) such as a semiconductor manufacturing apparatus through an exhaust gas duct 28 .
  • the inlet scrubber 12 is erected on the chemical liquid tank 30 (see FIG. 1) or (not shown) is arranged separately from the chemical liquid tank 30 and both are connected by a pipe so that the waste liquid can be discharged. It is designed to be fed into the chemical liquid tank 30 .
  • a circulating pump 32 is installed between the spray nozzle 12b and the chemical tank 30 to lift the chemical liquid stored in the chemical tank 30 to the spray nozzle 12b.
  • the waste liquid from the inlet scrubber 12 not only the waste liquid from the inlet scrubber 12 but also the flue gas E after liquid washing is sent to the chemical liquid tank 30.
  • the space between the surfaces (upper space) is used as an exhaust gas passage.
  • reference numeral 30a in FIG. 1 denotes a “partition wall” that prevents the flue gas E that has been liquid-washed in the inlet scrubber 12 from flowing into the outlet scrubber 16 without passing through the gas treatment furnace 14 .
  • the gas treatment furnace 14 is a device that heats and decomposes PFCs, N 2 O, etc. in the exhaust gas E using an electric heater 22, and is roughly composed of an outer cylinder 18, an inner cylinder 20, and an electric heater 22. .
  • the outer cylinder 18 has a sealed cylindrical main body 18a with at least its inner surface made of a refractory material such as castable and having a gas processing space 18b formed therein. As shown in FIG. 1, the main body 18a is erected so that the flat portion (of the main body 18a) faces upside down when used, and a gas introduction port 18c is formed in the bottom surface. An insertion port 18e for inserting the electric heater 22 is formed in the ceiling portion 18d of the main body 18a at a position facing the gas introduction port 18c.
  • the outer cylinder 18 is formed in a closed cylindrical shape, but the shape of the outer cylinder 18 may be any shape as long as it is cylindrical with both ends closed. It may be in the shape of a square tube or the like.
  • a gas introduction port 18c is formed in the center of the bottom surface of the main body 18a, and a gas processing space 18b inside the main body 18a is provided at a position close to the gas introduction port 18c on the bottom surface of the main body 18a.
  • a gas discharge port 18f is provided for discharging the exhaust gas E that has been thermally decomposed.
  • the inner cylinder 20 is a cylindrical member that is made of a refractory material such as castable, or a metal material such as Hastelloy (registered trademark of Haynes) or stainless steel, and has open (opened) longitudinal end faces.
  • One longitudinal end of the inner cylinder 20 is attached to the inner bottom surface of the main body 18a of the outer cylinder 18 so as to surround the gas introduction port 18c.
  • the inner cylinder 20 extends across the gas processing space 18b of the outer cylinder 18, and the other end in the longitudinal direction is arranged at a position close to the ceiling surface of the main body 18a of the outer cylinder 18.
  • the present embodiment shows the case where the inner cylinder 20 is formed in a cylindrical shape, the shape of the inner cylinder 20 may be any shape as long as it is cylindrical with both ends opened. etc.
  • the electric heater 22 serves as a heat source for heating the gas processing space 18b in the gas processing furnace 14, and has a long rod-shaped heating element 22a.
  • the heating element 22a has corrosion resistance to HF (hydrogen fluoride) produced by thermal decomposition of PFCs in the exhaust gas E to be treated, and is capable of generating heat at a high temperature.
  • HF hydrogen fluoride
  • ceramics such as silicon carbide (SiC), molybdenum disilicide (MoSi 2 ) and lanthanum chromite (LaCrO 3 ), ceramics such as alumina, or metals such as Hastelloy (Haynes registered trademark).
  • the electric heater 22 is detachably attached by inserting the heating element 22a into the inner space of the main body 18a through an insertion opening 18e provided at a predetermined position in the ceiling portion 18d of the outer cylinder 4. For this reason, the electric heater 22 is vertically installed from the ceiling portion 18d of the main body 18a of the outer cylinder 18, and a long rod-shaped heating element 22a is arranged in the inner space of the inner cylinder 20. As shown in FIG.
  • the gas processing furnace 14 configured as described above is equipped with temperature measuring means such as a thermocouple for detecting the temperature of the gas processing space 18b, and the temperature data (temperatur signal) is given to control means comprising a CPU [Central Processing Unit], a memory, an input device, a display device, etc., via a signal line.
  • control means comprising a CPU [Central Processing Unit], a memory, an input device, a display device, etc., via a signal line.
  • a power supply unit (not shown) is also connected to the control means.
  • the gas processing furnace 14 configured as described above is disposed on the chemical liquid tank 30, and the upper end of the short pipe 24a having substantially the same inner diameter as the gas introduction port 18c is connected to the gas introduction port 18c.
  • the lower end of the short pipe 24a is connected so as to communicate with the flow area of the exhaust gas E after passing through the inlet scrubber 12 in the chemical solution tank 30 .
  • the short pipe 24a functions as a "throttle portion 24" that rapidly narrows the inner diameter of the flow path of the exhaust gas E after passing through the inlet scrubber 12 to the diameter of the gas introduction port 18c or less.
  • a A reducing gas supply means 26 for supplying a predetermined amount of reducing gas G toward the exhaust gas E to be fed is provided.
  • the leading end of the reducing gas supply means 26 communicates with the inner space of the chemical liquid tank 30 near the connection point of the short pipe 24a on the ceiling of the chemical liquid tank 30, and the base end is a tank or cylinder for storing the reducing gas G.
  • a reducing gas supply pipe 26a connected to the storage source 26c, and a flow rate adjusting means 26b provided on the reducing gas supply pipe 26a for adjusting the amount of the reducing gas G supplied into the chemical liquid tank 30, etc. consists of
  • Examples of the reducing gas G supplied by the reducing gas supply means 26 include hydrogen, carbon monoxide, ammonia, and hydrocarbons. , it is possible to reduce the amount of carbon dioxide when exhaust gas E is discharged into the atmosphere after thermal decomposition treatment. In addition, when N 2 O is included in the target components for abatement in the exhaust gas E, the amount of NOx emitted after the N 2 O is thermally decomposed is reduced by supplying hydrogen or ammonia in an amount approximately equal to the N 2 O. The amount can also be significantly reduced. On the other hand, if a hydrocarbon such as CH 4 (methane) is used as the reducing gas G, the initial cost and running cost of the entire PFCs-containing exhaust gas treatment apparatus 10 can be kept low.
  • a hydrocarbon such as CH 4 (methane)
  • the flow rate of the reducing gas G supplied from the reducing gas supply means 26 is, for example, when the exhaust gas E contains PFCs, the flow rate of the exhaust gas E supplied to the gas treatment furnace 14 is 200 liters/ 0.2 to 10 liters per minute, that is, the ratio of the flow rate of the reducing gas G to 100 volume parts of the exhaust gas E supplied to the gas treatment furnace 14 is 0.1 to 5 volume parts. and more preferably in the range of 0.5 to 2.5 parts by volume.
  • ammonia is used as the reducing gas G
  • urea or urea water may be used as its supply source.
  • the outlet scrubber 16 is a wet scrubber that cools the exhaust gas E after thermal decomposition that has passed through the gas treatment furnace 14 and finally removes dust, water-soluble components, etc. generated by the thermal decomposition from the exhaust gas E.
  • a straight pipe type scrubber main body 16a communicating with a gas outlet 18f provided on the bottom surface of the main body 18a of the gas processing furnace 14 via a discharge pipe 34,
  • a plurality of perforated plates 16b (four stages in this embodiment) are installed at intervals, and the uppermost perforated plate 16b is attached directly above the perforated plate 16b. It is composed of a downward spray nozzle 16c for spraying a chemical solution.
  • the outlet scrubber 16 is erected on the chemical liquid tank 30 so that waste water is sent into the chemical liquid tank 30 .
  • outlet scrubber 16 of this embodiment unlike the inlet scrubber 12 described above, a new chemical such as fresh water is supplied to the spray nozzle 16c (see FIG. 1).
  • the discharge side of 42 may be connected for communication so that the chemical liquid stored in the chemical liquid tank 30 is lifted up to the spray nozzle 16c.
  • An exhaust fan 36 for discharging the treated exhaust gas E into the atmosphere is connected to the outlet of the outlet scrubber 16 .
  • the operation switch (not shown) of the treatment apparatus 10 is turned on. Then, the gas processing furnace 14 and the electric heater 22 are operated, and heating of the gas processing space 18b in the gas processing furnace 14 is started.
  • the exhaust fan 36 operates, and the processing apparatus 10 Introduction of exhaust gas E to is started. Then, the exhaust gas E passes through the inlet scrubber 12, the gas treatment furnace 14 and the outlet scrubber 16 in this order, and the components to be removed (that is, PFCs, N 2 O, etc.) in the exhaust gas E are removed. Further, the amount of electric power supplied to the electric heater 22 of the gas processing furnace 14 is controlled by a control means (not shown) so that the temperature in the gas processing space 18b is maintained at a predetermined temperature.
  • the reducing gas G supplied from the reducing gas supply means 26 to the washed exhaust gas E after passing through the inlet scrubber 12 passes through the throttle section 24.
  • the flow velocity increases and at the same time, the chances of contact with PFCs, N 2 O, etc., which are the target components for detoxification (thermal decomposition) in the exhaust gas E increase.
  • the exhaust gas E and the reducing gas G supplied into the gas treatment furnace 14 through the gas introduction port 18c in a state where the flow velocity is increased are heated by the heating element of the electric heater 22 arranged in the inner cylinder 20.
  • CF 4 which is the most difficult to decompose among PFCs, can be decomposed by 99.9% or more at a heating temperature of 1250° C. to 1350° C., which is lower than the conventional one.
  • the short pipe 24a connects the gas introduction port 18c provided in the outer cylinder 18 of the gas processing furnace 14 and the upper space of the chemical solution tank 30 through which the exhaust gas E washed by the inlet scrubber 12 flows.
  • the gas introduction port 18c of the outer cylinder 18 and the upper space of the chemical liquid tank 30 may be directly connected without using such a short pipe 24a.
  • the front edge of the gas introduction port 18 c of the outer cylinder 18 in the direction of gas flow itself functions as the throttle portion 24 .
  • 10 semiconductor manufacturing exhaust gas treatment device
  • 12 inlet scrubber
  • 14 gas treatment furnace
  • 16 outlet scrubber
  • 18 outer cylinder
  • 18a main body
  • 18b gas treatment space
  • 18c gas inlet
  • 18d ceiling part
  • 20 inner cylinder
  • 22 electric heater
  • 22a heating element
  • 24 restrictor
  • 26 reducing gas supply means
  • E exhaust gas
  • G reducing gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Abstract

The treatment device for semiconductor manufacturing exhaust gas according to the present invention is provided with an inlet scrubber (12), a gas treatment furnace (14), and an outlet scrubber (16). The gas treatment furnace (14) comprises: an outer cylinder (18) having a body (18a), a gas treatment space (18b) formed inside the body (18a), and a gas feed port (18c) drilled in a bottom surface of the body (18a); an inner cylinder (20) having one end attached to an inner bottom surface of the body (18a) so as to surround the gas feed port (18c), and an other end which is opened, the inner cylinder (20) extending across the gas treatment space (18b) to a position close to a ceiling surface of the body (18a); and an electrothermal heater (22) hung from a ceiling part (18d) of the body (18a) and having a heating body (22a) with an elongated rod shape placed in an internal space of the inner cylinder (20). Provided before the gas feed port (18c) are a narrow part (24) where the inner diameter of the flow path of exhaust gas (E) after passage through the inlet scrubber (12) is narrowed at once to the port diameter of the gas feed port (18c) or less, and a reducing gas supply means (26) that supplies a predetermined amount of reducing gas (G) toward the exhaust gas (E) in the vicinity of an end part of the narrow part (24) on the upstream side in the exhaust gas flow direction.

Description

半導体製造排ガスの処理装置Semiconductor manufacturing exhaust gas processing equipment
 本発明は、PFCs(パーフルオロコンパウンド)やN2Oなどを含む難分解性の半導体製造排ガスの除害処理に好適な処理装置に関する。 TECHNICAL FIELD The present invention relates to a treatment apparatus suitable for abatement treatment of persistent semiconductor manufacturing exhaust gases containing PFCs (perfluoro compounds), N 2 O, and the like.
 半導体デバイスや液晶ディスプレイの製造プロセスでは、クリーニングガスやエッチングガスなどとして様々な種類のフッ素化合物のガスが使用されている。このようなフッ素化合物は「PFCs」と称されており、代表的なものとして、CF4、C26、C38、C48、C58などのパーフルオロカーボン、CHF3などのハイドロフルオロカーボン及びSF6やNF3などの無機含フッ素化合物等が挙げられる。また、半導体デバイス等の製造プロセスでは、窒化膜製造の際の材料ガスとしてN2O(亜酸化窒素)などが使用される。そして、半導体デバイスや液晶ディスプレイの製造プロセスで使用された様々な種類のPFCsやN2Oなどは、キャリアガスやパージガス等として使用されたN2やArなどと共に排ガスとして排出される。なお、本明細書では、全体を通してこの排ガスを「半導体製造排ガス」又は単に「排ガス」と称する。また、半導体デバイスや液晶ディスプレイの製造プロセスをまとめて「半導体製造工程」と称する。
 ここで、この排ガス全体におけるPFCsやN2Oなどの占める割合は、N2やArなどの他のガスに比べてわずかではあるが、このPFCsやN2Oなどは地球温暖化係数(GWP)がCO2に比べて数千~数万倍と非常に大きく、大気寿命もCO2に比べて数千~数万年と長いことから、大気中へ少量排出した場合であっても、その影響は甚大なものとなる。さらに、CF4やC26を代表とするパーフルオロカーボンはC-F結合が安定であるため(結合エネルギーが130kcal/molと大きい)、分解が容易でないことが知られている。このため、使用済みとなったPFCsやN2Oなどを排ガス中から除害する様々な技術の開発が行われている。
Various types of fluorine compound gases are used as cleaning gases, etching gases, and the like in the manufacturing processes of semiconductor devices and liquid crystal displays. Such fluorine compounds are called " PFCs ", and typical ones are perfluorocarbons such as CF4 , C2F6 , C3F8 , C4F8 , C5F8 , CHF3 and inorganic fluorine - containing compounds such as SF6 and NF3. In the manufacturing process of semiconductor devices and the like, N 2 O (nitrous oxide) or the like is used as a material gas for manufacturing a nitride film. Various kinds of PFCs and N 2 O used in the manufacturing process of semiconductor devices and liquid crystal displays are discharged as exhaust gas together with N 2 and Ar used as carrier gas and purge gas. In this specification, this exhaust gas is referred to as "semiconductor manufacturing exhaust gas" or simply "exhaust gas" throughout. In addition, manufacturing processes for semiconductor devices and liquid crystal displays are collectively referred to as "semiconductor manufacturing processes".
Here, the ratio of PFCs and N 2 O in the whole exhaust gas is small compared to other gases such as N 2 and Ar, but these PFCs and N 2 O have a global warming potential (GWP) is thousands to tens of thousands of times greater than that of CO 2 , and its lifetime in the atmosphere is several thousand to tens of thousands of years longer than that of CO 2 . becomes enormous. Furthermore, it is known that perfluorocarbons represented by CF 4 and C 2 F 6 are not easily decomposed because the CF bond is stable (the bond energy is as large as 130 kcal/mol). For this reason, various techniques have been developed for removing PFCs, N 2 O, etc., which have become used, from the exhaust gas.
 このような難分解性のPFCsやN2Oなどを含む排ガスを除害する技術として、例えば、下記の特許文献1(日本国・特開2002-188810号公報)には、入口スクラバーで有害排ガスに含まれる粉塵などを除去した後、電熱ヒーターを備えた排ガス処理塔で当該排ガスを加熱分解し、分解したガスを湿式の出口スクラバーで気液接触によって除害する排ガス処理装置が開示されている。 As a technology for abatement of exhaust gas containing such persistent PFCs and N 2 O, for example, the following Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-188810) describes harmful exhaust gas with an inlet scrubber. After removing the dust contained in the exhaust gas, the exhaust gas is thermally decomposed in an exhaust gas processing tower equipped with an electric heater, and the decomposed gas is detoxified by gas-liquid contact with a wet outlet scrubber. .
特開2002-188810号公報Japanese Patent Application Laid-Open No. 2002-188810
 しかしながら、上記の従来技術には次のような課題があった。すなわち、排ガス中のPFCsが難分解性のCF4を主体としている場合、電熱ヒーターを1500℃以上と言った非常に高い温度で使用しなければならないが、係る温度域での使用は電熱ヒーターの発熱体材料の物理的性質からも限界に近く、長期間に亘る連続稼働が難しいと言う問題があった。
 また、2015年9月の国連サミットで「持続可能な開発のための2030アジェンダ」が採択され、それ以降、今後のエネルギーの効率的な利用等に関して様々な議論や検討が行われている。このような状況の下、加熱の際のエネルギーとして比較的多くの電力を消費する上記従来の電熱ヒーターを備えた排ガス処理装置においても、高効率化及びこれに伴う省エネ化のニーズが益々高まってくることが容易に予想される。
However, the above prior art has the following problems. In other words, when the PFCs in the exhaust gas are mainly composed of persistent CF 4 , the electric heater must be used at a very high temperature of 1500 ° C or higher. The physical properties of the heating element material are also close to the limit, and there is a problem that continuous operation over a long period of time is difficult.
In addition, the “2030 Agenda for Sustainable Development” was adopted at the United Nations Summit in September 2015, and since then various discussions and studies have been conducted regarding the efficient use of energy in the future. Under these circumstances, there is an increasing need for higher efficiency and energy saving associated with the exhaust gas treatment apparatus equipped with the above-mentioned conventional electric heater, which consumes a relatively large amount of electric power for heating. It can easily be expected to come.
 それゆえに、本発明の主たる課題は、従来の電熱ヒーターを採用した排ガス処理装置の利点をそのままの形で有すると共に、電力エネルギーの更なる効率的な利用を図ることが可能であり、PFCsとして最も分解が困難なCF4を主体とする半導体製造排ガスの除害効率を著しく向上させることが可能な半導体製造排ガスの処理装置を提供することである。 Therefore, the main object of the present invention is to have the advantages of the conventional exhaust gas treatment apparatus using an electric heater as they are, and to achieve more efficient use of electric energy, which is the most efficient PFCs. An object of the present invention is to provide a semiconductor manufacturing exhaust gas treatment apparatus capable of remarkably improving the detoxification efficiency of semiconductor manufacturing exhaust gas mainly composed of CF 4 which is difficult to decompose.
 上記の目的を達成するため、本発明は、例えば、図1に示すように、半導体製造排ガスの処理装置10を次のように構成した。
 すなわち、半導体製造工程より排出される排ガスEを液洗する入口スクラバー12と,その入口スクラバー12を通過した上記の排ガスEを加熱分解するガス処理炉14と,そのガス処理炉14で加熱分解させた上記の排ガスEを液洗する出口スクラバー16とを具備する。このうち、上記ガス処理炉14は、内部にガス処理空間18bが形成された密閉筒状の本体18aの底面にガス導入口18cが穿設された外筒18と,一端が上記ガス導入口18cを囲繞するように上記の本体18aの内部底面に取り付けられ、他端が開口すると共に上記の本体18aの天井面に近接する位置まで上記ガス処理空間18bを横切るように延設された内筒20と,上記の本体18aの天井部18dから垂設されると共に、長尺棒状の発熱体22aが上記の内筒20の内部空間内に配設された電熱ヒーター22とを備える。また、上記ガス導入口18cの手前には、上記の入口スクラバー12通過後の排ガスEの流路の内径が上記ガス導入口18cの口径以下まで一気に絞られる絞り部24が設けられる。さらに、上記ガス導入口18cの手前には、上記の絞り部24における排ガス通流方向上流側端部の近傍にて上記の排ガスEへ向けて所定量の還元性ガスGを供給する還元性ガス供給手段26が設けられる。
In order to achieve the above objects, the present invention, for example, as shown in FIG.
That is, an inlet scrubber 12 for liquid washing the exhaust gas E discharged from the semiconductor manufacturing process, a gas processing furnace 14 for thermally decomposing the exhaust gas E that has passed through the inlet scrubber 12, and the gas processing furnace 14 for thermal decomposition. and an outlet scrubber 16 for washing the exhaust gas E described above. Among them, the gas processing furnace 14 includes an outer cylinder 18 having a closed cylindrical main body 18a with a gas processing space 18b formed therein and a gas introduction port 18c formed in the bottom surface of the main body 18a. The inner cylinder 20 is attached to the inner bottom surface of the main body 18a so as to surround the gas processing space 18b, the other end is open, and the inner cylinder 20 extends to a position close to the ceiling surface of the main body 18a so as to cross the gas processing space 18b. and an electric heater 22 vertically installed from the ceiling portion 18d of the main body 18a and having a long rod-shaped heating element 22a arranged in the inner space of the inner cylinder 20. As shown in FIG. Further, in front of the gas introduction port 18c, a narrowing portion 24 is provided for rapidly narrowing the inner diameter of the flow path of the exhaust gas E after passing through the inlet scrubber 12 to the diameter of the gas introduction port 18c or less. Further, before the gas introduction port 18c, a reducing gas for supplying a predetermined amount of reducing gas G toward the exhaust gas E in the vicinity of the upstream end portion in the exhaust gas flow direction of the throttle portion 24. Supply means 26 are provided.
 本発明は、例えば、次の作用を奏する。
 入口スクラバー12通過後の液洗済みの排ガスEに対して還元性ガス供給手段26より供給された還元性ガスGは、絞り部24を通過する際にその流速が上がると同時に排ガスE中の除害(加熱分解)対象成分であるPFCsやN2Oなどとの接触機会が増える。次いで、流速が上げられた状態でガス導入口18cを経てガス処理炉14内へと供給された排ガスEと還元性ガスGとは、内筒20内に配設された電熱ヒーター22の発熱体22aと衝突して乱流が生じ、これによりさらに排ガスE中のPFCsやN2Oなどと還元性ガスGとの接触機会が増やされる。そして、係る状態で加熱されることにより、ラジカル化された還元性ガスGの作用が重畳されて排ガスE中のPFCsやN2Oなどが非常に効率よく加熱分解される。また、このように加熱分解された高温の排ガスEは、内筒20の外側を流下するようになるが、その際に内筒20内部の温度が低下しないように断熱効果を発揮することができる。
 以上のような相乗的な作用により、PFCsの中で最も分解が困難なCF4を従来よりも低温の例えば1250℃~1350℃の加熱温度で、99.9%以上分解させることができるようになる。
The present invention has, for example, the following effects.
The reducing gas G supplied from the reducing gas supply means 26 to the washed exhaust gas E after passing through the inlet scrubber 12 increases in flow velocity when passing through the throttle section 24, and simultaneously removes the exhaust gas E. The chances of coming into contact with PFCs, N 2 O, etc., which are harmful (thermally decomposed) components, will increase. Next, the exhaust gas E and the reducing gas G supplied into the gas treatment furnace 14 through the gas introduction port 18c in a state where the flow velocity is increased are heated by the heating element of the electric heater 22 arranged in the inner cylinder 20. 22a, a turbulent flow is generated, which further increases the chances of contact between the PFCs, N 2 O, and the like in the exhaust gas E and the reducing gas G. By being heated in such a state, the action of the radicalized reducing gas G is superimposed, and the PFCs, N 2 O, and the like in the exhaust gas E are thermally decomposed very efficiently. In addition, the high-temperature exhaust gas E thermally decomposed in this way flows down the outside of the inner cylinder 20, but at that time, the heat insulation effect can be exhibited so that the temperature inside the inner cylinder 20 does not drop. .
Due to the above synergistic action, CF4 , which is the most difficult to decompose among PFCs, can be decomposed by 99.9% or more at a lower heating temperature than before, such as 1250 ° C to 1350 ° C. Become.
 本発明においては、前記の排ガスEがPFCsを含むものである場合には、前記の還元性ガス供給手段26より供給される還元性ガスGの流量が、前記ガス処理炉14へ供給される排ガスEの流量100容量部に対して、0.1~5容量部の割合であるのが好ましい。
 ガス処理炉14へ供給される排ガスEの流量100容量部に対して供給される還元性ガスGの流量が0.1容量部未満の場合には、還元性ガスGの添加効果が十分に発揮されず、逆に、ガス処理炉14へ供給される排ガスEの流量100容量部に対して供給される還元性ガスGの流量が5容量部を超える場合には、還元性ガスGの添加効果は十分発揮されるものの、その効果が頭打ちとなり無駄に還元性ガスGを燃焼させる結果となる。したがって、ガス処理炉14へ供給される排ガスEに対する還元性ガスGの添加割合を上記の範囲内とすることによって、還元性ガスGの添加による排ガスE中のPFCsの加熱分解効率を極大化させることができる。
In the present invention, when the exhaust gas E contains PFCs, the flow rate of the reducing gas G supplied from the reducing gas supply means 26 is the same as that of the exhaust gas E supplied to the gas treatment furnace 14. A ratio of 0.1 to 5 parts by volume per 100 parts by volume of the flow rate is preferable.
When the flow rate of the reducing gas G supplied to the gas treatment furnace 14 is less than 0.1 parts by volume per 100 parts by volume of the exhaust gas E supplied to the gas treatment furnace 14, the effect of adding the reducing gas G is sufficiently exhibited. Conversely, when the flow rate of the reducing gas G supplied to the gas treatment furnace 14 exceeds 5 parts by volume with respect to the flow rate of 100 parts by volume of the exhaust gas E supplied to the gas treatment furnace 14, the effect of adding the reducing gas G is sufficiently exerted, the effect reaches a peak, resulting in wasteful combustion of the reducing gas G. Therefore, by setting the addition ratio of the reducing gas G to the exhaust gas E supplied to the gas treatment furnace 14 within the above range, the thermal decomposition efficiency of the PFCs in the exhaust gas E due to the addition of the reducing gas G is maximized. be able to.
 また、本発明においては、前記の還元性ガスGが、水素又はアンモニアであるのが好ましい。
 この場合、排ガスEの加熱分解処理後に大気中へ排出する際の二酸化炭素の量を低減させることができる。また、排ガスE中の除害対象成分にN2Oが含まれる場合には、このN2Oの加熱分解後に排出されるNOx(窒素酸化物)の量を著しく低減させることもできる。
Moreover, in the present invention, the reducing gas G is preferably hydrogen or ammonia.
In this case, it is possible to reduce the amount of carbon dioxide emitted into the atmosphere after the exhaust gas E is thermally decomposed. In addition, when N 2 O is included in the target components of the exhaust gas E to be removed, the amount of NOx (nitrogen oxides) discharged after the N 2 O is thermally decomposed can be significantly reduced.
 本発明によれば、従来の電熱ヒーターを採用した排ガス処理装置の利点をそのままの形で有すると共に、電力エネルギーの更なる効率的な利用を図ることが可能であり、PFCsとして最も分解が困難なCF4を主体とする半導体製造排ガスの除害効率を著しく向上させることが可能な半導体製造排ガスの処理装置を提供することができる。 According to the present invention, it is possible to have the advantages of an exhaust gas treatment apparatus that employs a conventional electric heater as it is, and it is possible to use electric energy more efficiently, and it is the most difficult PFCs to decompose. It is possible to provide a semiconductor manufacturing exhaust gas treatment apparatus capable of remarkably improving the removal efficiency of semiconductor manufacturing exhaust gas mainly composed of CF 4 .
本発明の一実施形態の半導体製造排ガスの処理装置の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of an apparatus for treating semiconductor manufacturing exhaust gas according to an embodiment of the present invention; FIG.
 以下、本発明の半導体製造排ガスの処理装置の実施形態について図面を参照しつつ説明する。
 図1は、本発明の一実施形態の半導体製造排ガスの処理装置10の一例を示す概略断面図である。この半導体製造排ガスの処理装置10は、図示しない排出源(半導体製造工程)より排出されるPFCsやN2Oなどを含有する排ガスEを加熱分解して除害処理する装置であり、大略、入口スクラバー12,ガス処理炉14及び出口スクラバー16で構成される。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a semiconductor manufacturing exhaust gas treatment apparatus according to the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus 10 for treating semiconductor manufacturing exhaust gas according to an embodiment of the present invention. This semiconductor manufacturing exhaust gas treatment apparatus 10 is an apparatus for thermally decomposing and detoxifying an exhaust gas E containing PFCs, N 2 O, and the like discharged from an emission source (semiconductor manufacturing process) (not shown). It consists of a scrubber 12 , a gas treatment furnace 14 and an outlet scrubber 16 .
 入口スクラバー12は、ガス処理炉14に導入する排ガスEに含まれる粉塵や水溶性成分などを除去する湿式のスクラバーであり、本実施形態では、直管型のスクラバー本体12aと、このスクラバー本体12a内部の頂部近傍に設置され、水などの薬液を噴霧状にして撒布するスプレーノズル12bとを備える。この入口スクラバー12は、排ガスダクト28を介して半導体製造装置などの排ガス発生源(図示せず)に連通している。 The inlet scrubber 12 is a wet scrubber that removes dust and water-soluble components contained in the exhaust gas E introduced into the gas treatment furnace 14. A spray nozzle 12b is installed near the top of the inside and sprays a chemical solution such as water in the form of a spray. The inlet scrubber 12 communicates with an exhaust gas generating source (not shown) such as a semiconductor manufacturing apparatus through an exhaust gas duct 28 .
 また、入口スクラバー12は、薬液タンク30上に立設されており(図1参照)或いは(図示しないが)薬液タンク30と別個に配設されると共に両者が配管で接続されて、排液が薬液タンク30に送り込まれるようになっている。そして、スプレーノズル12bと薬液タンク30との間には循環ポンプ32が設置されており、薬液タンク30内の貯留薬液をスプレーノズル12bに揚上するようになっている。
 なお、図1に示す本実施形態では、入口スクラバー12の排液のみならず、液洗後の排ガスEも薬液タンク30へと送り込まれるようになっており、この薬液タンク30の液面と天井面との間の空間(上部空間)が排ガス通流路として利用されている。ここで、図1における符合30aは、入口スクラバー12で液洗した排ガスEがガス処理炉14を経ずに出口スクラバー16へと流入しないように区画する「隔壁」である。
The inlet scrubber 12 is erected on the chemical liquid tank 30 (see FIG. 1) or (not shown) is arranged separately from the chemical liquid tank 30 and both are connected by a pipe so that the waste liquid can be discharged. It is designed to be fed into the chemical liquid tank 30 . A circulating pump 32 is installed between the spray nozzle 12b and the chemical tank 30 to lift the chemical liquid stored in the chemical tank 30 to the spray nozzle 12b.
In this embodiment shown in FIG. 1, not only the waste liquid from the inlet scrubber 12 but also the flue gas E after liquid washing is sent to the chemical liquid tank 30. The space between the surfaces (upper space) is used as an exhaust gas passage. Here, reference numeral 30a in FIG. 1 denotes a “partition wall” that prevents the flue gas E that has been liquid-washed in the inlet scrubber 12 from flowing into the outlet scrubber 16 without passing through the gas treatment furnace 14 .
 ガス処理炉14は、排ガスE中のPFCsやN2Oなどを電熱ヒーター22を用いて加熱分解する装置であり、大略、外筒18と,内筒20と,電熱ヒーター22とで構成される。 The gas treatment furnace 14 is a device that heats and decomposes PFCs, N 2 O, etc. in the exhaust gas E using an electric heater 22, and is roughly composed of an outer cylinder 18, an inner cylinder 20, and an electric heater 22. .
 外筒18は、少なくともその内面がキャスタブルなどの耐火性材料で構成され、内部にガス処理空間18bが形成された密閉円筒状の本体18aを有する。そして、その本体18aは、図1に示すように、使用に際して(本体18aの)平面部分が天地を向くように立設されると共に、底面にガス導入口18cが穿設される。また、この本体18aの天井部18dにおける上記ガス導入口18cに対向する位置には、電熱ヒーター22を挿入するための挿入口18eが穿設されている。 The outer cylinder 18 has a sealed cylindrical main body 18a with at least its inner surface made of a refractory material such as castable and having a gas processing space 18b formed therein. As shown in FIG. 1, the main body 18a is erected so that the flat portion (of the main body 18a) faces upside down when used, and a gas introduction port 18c is formed in the bottom surface. An insertion port 18e for inserting the electric heater 22 is formed in the ceiling portion 18d of the main body 18a at a position facing the gas introduction port 18c.
 なお、本実施形態では、外筒18を密閉円筒状に形成する場合を示しているが、この外筒18の形状は両端が密閉した筒状であれば如何なるものであってもよく、例えば密閉角筒状等であってもよい。
 また、図示実施形態の場合、本体18aの底面中央部にガス導入口18cが穿設されると共に、本体18aの底面におけるガス導入口18cに近接する位置に、本体18a内部のガス処理空間18bで加熱分解された排ガスEを排出するためのガス排出口18fが穿設されている。
In this embodiment, the case where the outer cylinder 18 is formed in a closed cylindrical shape is shown, but the shape of the outer cylinder 18 may be any shape as long as it is cylindrical with both ends closed. It may be in the shape of a square tube or the like.
In the illustrated embodiment, a gas introduction port 18c is formed in the center of the bottom surface of the main body 18a, and a gas processing space 18b inside the main body 18a is provided at a position close to the gas introduction port 18c on the bottom surface of the main body 18a. A gas discharge port 18f is provided for discharging the exhaust gas E that has been thermally decomposed.
 内筒20は、キャスタブルなどの耐火性材料、或いはハステロイ(ヘインズ社登録商標)やステンレスなどの金属材料等で構成され、長手方向両端面が開口した(開放された)円筒状の部材である。この内筒20の長手方向の一端は、上記のガス導入口18cを囲繞するように外筒18の本体18aの内部底面に取り付けられる。そして、この内筒20は、外筒18のガス処理空間18bを横切るように延設されると共に、その長手方向の他端が外筒18の本体18aの天井面に近接する位置に配置される。
 なお、本実施形態では内筒20を円筒状に形成する場合を示しているが、この内筒20の形状は両端が開口した筒状であれば如何なるものであってもよく、例えば角筒状等であってもよい。
The inner cylinder 20 is a cylindrical member that is made of a refractory material such as castable, or a metal material such as Hastelloy (registered trademark of Haynes) or stainless steel, and has open (opened) longitudinal end faces. One longitudinal end of the inner cylinder 20 is attached to the inner bottom surface of the main body 18a of the outer cylinder 18 so as to surround the gas introduction port 18c. The inner cylinder 20 extends across the gas processing space 18b of the outer cylinder 18, and the other end in the longitudinal direction is arranged at a position close to the ceiling surface of the main body 18a of the outer cylinder 18. .
Although the present embodiment shows the case where the inner cylinder 20 is formed in a cylindrical shape, the shape of the inner cylinder 20 may be any shape as long as it is cylindrical with both ends opened. etc.
 電熱ヒーター22は、ガス処理炉14内のガス処理空間18bを加熱する熱源となるものであり、長尺棒状の発熱体22aを有する。その発熱体22aは、処理対象である排ガスE中のPFCsの加熱分解によって副生されるHF(フッ化水素)に対して耐食性を有し、且つ高温での発熱が可能なものが用いられ、具体的には、炭化ケイ素(SiC),二珪化モリブデン(MoSi2)及びランタンクロマイト(LaCrO3)などのセラミックス製のものや、アルミナなどのセラミック製或いはハステロイ(ヘインズ社登録商標)などの金属製の保護管の内部にニクロム線やカンタル(サンドビックAB社登録商標)線などの発熱抵抗体となる金属線を螺旋状に巻回したものなどが挙げられる。 The electric heater 22 serves as a heat source for heating the gas processing space 18b in the gas processing furnace 14, and has a long rod-shaped heating element 22a. The heating element 22a has corrosion resistance to HF (hydrogen fluoride) produced by thermal decomposition of PFCs in the exhaust gas E to be treated, and is capable of generating heat at a high temperature. Specifically, ceramics such as silicon carbide (SiC), molybdenum disilicide (MoSi 2 ) and lanthanum chromite (LaCrO 3 ), ceramics such as alumina, or metals such as Hastelloy (Haynes registered trademark). A metal wire, such as a nichrome wire or a Kanthal (registered trademark of Sandvik AB) wire, which serves as a heating resistor, is spirally wound inside the protective tube.
 この電熱ヒーター22は、発熱体22aを外筒4の天井部18dの所定位置に設けられた挿入口18eから本体18aの内部空間に挿入して着脱可能にて取り付けられる。このため、この電熱ヒーター22は、外筒18の本体18aの天井部18dから垂設されると共に、長尺棒状の発熱体22aが内筒20の内部空間内に配設される。 The electric heater 22 is detachably attached by inserting the heating element 22a into the inner space of the main body 18a through an insertion opening 18e provided at a predetermined position in the ceiling portion 18d of the outer cylinder 4. For this reason, the electric heater 22 is vertically installed from the ceiling portion 18d of the main body 18a of the outer cylinder 18, and a long rod-shaped heating element 22a is arranged in the inner space of the inner cylinder 20. As shown in FIG.
 以上のように構成されたガス処理炉14には、図示しないが、例えばガス処理空間18bの温度を検出する熱電対などの温度計測手段が取り付けられると共に、この温度計測手段で検出した温度データ(温度信号)が、信号線を介して、CPU[Central Processing Unit;中央処理装置],メモリ,入力装置及び表示装置などからなる制御手段へと与えられるようになっている。なお、この制御手段には、図示しない電源ユニットなども接続されている。 Although not shown, the gas processing furnace 14 configured as described above is equipped with temperature measuring means such as a thermocouple for detecting the temperature of the gas processing space 18b, and the temperature data ( temperature signal) is given to control means comprising a CPU [Central Processing Unit], a memory, an input device, a display device, etc., via a signal line. A power supply unit (not shown) is also connected to the control means.
 また、以上のように構成されたガス処理炉14は、薬液タンク30上に配設されると共に、ガス導入口18cと略同じ内径を有する短管24aの上端が当該ガス導入口18cに連通接続され、その短管24aの下端が薬液タンク30内における入口スクラバー12通過後の排ガスEの通流領域と連通するように接続される。このため、この短管24aが、入口スクラバー12通過後の排ガスEの流路の内径をガス導入口18cの口径以下まで一気に絞る「絞り部24」として機能する。 The gas processing furnace 14 configured as described above is disposed on the chemical liquid tank 30, and the upper end of the short pipe 24a having substantially the same inner diameter as the gas introduction port 18c is connected to the gas introduction port 18c. The lower end of the short pipe 24a is connected so as to communicate with the flow area of the exhaust gas E after passing through the inlet scrubber 12 in the chemical solution tank 30 . For this reason, the short pipe 24a functions as a "throttle portion 24" that rapidly narrows the inner diameter of the flow path of the exhaust gas E after passing through the inlet scrubber 12 to the diameter of the gas introduction port 18c or less.
 そして、薬液タンク30の天井部における当該短管24a接続箇所の近傍、つまり、絞り部24における排ガス通流方向上流側端部の近傍には、絞り部24を介してガス処理炉14内へと送給される排ガスEへ向けて所定量の還元性ガスGを供給する還元性ガス供給手段26が設けられる。 In the vicinity of the connection point of the short pipe 24a in the ceiling of the chemical tank 30, that is, in the vicinity of the upstream end of the narrowed portion 24 in the exhaust gas flow direction, a A reducing gas supply means 26 for supplying a predetermined amount of reducing gas G toward the exhaust gas E to be fed is provided.
 還元性ガス供給手段26は、先端が薬液タンク30の天井部における短管24a接続箇所の近傍で薬液タンク30内部空間に連通し、基端が還元性ガスGを貯蔵するタンク或いはボンベと言った貯蔵源26cに接続される還元性ガス送給配管26a,およびこの還元性ガス送給配管26a上に設けられ、薬液タンク30内に供給する還元性ガスGの量を調整する流量調整手段26bなどで構成される。 The leading end of the reducing gas supply means 26 communicates with the inner space of the chemical liquid tank 30 near the connection point of the short pipe 24a on the ceiling of the chemical liquid tank 30, and the base end is a tank or cylinder for storing the reducing gas G. A reducing gas supply pipe 26a connected to the storage source 26c, and a flow rate adjusting means 26b provided on the reducing gas supply pipe 26a for adjusting the amount of the reducing gas G supplied into the chemical liquid tank 30, etc. consists of
 この還元性ガス供給手段26で供給される還元性ガスGとしては、水素,一酸化炭素,アンモニア,炭化水素などを挙げることができるが、このうち、還元性ガスGとして水素又はアンモニアを用いれば、排ガスEの加熱分解処理後に大気中へ排出する際の二酸化炭素の量を低減させることができる。また、排ガスE中の除害対象成分にN2Oが含まれる場合には、このN2Oと略等量の水素又はアンモニアを供給することによってN2Oの加熱分解後に排出されるNOxの量を著しく低減させることもできる。
 一方、還元性ガスGとして例えばCH4(メタン)などの炭化水素を用いれば、PFCs含有排ガス処理装置10全体のイニシャルコストやランニングコストを低廉に抑える事ができる。
 ここで、還元性ガス供給手段26より供給される還元性ガスGの流量は、例えば、排ガスEがPFCsを含むものである場合には、ガス処理炉14へ供給されるその排ガスEの流量200リットル/分に対して0.2~10リットル/分、つまり、ガス処理炉14へ供給される排ガスEの流量100容量部に対して、還元性ガスGの流量が0.1~5容量部の割合であるのが好ましく、より好ましくは0.5~2.5容量部の範囲内である。
 なお、還元性ガスGとしてアンモニアを用いる際には、その供給源として尿素や尿素水を用いるようにしてもよい。
Examples of the reducing gas G supplied by the reducing gas supply means 26 include hydrogen, carbon monoxide, ammonia, and hydrocarbons. , it is possible to reduce the amount of carbon dioxide when exhaust gas E is discharged into the atmosphere after thermal decomposition treatment. In addition, when N 2 O is included in the target components for abatement in the exhaust gas E, the amount of NOx emitted after the N 2 O is thermally decomposed is reduced by supplying hydrogen or ammonia in an amount approximately equal to the N 2 O. The amount can also be significantly reduced.
On the other hand, if a hydrocarbon such as CH 4 (methane) is used as the reducing gas G, the initial cost and running cost of the entire PFCs-containing exhaust gas treatment apparatus 10 can be kept low.
Here, the flow rate of the reducing gas G supplied from the reducing gas supply means 26 is, for example, when the exhaust gas E contains PFCs, the flow rate of the exhaust gas E supplied to the gas treatment furnace 14 is 200 liters/ 0.2 to 10 liters per minute, that is, the ratio of the flow rate of the reducing gas G to 100 volume parts of the exhaust gas E supplied to the gas treatment furnace 14 is 0.1 to 5 volume parts. and more preferably in the range of 0.5 to 2.5 parts by volume.
When ammonia is used as the reducing gas G, urea or urea water may be used as its supply source.
 出口スクラバー16は、ガス処理炉14を通過した加熱分解後の排ガスEを冷却すると共に、加熱分解によって副生した粉塵や水溶性成分等を最終的に排ガスE中から除去する湿式のスクラバーであり、本実施形態では、排出配管34を介してガス処理炉14の本体18a底面に設けられたガス排出口18fに連通する直管型のスクラバー本体16aと、このスクラバー本体16a内にて垂直方向に間隔を空けて複数(本実施形態では4段)設置された穿孔プレート16bと、最上部の穿孔プレート16bの直上部に取り付けられ、排ガスEの通流方向に対向するように上方から水などの薬液を噴霧する下向きのスプレーノズル16cとで構成される。この出口スクラバー16は薬液タンク30上に立設され、排水が薬液タンク30に送り込まれるようになっている。 The outlet scrubber 16 is a wet scrubber that cools the exhaust gas E after thermal decomposition that has passed through the gas treatment furnace 14 and finally removes dust, water-soluble components, etc. generated by the thermal decomposition from the exhaust gas E. , In this embodiment, a straight pipe type scrubber main body 16a communicating with a gas outlet 18f provided on the bottom surface of the main body 18a of the gas processing furnace 14 via a discharge pipe 34, A plurality of perforated plates 16b (four stages in this embodiment) are installed at intervals, and the uppermost perforated plate 16b is attached directly above the perforated plate 16b. It is composed of a downward spray nozzle 16c for spraying a chemical solution. The outlet scrubber 16 is erected on the chemical liquid tank 30 so that waste water is sent into the chemical liquid tank 30 .
 また、本実施形態の出口スクラバー16では、上述した入口スクラバー12と異なり、スプレーノズル16cへ新水などの新しい薬液を供給するようにしているが(図1参照)、このスプレーノズル16cを循環ポンプ42の吐出側に連通接続させて薬液タンク30内の貯留薬液をスプレーノズル16cへと揚上させるようにしてもよい。 Further, in the outlet scrubber 16 of this embodiment, unlike the inlet scrubber 12 described above, a new chemical such as fresh water is supplied to the spray nozzle 16c (see FIG. 1). The discharge side of 42 may be connected for communication so that the chemical liquid stored in the chemical liquid tank 30 is lifted up to the spray nozzle 16c.
 そして、この出口スクラバー16の出口には、処理済みの排ガスEを大気中へと放出する排気ファン36が接続されている。 An exhaust fan 36 for discharging the treated exhaust gas E into the atmosphere is connected to the outlet of the outlet scrubber 16 .
 なお、本実施形態の半導体製造排ガスの処理装置10におけるガス処理炉14を除く他の部分には、排ガスEに含まれる、或いは、当該排ガスEの加熱分解によって生じるフッ酸などの腐食性成分による腐食から各部を守るため、塩化ビニル,ポリエチレン,不飽和ポリエステル樹脂及びフッ素樹脂などによる耐食性のライニングやコーティングが施されている。 It should be noted that other parts of the semiconductor manufacturing exhaust gas treatment apparatus 10 of the present embodiment, excluding the gas treatment furnace 14, contain corrosive components such as hydrofluoric acid contained in the exhaust gas E or generated by thermal decomposition of the exhaust gas E. Corrosion-resistant linings and coatings made of vinyl chloride, polyethylene, unsaturated polyester resin, fluorine resin, etc. are applied to protect each part from corrosion.
 次に、以上のように構成された半導体製造排ガスの処理装置10を用いて排ガスEの除害処理を行う際には、まず始めに、当該処理装置10の運転スイッチ(図示せず)をオンにしてガス処理炉14と電熱ヒーター22を作動させ、ガス処理炉14内のガス処理空間18bの加熱を開始する。 Next, when performing the detoxification treatment of the exhaust gas E using the semiconductor manufacturing exhaust gas treatment apparatus 10 configured as described above, first, the operation switch (not shown) of the treatment apparatus 10 is turned on. Then, the gas processing furnace 14 and the electric heater 22 are operated, and heating of the gas processing space 18b in the gas processing furnace 14 is started.
 そして、ガス処理空間18b内の温度が、800℃~1400℃の範囲内であって、処理対象の排ガスEの種類に応じた所定の温度に達すると、排気ファン36が作動し、処理装置10への排ガスEの導入が開始される。すると、排ガスEは、入口スクラバー12、ガス処理炉14及び出口スクラバー16をこの順に通過して排ガスE中の除害対象成分(すなわちPFCsやN2Oなど)が除害される。また、図示しない制御手段によって、ガス処理空間18b内の温度が所定の温度を保持するようにガス処理炉14の電熱ヒーター22に供給する電力量が制御される。 Then, when the temperature in the gas processing space 18b is within the range of 800° C. to 1400° C. and reaches a predetermined temperature corresponding to the type of the exhaust gas E to be processed, the exhaust fan 36 operates, and the processing apparatus 10 Introduction of exhaust gas E to is started. Then, the exhaust gas E passes through the inlet scrubber 12, the gas treatment furnace 14 and the outlet scrubber 16 in this order, and the components to be removed (that is, PFCs, N 2 O, etc.) in the exhaust gas E are removed. Further, the amount of electric power supplied to the electric heater 22 of the gas processing furnace 14 is controlled by a control means (not shown) so that the temperature in the gas processing space 18b is maintained at a predetermined temperature.
 本実施形態の半導体製造排ガスの処理装置10によれば、入口スクラバー12通過後の液洗済みの排ガスEに対して還元性ガス供給手段26より供給された還元性ガスGは、絞り部24を通過する際にその流速が上がると同時に排ガスE中の除害(加熱分解)対象成分であるPFCsやN2Oなどとの接触機会が増える。次いで、流速が上げられた状態でガス導入口18cを経てガス処理炉14内へと供給された排ガスEと還元性ガスGとは、内筒20内に配設された電熱ヒーター22の発熱体22aと衝突して乱流が生じ、これによりさらに排ガスE中のPFCsやN2Oなどと還元性ガスGとの接触機会が増やされる。そして、係る状態で内筒20内にて電熱ヒーター22で加熱されることにより、ラジカル化された還元性ガスGの作用が重畳されて排ガスE中のPFCsやN2Oなどが非常に効率よく加熱分解される。また、このように加熱分解された高温の排ガスEは、内筒20の外側を流下するようになるが、その際に内筒20内部の温度が低下しないように断熱効果を発揮することができる。
 以上のような相乗的な作用により、PFCsの中で最も分解が困難なCF4を従来よりも低温の1250℃~1350℃の加熱温度で99.9%以上分解させることができるようになる。
According to the semiconductor manufacturing exhaust gas treatment apparatus 10 of the present embodiment, the reducing gas G supplied from the reducing gas supply means 26 to the washed exhaust gas E after passing through the inlet scrubber 12 passes through the throttle section 24. When passing through, the flow velocity increases and at the same time, the chances of contact with PFCs, N 2 O, etc., which are the target components for detoxification (thermal decomposition) in the exhaust gas E increase. Next, the exhaust gas E and the reducing gas G supplied into the gas treatment furnace 14 through the gas introduction port 18c in a state where the flow velocity is increased are heated by the heating element of the electric heater 22 arranged in the inner cylinder 20. 22a, a turbulent flow is generated, which further increases the chances of contact between the PFCs, N 2 O, and the like in the exhaust gas E and the reducing gas G. In this state, the inner cylinder 20 is heated by the electric heater 22, so that the action of the radicalized reducing gas G is superimposed, and the PFCs, N 2 O, etc. in the exhaust gas E are efficiently removed. It is thermally decomposed. In addition, the high-temperature exhaust gas E thermally decomposed in this way flows down the outside of the inner cylinder 20, but at that time, the heat insulation effect can be exhibited so that the temperature inside the inner cylinder 20 does not decrease. .
Due to the synergistic action described above, CF 4 , which is the most difficult to decompose among PFCs, can be decomposed by 99.9% or more at a heating temperature of 1250° C. to 1350° C., which is lower than the conventional one.
 なお、上述の実施形態では、ガス処理炉14の外筒18に設けられたガス導入口18cと入口スクラバー12で液洗された排ガスEが通流する薬液タンク30の上部空間とを短管24aを介して連通させる場合を示したが、このような短管24aを用いずに、外筒18のガス導入口18cと薬液タンク30の上部空間とを直接連結するようにしてもよい。この場合、外筒18のガス導入口18cのガス通流方向手前側端縁それ自体が絞り部24として機能するようになる。 In the above embodiment, the short pipe 24a connects the gas introduction port 18c provided in the outer cylinder 18 of the gas processing furnace 14 and the upper space of the chemical solution tank 30 through which the exhaust gas E washed by the inlet scrubber 12 flows. However, the gas introduction port 18c of the outer cylinder 18 and the upper space of the chemical liquid tank 30 may be directly connected without using such a short pipe 24a. In this case, the front edge of the gas introduction port 18 c of the outer cylinder 18 in the direction of gas flow itself functions as the throttle portion 24 .
 また、上述の実施形態のように、ガス処理炉14のガス導入口18cと薬液タンク30の上部空間(液洗後の排ガス通流路)とを短管24aを介して連通させる場合には、その短管24aと前記の排出配管34との間に熱交換器(図示せず)を設ける、つまり、排出配管34を通流する排ガスEの排熱を、短管24aを通流する排ガスEに与えて予熱するのが好ましい。この場合、より一層、エネルギーの効率的な利用を図ることができるようになる。 Further, as in the above-described embodiment, when the gas introduction port 18c of the gas processing furnace 14 and the upper space of the chemical liquid tank 30 (exhaust gas flow path after liquid washing) are communicated through the short pipe 24a, A heat exchanger (not shown) is provided between the short pipe 24a and the discharge pipe 34. That is, the exhaust heat of the exhaust gas E flowing through the discharge pipe 34 is transferred to the exhaust gas E flowing through the short pipe 24a. It is preferable to preheat by giving In this case, more efficient use of energy can be achieved.
 10:半導体製造排ガスの処理装置,12:入口スクラバー,14:ガス処理炉,16:出口スクラバー,18:外筒,18a:本体,18b:ガス処理空間,18c:ガス導入口,18d:天井部,20:内筒,22:電熱ヒーター,22a:発熱体,24:絞り部,26:還元性ガス供給手段,E:排ガス,G:還元性ガス. 10: semiconductor manufacturing exhaust gas treatment device, 12: inlet scrubber, 14: gas treatment furnace, 16: outlet scrubber, 18: outer cylinder, 18a: main body, 18b: gas treatment space, 18c: gas inlet, 18d: ceiling part , 20: inner cylinder, 22: electric heater, 22a: heating element, 24: restrictor, 26: reducing gas supply means, E: exhaust gas, G: reducing gas.

Claims (3)

  1.  半導体製造工程より排出される排ガス(E)を液洗する入口スクラバー(12),その入口スクラバー(12)を通過した上記の排ガス(E)を加熱分解するガス処理炉(14),及び、そのガス処理炉(14)で加熱分解させた上記の排ガス(E)を液洗する出口スクラバー(16)を具備する半導体製造排ガスの処理装置であって、
     上記ガス処理炉(14)は、内部にガス処理空間(18b)が形成された密閉筒状の本体(18a)の底面にガス導入口(18c)が穿設された外筒(18)と,一端が上記ガス導入口(18c)を囲繞するように上記の本体(18a)の内部底面に取り付けられ、他端が開口すると共に上記の本体(18a)の天井面に近接する位置まで上記ガス処理空間(18b)を横切るように延設された内筒(20)と,上記の本体(18a)の天井部(18d)から垂設されると共に、長尺棒状の発熱体(22a)が上記の内筒(20)の内部空間内に配設された電熱ヒーター(22)とを備えており、
     上記ガス導入口(18c)の手前には、上記の入口スクラバー(12)通過後の排ガス(E)の流路の内径が上記ガス導入口(18c)の口径以下まで一気に絞られる絞り部(24)が設けられると共に、その絞り部(24)における排ガス通流方向上流側端部の近傍にて上記の排ガス(E)へ向けて所定量の還元性ガス(G)を供給する還元性ガス供給手段(26)が設けられる、ことを特徴とする半導体製造排ガスの処理装置。
    An inlet scrubber (12) for washing the exhaust gas (E) discharged from the semiconductor manufacturing process, a gas processing furnace (14) for thermally decomposing the exhaust gas (E) that has passed through the inlet scrubber (12), and its A semiconductor manufacturing exhaust gas treatment apparatus comprising an outlet scrubber (16) for liquid washing the above exhaust gas (E) thermally decomposed in a gas treatment furnace (14),
    The gas processing furnace (14) includes an outer cylinder (18) having a gas inlet (18c) drilled in the bottom of a sealed cylindrical main body (18a) having a gas processing space (18b) formed therein; One end is attached to the inner bottom surface of the main body (18a) so as to surround the gas introduction port (18c), and the other end is open to the position close to the ceiling surface of the main body (18a). An inner cylinder (20) extending across the space (18b) and a long rod-shaped heating element (22a) vertically installed from the ceiling (18d) of the main body (18a) an electric heater (22) disposed in the inner space of the inner cylinder (20),
    In front of the gas introduction port (18c), a constriction portion (24) is provided for rapidly narrowing the inside diameter of the flow path of the exhaust gas (E) after passing through the inlet scrubber (12) to the diameter of the gas introduction port (18c) or less. ) is provided, and a reducing gas supply for supplying a predetermined amount of reducing gas (G) toward the exhaust gas (E) in the vicinity of the upstream end in the exhaust gas flow direction of the throttle portion (24) An apparatus for treating semiconductor manufacturing exhaust gas, characterized in that means (26) is provided.
  2.  請求項1の半導体製造排ガスの処理装置において、
     前記の排ガス(E)がPFCsを含むものである場合には、前記の還元性ガス供給手段(26)より供給される前記の還元性ガス(G)の流量が、前記ガス処理炉(14)へ供給される上記の排ガス(E)の流量100容量部に対して、0.1~5容量部の割合である、ことを特徴とする半導体製造排ガスの処理装置。
    In the semiconductor manufacturing exhaust gas treatment apparatus of claim 1,
    When the exhaust gas (E) contains PFCs, the flow rate of the reducing gas (G) supplied from the reducing gas supply means (26) is supplied to the gas treatment furnace (14) 1 to 5 parts by volume per 100 parts by volume of the above-mentioned exhaust gas (E).
  3.  請求項1又は2の半導体製造排ガスの処理装置において、
     前記の還元性ガス(G)が、水素又はアンモニアである、ことを特徴とする半導体製造排ガスの処理装置。
    In the semiconductor manufacturing exhaust gas treatment apparatus according to claim 1 or 2,
    An apparatus for treating semiconductor manufacturing exhaust gas, wherein the reducing gas (G) is hydrogen or ammonia.
PCT/JP2021/016592 2021-04-01 2021-04-26 Treatment device for semiconductor manufacturing exhaust gas WO2022208901A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237022650A KR20230116036A (en) 2021-04-01 2021-04-26 Semiconductor Manufacturing Exhaust Gas Treatment Equipment
JP2021540441A JP7021730B1 (en) 2021-04-01 2021-04-26 Semiconductor manufacturing exhaust gas treatment equipment
US18/274,277 US20240082782A1 (en) 2021-04-01 2021-04-26 Treatment device for semiconductor manufacturing exhaust gas
CN202180003384.0A CN115461131B (en) 2021-04-01 2021-04-26 Treatment device for semiconductor manufacturing waste gas
TW110133589A TWI821745B (en) 2021-04-01 2021-09-09 Treatment equipment for treating exhaust gases from semiconductor manufacturing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/014176 WO2022208848A1 (en) 2021-04-01 2021-04-01 Device for treating pfc-containing exhaust gas
JPPCT/JP2021/014176 2021-04-01

Publications (1)

Publication Number Publication Date
WO2022208901A1 true WO2022208901A1 (en) 2022-10-06

Family

ID=83457603

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/014176 WO2022208848A1 (en) 2021-04-01 2021-04-01 Device for treating pfc-containing exhaust gas
PCT/JP2021/016592 WO2022208901A1 (en) 2021-04-01 2021-04-26 Treatment device for semiconductor manufacturing exhaust gas

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014176 WO2022208848A1 (en) 2021-04-01 2021-04-01 Device for treating pfc-containing exhaust gas

Country Status (1)

Country Link
WO (2) WO2022208848A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024447A (en) * 1998-07-09 2000-01-25 Sony Corp Waste gas treating device
JP2004278879A (en) * 2003-03-14 2004-10-07 Babcock Hitachi Kk Exhaust gas combustion treatment device
JP2005218911A (en) * 2004-02-03 2005-08-18 Applied Materials Inc Exhaust gas treatment method and exhaust gas treatment apparatus
JP2006150281A (en) * 2004-11-30 2006-06-15 Kanken Techno Co Ltd Exhaust gas detoxifying apparatus for semiconductor production apparatus
JP2007059061A (en) * 2005-07-29 2007-03-08 Kanken Techno Co Ltd Electric heater and semiconductor exhaust gas treatment device using the heater
JP2007054720A (en) * 2005-08-23 2007-03-08 Kanken Techno Co Ltd Perfluorocarbon gas detoxifying method and detoxifying device
JP2007061754A (en) * 2005-08-31 2007-03-15 Kanken Techno Co Ltd Waste gas detoxification apparatus
JP2009082892A (en) * 2007-10-03 2009-04-23 Kanken Techno Co Ltd Temperature control method for exhaust gas treating device, and exhaust gas treating device and exhaust gas treating system using the method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024447A (en) * 1998-07-09 2000-01-25 Sony Corp Waste gas treating device
JP2004278879A (en) * 2003-03-14 2004-10-07 Babcock Hitachi Kk Exhaust gas combustion treatment device
JP2005218911A (en) * 2004-02-03 2005-08-18 Applied Materials Inc Exhaust gas treatment method and exhaust gas treatment apparatus
JP2006150281A (en) * 2004-11-30 2006-06-15 Kanken Techno Co Ltd Exhaust gas detoxifying apparatus for semiconductor production apparatus
JP2007059061A (en) * 2005-07-29 2007-03-08 Kanken Techno Co Ltd Electric heater and semiconductor exhaust gas treatment device using the heater
JP2007054720A (en) * 2005-08-23 2007-03-08 Kanken Techno Co Ltd Perfluorocarbon gas detoxifying method and detoxifying device
JP2007061754A (en) * 2005-08-31 2007-03-15 Kanken Techno Co Ltd Waste gas detoxification apparatus
JP2009082892A (en) * 2007-10-03 2009-04-23 Kanken Techno Co Ltd Temperature control method for exhaust gas treating device, and exhaust gas treating device and exhaust gas treating system using the method

Also Published As

Publication number Publication date
WO2022208848A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
JP5952984B1 (en) Exhaust gas treatment equipment
JP5307556B2 (en) Gas processing equipment
JP5623676B1 (en) Exhaust gas treatment burner and exhaust gas treatment apparatus using the burner
US7976807B2 (en) Method for detoxifying HCD gas and apparatus therefor
JP6336059B2 (en) Heat exchanger and exhaust gas treatment apparatus using the heat exchanger
TWI429477B (en) A gas treatment device, a gas treatment system using the apparatus, and a gas treatment method
JP7021730B1 (en) Semiconductor manufacturing exhaust gas treatment equipment
WO2022208901A1 (en) Treatment device for semiconductor manufacturing exhaust gas
JP2017124345A (en) Exhaust gas detoxification device
KR20090011467A (en) A exhaust gas disposal appartus of semiconductor
JP7279985B2 (en) Gas treatment furnace and exhaust gas treatment equipment using the same
JP2008253903A (en) Gas treatment method and gas treatment apparatus
WO2023084595A1 (en) Gas processing furnace and exhaust gas processing device using same
JP6549344B1 (en) Exhaust gas abatement system
WO2023199410A1 (en) Method for treating exhaust gas containing nitrogen compound, and apparatus for said method
WO2022101981A1 (en) Gas processing furnace and exhaust gas processing device in which same is used
WO2017068609A1 (en) Exhaust gas treatment device
JP5922611B2 (en) Reactor for exhaust gas treatment device and exhaust gas treatment device using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021540441

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935061

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237022650

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18274277

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935061

Country of ref document: EP

Kind code of ref document: A1