WO2017068609A1 - Exhaust gas treatment device - Google Patents
Exhaust gas treatment device Download PDFInfo
- Publication number
- WO2017068609A1 WO2017068609A1 PCT/JP2015/005260 JP2015005260W WO2017068609A1 WO 2017068609 A1 WO2017068609 A1 WO 2017068609A1 JP 2015005260 W JP2015005260 W JP 2015005260W WO 2017068609 A1 WO2017068609 A1 WO 2017068609A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- heat storage
- storage chambers
- thermal decomposition
- treated
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/68—Halogens or halogen compounds
Definitions
- the present invention relates to an exhaust gas treating apparatus suitable mainly for treating difficultly decomposing waste gas such as PFCs (perfluoro compound).
- a heat storage type exhaust gas processing apparatus as described in Patent Document 1 below is known as a processing apparatus capable of efficiently thermally decomposing (removing) harmful substances in exhaust gas with less fuel consumption.
- This heat storage type exhaust gas processing apparatus is provided with at least two heat storage chambers having a heat storage body, one end of the heat storage chamber is communicated with the combustion chamber having heating means, and the other end is connected to an exhaust gas supply duct and a processing gas exhaust duct Communication is made via the on-off valve, and switching between the supply of exhaust gas to the heat storage chamber and the exhaust of the processed exhaust gas obtained by thermally decomposing harmful components in the combustion chamber in each of the heat storage chambers by driving the on-off valve carry out.
- the above-mentioned conventional heat storage type exhaust gas treatment apparatus has the following problems. That is, in the conventional apparatus of this type, when there are two heat storage chambers, when switching the heat storage chamber to which the exhaust gas is given by operating the on-off valve, the exhaust gas remaining in the heat storage chamber to which exhaust gas was supplied until just before switching It will be discharged to the atmosphere through the processing gas exhaust duct as it is untreated. Therefore, substantially, three or more heat storage chambers are provided and used together, and at the time of switching, purge gas such as inert gas is used to purge exhaust gas remaining in the heat storage chamber toward the combustion chamber. An accessory device is required. As a result, the overall configuration of the apparatus including the piping system and the like becomes complicated and large, which may increase the manufacturing cost and may cause problems such as troubles.
- the main object of the present invention is to be able to efficiently decompose the harmful components in the exhaust gas efficiently with less fuel consumption, and to simplify the overall configuration of the device, thereby suppressing the occurrence of troubles It is an object of the present invention to provide a possible and economical exhaust gas treatment system.
- the exhaust gas processing apparatus 10 is configured as follows.
- a thermal decomposition furnace 12 comprising a pair of heat storage chambers 18 and 20 having a heat storage body 16 and a combustion chamber 22 communicating with one end of the heat storage chambers 18 and 20 and provided with a heating means 24 for heating the inside
- the exhaust gas E supplied through the exhaust gas supply duct 30 is alternately supplied to the pair of heat storage chambers 18 and 20 at fixed time intervals, and after being thermally decomposed in the combustion chamber 22, the exhaust gas
- An exhaust gas supply and discharge mechanism 14 is provided to supply the processed exhaust gas E discharged from the thermal decomposition furnace 12 through the heat storage chambers 18 and 20 to which E is not supplied to the processing gas exhaust duct 32.
- a retention tank 34 for temporarily retaining the exhaust gas E discharged from the thermal decomposition furnace 12 between the exhaust gas supply / discharge mechanism 14 and the process gas exhaust duct 32 or in the middle of the process gas exhaust duct 32 is provided. It is equipped
- the present invention exhibits, for example, the following effects.
- the exhaust gas E is alternately supplied to a pair of heat storage chambers 18 and 20 provided in the thermal decomposition furnace 12 at predetermined time intervals.
- the waste gas E after the thermal decomposition (namely, detoxification process) in the combustion chamber 22 is given to the heat storage chambers 18 and 20 to which the waste gas E to be treated in the combustion chamber 22 is not supplied In the chambers 18 and 20, the exhaust gas E always flows while the flow direction is repeatedly reversed at a constant cycle. For this reason, the backwashing action works at a high frequency on the heat storage body 16 disposed in the heat storage chambers 18 and 20, and clogging of the heat storage body 16 is caused even if dust etc. is contained in the exhaust gas E.
- a retention tank 34 for temporarily retaining the exhaust gas E discharged from the thermal decomposition furnace 12 is provided between the exhaust gas supply / discharge mechanism 14 and the processing gas exhaust duct 32 or in the middle of the processing gas exhaust duct 32. Therefore, as described above, when the heat storage chambers 18, 20 to which the exhaust gas E is supplied are switched, the raw exhaust gas E not passing through the combustion chamber 22 is either of the heat storage chambers 18, 20. The volume of one room volume is sent to the processing gas exhaust duct 32, but such raw exhaust gas E has a concentration below the concentration determined by the discharge standard while staying in the retention tank 34. Will be diluted. As a result, complicated and large auxiliary equipment such as the purge gas supply means described above is not necessary.
- a spray nozzle 36 for washing the exhaust gas E supplied to the retention tank 34 is installed in the retention tank 34.
- water-soluble components and dust may be by-produced during thermal decomposition in the combustion chamber 22.
- the spray nozzle as described above By providing 36, these water-soluble components and dust can be removed from the treated exhaust gas E released to the atmosphere.
- a wet inlet scrubber that liquid-cleans the exhaust gas E to be treated introduced into the thermal decomposition furnace 12.
- a wet inlet scrubber that liquid-cleans the exhaust gas E to be treated introduced into the thermal decomposition furnace 12.
- one or more spare heat storages that allow the exhaust gas E to flow in the thermal decomposition furnace 12 when at least one of the pair of heat storage chambers 18 and 20 becomes unusable. It is preferred to further comprise a chamber.
- the volume of the thermal decomposition furnace 12 is increased by the amount of the spare heat storage chamber, but for example, the heat storage body 16 of one of the pair of heat storage chambers 18 and 20 is clogged and the exhaust gas E can not flow Even in the case where it becomes, the continuous operation possible time can be extended without stopping the operation of the exhaust gas processing device 10 only by switching the heat storage chamber through which the exhaust gas E flows to the spare one. .
- the configuration of the entire apparatus is simple, and hence the occurrence of trouble can be suppressed, which is economical.
- FIG. 1 shows an outline of an exhaust gas processing system 10 of the present invention.
- the exhaust gas processing apparatus 10 is an apparatus for abating the exhaust gas E discharged from a discharge source (not shown), and is roughly constituted of a thermal decomposition furnace 12, an exhaust gas supply / discharge mechanism 14 and a retention tank 34.
- the exhaust gas treatment apparatus 10 does not limit the type of exhaust gas E to be treated, it does not limit monosilane (SiH 4 ), chlorine gas, PFCs (perfluoro compound) or the like discharged from the semiconductor manufacturing apparatus. It is particularly suitable for the abatement of the non-degradable exhaust gas E for which its emission standard is defined. Therefore, in the following, the exhaust gas processing apparatus 10 will be described with consideration for the abatement of exhaust gas E discharged from the semiconductor manufacturing apparatus.
- the thermal decomposition furnace 12 is a device for thermally decomposing the exhaust gas E, and is formed of a pair of heat storage chambers 18 and 20 having a heat storage body 16 and a combustion chamber 22 provided with a heating means 24.
- the thermal decomposition furnace 12 has a main casing 26 in which a high heat-resistant material such as stainless steel or a metal called Hastelloy (registered trademark of Haynes Co., Ltd.) is formed into an angular tube shape or a cylindrical shape.
- the main body casing 26 is erected so that the axis thereof is directed in the vertical direction, and a partition wall 28 is provided in the interior from the bottom to near the upper portion in the height direction (vertical direction).
- the partition 28 is divided in the horizontal direction by the partition 28, and the space divided in the horizontal direction by the partition 28 is a pair of heat storage chambers 18 and 20. Furthermore, a space formed above the partition wall 28 is a combustion chamber 22 communicating one end of the heat storage chambers 18 and 20.
- the partition wall 28 is also formed of a high heat-resistant material such as stainless steel or metal called Hastelloy (registered trademark of Haynes Co., Ltd.), as in the case of the main body casing 26 described above.
- the heat storage body 16 disposed so as to cross the flow direction of the exhaust gas E in the internal space of the heat storage chambers 18 and 20 is a solid heat storage material of a honeycomb structure made of ceramic such as alumina or cordierite.
- the heat storage bodies 16 are mounted in two stages in the flow direction of the exhaust gas E in the heat storage chambers 18 and 20.
- the combustion chamber 22 is provided with a heating means 24 which is a heat source for heating the internal space.
- a heating means 24 which is a heat source for heating the internal space.
- the heating means 24 one capable of raising the temperature in the combustion chamber 22 to about 1200 ° C. is preferable.
- an electrothermal heater, a flame burner, a non-transfer type or a transition type plasma torch, etc. can be suitably used.
- an inner pasting member formed of a refractory material is pasted as needed.
- the exhaust gas supply and discharge mechanism 14 alternately supplies the exhaust gas E supplied through the exhaust gas supply duct 30 to the pair of heat storage chambers 18 and 20 alternately at constant time intervals, and is thermally decomposed in the combustion chamber 22. It is a piping system for feeding the treated exhaust gas E exhausted from the thermal decomposition furnace 12 after passing through the heat storage chambers 18 and 20 to which the exhaust gas E is not supplied, to the treated gas exhaust duct 32,
- the fourth to fourth fluid passages 40a to 40d and the first to fourth on-off valves 42a to 42d are formed.
- the exhaust gas supply / discharge mechanism 14 has a first fluid passage 40a whose one end is connected to the downstream end of the exhaust gas supply duct 30 and the other end is connected to the inlet / outlet side of the lower end of one heat storage chamber 18 of the thermal decomposition furnace 12;
- a second fluid passage 40b is connected at one end to the inlet / outlet side of the lower end of the other heat storage chamber 20 of the thermal decomposition furnace 12, and the other end is connected to the upstream end of the processing gas exhaust duct 32 and a first fluid passage 40a.
- the first on-off valve 42a, the second on-off valve 42b interposed in the second fluid passage 40b, and one end of the first on-off valve 42a of the first fluid passage 40a are connected in a branched manner upstream from the first on-off valve 42a.
- a fourth fluid passage 40d connected in a branched manner downstream of the second on-off valve 42b of the passage 40b, a third on-off valve 42c interposed in the third fluid passage 40c, and a fourth fluid passage 40d It is roughly configured by the provided fourth on-off valve 42d.
- the retention tank 34 is a container body for temporarily retaining the exhaust gas E discharged from the thermal decomposition furnace 12, and is made of a metal material such as stainless steel, and has a rectangular cylindrical shape or a cylinder in which the exhaust gas retention space 44 is provided. It has a shaped tank body 46.
- the exhaust gas processing apparatus 10 of the present invention is used for treating exhaust gas E discharged from a semiconductor manufacturing process in which the component to be harmed in the exhaust gas E is PFCs or the like, the exhaust gas retention space 44 of the retention tank 34
- the volume of the heat storage chamber 18 is preferably in the range of 5 to 10 times the volume of any one of the heat storage chambers 18 and 20.
- the volume of the exhaust gas retention space 44 is smaller than five times the volume of any one of the heat storage chambers 18 and 20, the actual (untreated) exhaust gas E remains in the exhaust gas retention space 44, even if In this case, it becomes difficult to dilute the abatement target component below the concentration determined on the discharge basis, and conversely, the volume of the exhaust gas retention space 44 is 10 times the volume of any one of the heat storage chambers 18 and 20.
- the retention tank 34 is provided in the middle of the processing gas exhaust duct 32.
- the retention tank 34 includes the exhaust gas supply and discharge mechanism 14 and the processing gas exhaust duct 32. It may be provided between them.
- An exhaust fan 48 is connected downstream of the retention tank 34 in the process gas exhaust duct 32.
- a corrosive component such as hydrofluoric acid contained in the exhaust gas E or produced by decomposing the exhaust gas E
- a corrosion resistant lining or coating of vinyl chloride resin, polyethylene resin, unsaturated polyester resin, fluorine resin or the like is applied.
- the operation switch (not shown) of the exhaust gas processing apparatus 10 is turned on to perform heat treatment.
- the heating means 24 in the cracking furnace 12 is operated to start heating in the pyrolysis furnace 12.
- the exhaust fan 48 is operated to start the introduction of the exhaust gas E into the exhaust gas processing device 10.
- the exhaust gas supply / discharge mechanism 14 is in the state of FIG. 1, ie, the first on-off valve 42a and the second on-off valve 42b are opened.
- the exhaust gas E supplied through the exhaust gas supply duct 30 is first introduced into the heat storage chamber 18 through the first fluid passage 40a, where the heat is transferred from the heat storage body 16 After being given and preheated, it is sent to the combustion chamber 22. Then, the exhaust gas E in which the predetermined processing target component is thermally decomposed and treated in the combustion chamber 22 passes through the heat storage chamber 20 and is cooled by heat exchange with the heat storage body 16, and then the second fluid passage It passes through 40 b to the process gas exhaust duct 32. Thereafter, it passes through the retention tank 34 and the exhaust fan 48 and is released to the atmosphere.
- the exhaust gas supply and discharge mechanism 14 is switched to the state of FIG. That is, the third on-off valve 42c and the fourth on-off valve 42d are opened, and the first on-off valve 42a and the second on-off valve 42b are closed. Then, the exhaust gas E supplied through the exhaust gas supply duct 30 is first introduced into the heat storage chamber 20 through the third fluid passage 40 c, and after being given heat from the heat storage body 16 and preheated there, to the combustion chamber 22. Sent.
- the exhaust gas E in which the predetermined processing target component is thermally decomposed and treated in the combustion chamber 22 passes through the heat storage chamber 18 and is cooled by heat exchange with the heat storage body 16, and then the fourth fluid passage It passes through 40 d to the process gas exhaust duct 32.
- raw exhaust gas E not passing through the combustion chamber 22 is equivalent to one heat storage chamber 18 from the heat storage chamber 18.
- the volume of the raw exhaust gas E is sent to the treatment gas exhaust duct 32 by the volume of become.
- the exhaust gas supply and discharge mechanism 14 is activated again to switch to the state of FIG. 1, and the above operation is repeated at predetermined time intervals during the operation of the exhaust gas processing system 10 thereafter.
- an exhaust gas processing system 10 according to a second embodiment shown in FIG. 3 will be described.
- the difference from the first embodiment described above is mainly that the spray nozzle 36 is mounted in the retention tank 34.
- the other parts are the same as those in the first embodiment, and therefore, the same components as those in the first embodiment are denoted by the same reference numerals as in the first embodiment, and the description of the first embodiment is used to describe the present embodiment. Take over.
- the spray nozzle 36 sprays a cleaning liquid such as water to wash the exhaust gas E staying in the exhaust gas retention space 44 in the retention tank 34.
- the spray nozzle 36 is attached to the tip (downstream end) of the chemical solution supply pipe 50 inserted into the retention tank 34.
- the rear end (upstream end) of the chemical solution supply pipe 50 is connected to a water supply (not shown), for example, when water is used as the chemical solution.
- a flow rate adjusting valve 52 for adjusting the amount of cleaning water supplied from the water supply is attached in the middle of the chemical solution supply pipe 50.
- a pump 54 is installed which pumps the washing water jetted from the spray nozzle 36 and stored in the bottom of the retention tank 34.
- a pumping pipe 56 connected to the delivery side of the pump 54 is installed. Is connected to the chemical solution supply pipe 50 on the downstream side of the flow rate adjustment valve 52. Therefore, by opening and closing the on-off valve 58 attached to the pumping pipe 56 and throttling the flow control valve 52 to close it, the cleaning water sprayed from the spray nozzle 36 is recycled and used repeatedly. Will be able to
- the exhaust gas processing apparatus 10 of the present embodiment depending on the type of exhaust gas E, there may be by-products such as water-soluble components and dust after thermal decomposition in the combustion chamber 22. By providing it, these water-soluble components and dust can be washed away and removed from the thermally decomposed exhaust gas E released to the atmosphere.
- a wet inlet scrubber (not shown) may be added to the exhaust gas processing device 10 of each of the above-described embodiments to wash the exhaust gas E to be treated introduced into the thermal decomposition furnace 12.
- water-soluble components and dust can be removed in advance from the exhaust gas E introduced into the thermal decomposition furnace 12, and clogging of the heat storage body 16 can be more effectively reduced. become able to.
- the volume of the thermal decomposition furnace 12 is increased by the amount of such a spare heat storage chamber, for example, the heat storage body 16 of one of the pair of heat storage chambers 18 and 20 is clogged and the exhaust gas E can not flow Even in the case where it becomes, the continuous operation possible time can be extended without stopping the operation of the exhaust gas processing device 10 only by switching the heat storage chamber through which the exhaust gas E flows to the spare one. .
- thermal decomposition furnace 12 is limited to this structure
- it may be a structure in which the axis of the main body casing 26 is laid down so as to face the horizontal direction.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Incineration Of Waste (AREA)
Abstract
Provided is a highly economically efficient exhaust gas treatment device able to effectively thermally decompose hazardous components in exhaust gas or minimize the incidence of complications using a simple configuration. In other words, this exhaust gas treatment apparatus (10) is provided with: a pyrolysis furnace (12) configured from a pair of heat storage chambers (18), (20) and a combustion chamber (22) communicating with the upper ends of the heat storage chambers (18), (20); and an exhaust gas supply and discharge mechanism (14) for supplying exhaust gas (E), which has been supplied via an exhaust gas supply duct (30), to the heat storage chambers (18), (20) in an alternating manner over certain time intervals, and feeding the treated exhaust gas (E) into a treated gas venting duct (32), the treated exhaust gas (E) having been discharged from the pyrolysis furnace (12) by passing through the heat storage chambers (18), (20), to which the exhaust gas (E) was not supplied following pyrolysis in the combustion chamber (22). A retention tank (34) is installed between the exhaust gas supply and discharge mechanism (14) and the treated gas venting duct (32), or partway along the treated gas venting duct (32).
Description
本発明は、主としてPFCs(パーフルオロコンパウンド)などの難分解性排ガスの処理にも好適な排ガス処理装置に関する。
TECHNICAL FIELD The present invention relates to an exhaust gas treating apparatus suitable mainly for treating difficultly decomposing waste gas such as PFCs (perfluoro compound).
より少ない燃料消費で排ガス中の有害物質を効率よく加熱分解処理(除害)することができる処理装置として、例えば下記の特許文献1に記載のような蓄熱式の排ガス処理装置が知られている。この蓄熱式の排ガス処理装置は、蓄熱体を有する蓄熱室を少なくとも2つ設け、その蓄熱室の一端を加熱手段を有する燃焼室に連通すると共に、他端を排ガス供給ダクトおよび処理ガス排気ダクトに開閉弁を介して連通し、排ガスの蓄熱室への供給と、前記燃焼室で有害成分を加熱分解した処理済みの排ガスの排気とを、前記開閉弁の駆動により前記各蓄熱室で順次切り換えながら実施する。
For example, a heat storage type exhaust gas processing apparatus as described in Patent Document 1 below is known as a processing apparatus capable of efficiently thermally decomposing (removing) harmful substances in exhaust gas with less fuel consumption. . This heat storage type exhaust gas processing apparatus is provided with at least two heat storage chambers having a heat storage body, one end of the heat storage chamber is communicated with the combustion chamber having heating means, and the other end is connected to an exhaust gas supply duct and a processing gas exhaust duct Communication is made via the on-off valve, and switching between the supply of exhaust gas to the heat storage chamber and the exhaust of the processed exhaust gas obtained by thermally decomposing harmful components in the combustion chamber in each of the heat storage chambers by driving the on-off valve carry out.
しかしながら、上記従来の蓄熱式排ガス処理装置には次のような問題がある。
すなわち、従来のこの種の装置では、蓄熱室が2つの場合、開閉弁を操作して排ガスが与えられる蓄熱室を切り換える際に、切り換え直前まで排ガスが供給されていた蓄熱室内に残留する排ガスが未処理のまま処理ガス排気ダクトを介して大気中へと放出されることになる。それゆえ、実質的には、蓄熱室を3つ以上設けて併用すると共に、上記切り換えの際に不活性ガスなどのパージガスで蓄熱室内に残留する排ガスを燃焼室に向けて押し流すパージガス供給手段などの付帯装置が必要となる。このため、配管系などを含めた装置全体の構成が複雑で且つ大型になる結果、製造コストが上昇すると共に、不具合等のトラブルが生じ易くなると言った問題が生じ得る。 However, the above-mentioned conventional heat storage type exhaust gas treatment apparatus has the following problems.
That is, in the conventional apparatus of this type, when there are two heat storage chambers, when switching the heat storage chamber to which the exhaust gas is given by operating the on-off valve, the exhaust gas remaining in the heat storage chamber to which exhaust gas was supplied until just before switching It will be discharged to the atmosphere through the processing gas exhaust duct as it is untreated. Therefore, substantially, three or more heat storage chambers are provided and used together, and at the time of switching, purge gas such as inert gas is used to purge exhaust gas remaining in the heat storage chamber toward the combustion chamber. An accessory device is required. As a result, the overall configuration of the apparatus including the piping system and the like becomes complicated and large, which may increase the manufacturing cost and may cause problems such as troubles.
すなわち、従来のこの種の装置では、蓄熱室が2つの場合、開閉弁を操作して排ガスが与えられる蓄熱室を切り換える際に、切り換え直前まで排ガスが供給されていた蓄熱室内に残留する排ガスが未処理のまま処理ガス排気ダクトを介して大気中へと放出されることになる。それゆえ、実質的には、蓄熱室を3つ以上設けて併用すると共に、上記切り換えの際に不活性ガスなどのパージガスで蓄熱室内に残留する排ガスを燃焼室に向けて押し流すパージガス供給手段などの付帯装置が必要となる。このため、配管系などを含めた装置全体の構成が複雑で且つ大型になる結果、製造コストが上昇すると共に、不具合等のトラブルが生じ易くなると言った問題が生じ得る。 However, the above-mentioned conventional heat storage type exhaust gas treatment apparatus has the following problems.
That is, in the conventional apparatus of this type, when there are two heat storage chambers, when switching the heat storage chamber to which the exhaust gas is given by operating the on-off valve, the exhaust gas remaining in the heat storage chamber to which exhaust gas was supplied until just before switching It will be discharged to the atmosphere through the processing gas exhaust duct as it is untreated. Therefore, substantially, three or more heat storage chambers are provided and used together, and at the time of switching, purge gas such as inert gas is used to purge exhaust gas remaining in the heat storage chamber toward the combustion chamber. An accessory device is required. As a result, the overall configuration of the apparatus including the piping system and the like becomes complicated and large, which may increase the manufacturing cost and may cause problems such as troubles.
それゆえに、本発明の主たる課題は、より少ない燃料消費で排ガス中の有害成分を効率よく加熱分解できるのに加え、装置全体の構成がシンプルであり、それが故にトラブルの発生を抑制することが可能な、経済性に優れた排ガス処理装置を提供することである。
Therefore, the main object of the present invention is to be able to efficiently decompose the harmful components in the exhaust gas efficiently with less fuel consumption, and to simplify the overall configuration of the device, thereby suppressing the occurrence of troubles It is an object of the present invention to provide a possible and economical exhaust gas treatment system.
上記の目的を達成するため、本発明は、例えば、図1及び図2に示すように、排ガス処理装置10を次のように構成した。
蓄熱体16を有する一対の蓄熱室18,20と、上記蓄熱室18,20の一端を連通すると共にその内部を加熱する加熱手段24が設けられた燃焼室22とで構成された熱分解炉12、及び、排ガス供給ダクト30を通じて供給される排ガスEを上記一対の蓄熱室18,20に対して一定時間間隔をおいて交互に供給すると共に、上記燃焼室22で加熱分解された後、上記排ガスEが供給されていない蓄熱室18,20を通過して熱分解炉12から排出される処理済みの排ガスEを処理ガス排気ダクト32へと送給する排ガス給排機構14を具備する。
上記排ガス給排機構14と上記処理ガス排気ダクト32との間、又は、上記処理ガス排気ダクト32の途中に、熱分解炉12から排出された排ガスEを一時的に滞留させる滞留用タンク34が装備されている。 In order to achieve the above object, according to the present invention, for example, as shown in FIG. 1 and FIG. 2, the exhaustgas processing apparatus 10 is configured as follows.
Athermal decomposition furnace 12 comprising a pair of heat storage chambers 18 and 20 having a heat storage body 16 and a combustion chamber 22 communicating with one end of the heat storage chambers 18 and 20 and provided with a heating means 24 for heating the inside The exhaust gas E supplied through the exhaust gas supply duct 30 is alternately supplied to the pair of heat storage chambers 18 and 20 at fixed time intervals, and after being thermally decomposed in the combustion chamber 22, the exhaust gas An exhaust gas supply and discharge mechanism 14 is provided to supply the processed exhaust gas E discharged from the thermal decomposition furnace 12 through the heat storage chambers 18 and 20 to which E is not supplied to the processing gas exhaust duct 32.
Aretention tank 34 for temporarily retaining the exhaust gas E discharged from the thermal decomposition furnace 12 between the exhaust gas supply / discharge mechanism 14 and the process gas exhaust duct 32 or in the middle of the process gas exhaust duct 32 is provided. It is equipped.
蓄熱体16を有する一対の蓄熱室18,20と、上記蓄熱室18,20の一端を連通すると共にその内部を加熱する加熱手段24が設けられた燃焼室22とで構成された熱分解炉12、及び、排ガス供給ダクト30を通じて供給される排ガスEを上記一対の蓄熱室18,20に対して一定時間間隔をおいて交互に供給すると共に、上記燃焼室22で加熱分解された後、上記排ガスEが供給されていない蓄熱室18,20を通過して熱分解炉12から排出される処理済みの排ガスEを処理ガス排気ダクト32へと送給する排ガス給排機構14を具備する。
上記排ガス給排機構14と上記処理ガス排気ダクト32との間、又は、上記処理ガス排気ダクト32の途中に、熱分解炉12から排出された排ガスEを一時的に滞留させる滞留用タンク34が装備されている。 In order to achieve the above object, according to the present invention, for example, as shown in FIG. 1 and FIG. 2, the exhaust
A
A
本発明は、例えば、次の作用を奏する。
熱分解炉12に設けられた一対の蓄熱室18,20に対して一定時間間隔をおいて交互に排ガスEが供給される。この際、燃焼室22での処理対象となる排ガスEが供給されない蓄熱室18,20には、燃焼室22で加熱分解(すなわち除害処理)された後の排ガスEが与えられるので、各蓄熱室18,20は、通流方向が一定周期で反転を繰り返しながら常に排ガスEが通流する状態となっている。このため、蓄熱室18,20に配設された蓄熱体16には、高い頻度で逆洗作用が働いており、排ガスE中に粉塵などが含まれる場合であっても蓄熱体16の目詰まりを効果的に低減させることができる。
そして、排ガス給排機構14と処理ガス排気ダクト32との間、又は、処理ガス排気ダクト32の途中に、熱分解炉12から排出された排ガスEを一時的に滞留させる滞留用タンク34が装備されているので、上述のように、排ガスEの供給される蓄熱室18,20が切り換わった際、燃焼室22を通過していない生の排ガスEが、蓄熱室18,20のうちの何れか一室分の容量だけ処理ガス排気ダクト32へと送られることになるが、このような生の排ガスEは、滞留用タンク34内で滞留する間に排出基準で定められた濃度以下にまで希釈されるようになる。その結果、上述したパージガス供給手段などのような複雑且つ大掛かりな付帯装置は不要となる。 The present invention exhibits, for example, the following effects.
The exhaust gas E is alternately supplied to a pair of heat storage chambers 18 and 20 provided in the thermal decomposition furnace 12 at predetermined time intervals. Under the present circumstances, since the waste gas E after the thermal decomposition (namely, detoxification process) in the combustion chamber 22 is given to the heat storage chambers 18 and 20 to which the waste gas E to be treated in the combustion chamber 22 is not supplied In the chambers 18 and 20, the exhaust gas E always flows while the flow direction is repeatedly reversed at a constant cycle. For this reason, the backwashing action works at a high frequency on the heat storage body 16 disposed in the heat storage chambers 18 and 20, and clogging of the heat storage body 16 is caused even if dust etc. is contained in the exhaust gas E. Can be effectively reduced.
Aretention tank 34 for temporarily retaining the exhaust gas E discharged from the thermal decomposition furnace 12 is provided between the exhaust gas supply / discharge mechanism 14 and the processing gas exhaust duct 32 or in the middle of the processing gas exhaust duct 32. Therefore, as described above, when the heat storage chambers 18, 20 to which the exhaust gas E is supplied are switched, the raw exhaust gas E not passing through the combustion chamber 22 is either of the heat storage chambers 18, 20. The volume of one room volume is sent to the processing gas exhaust duct 32, but such raw exhaust gas E has a concentration below the concentration determined by the discharge standard while staying in the retention tank 34. Will be diluted. As a result, complicated and large auxiliary equipment such as the purge gas supply means described above is not necessary.
熱分解炉12に設けられた一対の蓄熱室18,20に対して一定時間間隔をおいて交互に排ガスEが供給される。この際、燃焼室22での処理対象となる排ガスEが供給されない蓄熱室18,20には、燃焼室22で加熱分解(すなわち除害処理)された後の排ガスEが与えられるので、各蓄熱室18,20は、通流方向が一定周期で反転を繰り返しながら常に排ガスEが通流する状態となっている。このため、蓄熱室18,20に配設された蓄熱体16には、高い頻度で逆洗作用が働いており、排ガスE中に粉塵などが含まれる場合であっても蓄熱体16の目詰まりを効果的に低減させることができる。
そして、排ガス給排機構14と処理ガス排気ダクト32との間、又は、処理ガス排気ダクト32の途中に、熱分解炉12から排出された排ガスEを一時的に滞留させる滞留用タンク34が装備されているので、上述のように、排ガスEの供給される蓄熱室18,20が切り換わった際、燃焼室22を通過していない生の排ガスEが、蓄熱室18,20のうちの何れか一室分の容量だけ処理ガス排気ダクト32へと送られることになるが、このような生の排ガスEは、滞留用タンク34内で滞留する間に排出基準で定められた濃度以下にまで希釈されるようになる。その結果、上述したパージガス供給手段などのような複雑且つ大掛かりな付帯装置は不要となる。 The present invention exhibits, for example, the following effects.
The exhaust gas E is alternately supplied to a pair of
A
本発明には、上記各構成に加えて、例えば、図3に示すように、滞留用タンク34内に、当該滞留用タンク34に供給される排ガスEを液洗するスプレーノズル36を取り付けるのが好ましい。
本発明の排ガス処理装置10で除害処理する排ガスEの種類によっては、燃焼室22での加熱分解の際に水溶性成分や粉塵などを副成する場合もあるが、上述のようなスプレーノズル36を設けることによって、大気中へ放出する処理済みの排ガスEの中からこれら水溶性成分や粉塵などを除去することができるようになる。 In the present invention, in addition to the above-described configurations, for example, as shown in FIG. 3, aspray nozzle 36 for washing the exhaust gas E supplied to the retention tank 34 is installed in the retention tank 34. preferable.
Depending on the type of exhaust gas E subjected to abatement treatment by the exhaustgas processing apparatus 10 of the present invention, water-soluble components and dust may be by-produced during thermal decomposition in the combustion chamber 22. However, the spray nozzle as described above By providing 36, these water-soluble components and dust can be removed from the treated exhaust gas E released to the atmosphere.
本発明の排ガス処理装置10で除害処理する排ガスEの種類によっては、燃焼室22での加熱分解の際に水溶性成分や粉塵などを副成する場合もあるが、上述のようなスプレーノズル36を設けることによって、大気中へ放出する処理済みの排ガスEの中からこれら水溶性成分や粉塵などを除去することができるようになる。 In the present invention, in addition to the above-described configurations, for example, as shown in FIG. 3, a
Depending on the type of exhaust gas E subjected to abatement treatment by the exhaust
また、本発明は、上記各構成に加え、熱分解炉12へ導入する前記処理対象の排ガスEを液洗する湿式の入口スクラバーを装備するのが好ましい。
この場合、熱分解炉12へ導入する排ガスEから水溶性成分や粉塵などを予め除去することができるので、蓄熱体16の目詰まりをより一層効果的に低減させることができる。 Furthermore, in the present invention, in addition to the above-described configurations, it is preferable to equip a wet inlet scrubber that liquid-cleans the exhaust gas E to be treated introduced into thethermal decomposition furnace 12.
In this case, since water-soluble components and dust can be removed in advance from the exhaust gas E introduced into thethermal decomposition furnace 12, clogging of the heat storage body 16 can be further effectively reduced.
この場合、熱分解炉12へ導入する排ガスEから水溶性成分や粉塵などを予め除去することができるので、蓄熱体16の目詰まりをより一層効果的に低減させることができる。 Furthermore, in the present invention, in addition to the above-described configurations, it is preferable to equip a wet inlet scrubber that liquid-cleans the exhaust gas E to be treated introduced into the
In this case, since water-soluble components and dust can be removed in advance from the exhaust gas E introduced into the
さらに、本発明は、上記各構成に加え、熱分解炉12に、前記一対の蓄熱室18,20の少なくとも一方が使用不能となった際に排ガスEを通流させる1又は複数の予備の蓄熱室を更に備えるのが好ましい。
この場合、予備の蓄熱室の分だけ熱分解炉12の容積は大きくなるが、例えば一対の蓄熱室18,20のうち一方の蓄熱体16が目詰まりを起こして排ガスEの通流が不能になった場合であっても、排ガスEを通流させる蓄熱室を予備のものに切り換えるだけで、排ガス処理装置10の運転を停止することなく、連続運転可能時間を延長させることができるようになる。 Furthermore, according to the present invention, in addition to the above-described configurations, one or more spare heat storages that allow the exhaust gas E to flow in thethermal decomposition furnace 12 when at least one of the pair of heat storage chambers 18 and 20 becomes unusable. It is preferred to further comprise a chamber.
In this case, the volume of thethermal decomposition furnace 12 is increased by the amount of the spare heat storage chamber, but for example, the heat storage body 16 of one of the pair of heat storage chambers 18 and 20 is clogged and the exhaust gas E can not flow Even in the case where it becomes, the continuous operation possible time can be extended without stopping the operation of the exhaust gas processing device 10 only by switching the heat storage chamber through which the exhaust gas E flows to the spare one. .
この場合、予備の蓄熱室の分だけ熱分解炉12の容積は大きくなるが、例えば一対の蓄熱室18,20のうち一方の蓄熱体16が目詰まりを起こして排ガスEの通流が不能になった場合であっても、排ガスEを通流させる蓄熱室を予備のものに切り換えるだけで、排ガス処理装置10の運転を停止することなく、連続運転可能時間を延長させることができるようになる。 Furthermore, according to the present invention, in addition to the above-described configurations, one or more spare heat storages that allow the exhaust gas E to flow in the
In this case, the volume of the
本発明によれば、より少ない燃料消費で排ガス中の有害成分を効率よく加熱分解できるのに加え、装置全体の構成がシンプルであり、それ故にトラブルの発生を抑制することが可能な、経済性に優れた排ガス処理装置を提供することことができる。
According to the present invention, in addition to the ability to thermally decompose the harmful components in the exhaust gas efficiently with less fuel consumption, the configuration of the entire apparatus is simple, and hence the occurrence of trouble can be suppressed, which is economical. Can provide an excellent exhaust gas treatment system.
以下、本発明の一実施形態(第1実施形態)を図1及び図2によって説明する。
図1は、本発明の排ガス処理装置10の概略を示すものである。この排ガス処理装置10は、図示しない排出源より排出される排ガスEを除害処理する装置であり、熱分解炉12,排ガス給排機構14及び滞留用タンク34で大略構成されている。
なお、この排ガス処理装置10は、処理対象となる排ガスEの種類を限定するものではないが、半導体製造装置から排出されたモノシラン(SiH4),塩素系ガス,PFCs(パーフルオロコンパウンド)などのようにその排出基準が定められている難分解性の排ガスEを除害処理するのに特に好適である。したがって、以下では、この排ガス処理装置10について、半導体製造装置から排出された排ガスEの除害処理に用いるものを念頭に置いて説明する。 Hereinafter, an embodiment (first embodiment) of the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 shows an outline of an exhaustgas processing system 10 of the present invention. The exhaust gas processing apparatus 10 is an apparatus for abating the exhaust gas E discharged from a discharge source (not shown), and is roughly constituted of a thermal decomposition furnace 12, an exhaust gas supply / discharge mechanism 14 and a retention tank 34.
Although the exhaustgas treatment apparatus 10 does not limit the type of exhaust gas E to be treated, it does not limit monosilane (SiH 4 ), chlorine gas, PFCs (perfluoro compound) or the like discharged from the semiconductor manufacturing apparatus. It is particularly suitable for the abatement of the non-degradable exhaust gas E for which its emission standard is defined. Therefore, in the following, the exhaust gas processing apparatus 10 will be described with consideration for the abatement of exhaust gas E discharged from the semiconductor manufacturing apparatus.
図1は、本発明の排ガス処理装置10の概略を示すものである。この排ガス処理装置10は、図示しない排出源より排出される排ガスEを除害処理する装置であり、熱分解炉12,排ガス給排機構14及び滞留用タンク34で大略構成されている。
なお、この排ガス処理装置10は、処理対象となる排ガスEの種類を限定するものではないが、半導体製造装置から排出されたモノシラン(SiH4),塩素系ガス,PFCs(パーフルオロコンパウンド)などのようにその排出基準が定められている難分解性の排ガスEを除害処理するのに特に好適である。したがって、以下では、この排ガス処理装置10について、半導体製造装置から排出された排ガスEの除害処理に用いるものを念頭に置いて説明する。 Hereinafter, an embodiment (first embodiment) of the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 shows an outline of an exhaust
Although the exhaust
熱分解炉12は、排ガスEを加熱分解するための装置であり、蓄熱体16を有する一対の蓄熱室18,20と、加熱手段24が設けられた燃焼室22とで形成される。
具体的には、この熱分解炉12は、例えばステンレスやハステロイ(ヘインズ社登録商標)と言った金属等の高耐熱材料を角筒形状或いは円筒形状に形成した本体ケーシング26を有する。この本体ケーシング26は、その軸が鉛直方向を向くように立設されており、その内部には、底面から高さ方向(鉛直方向)上部近傍まで隔壁28が設けられている。つまり、熱分解炉12は、その内部空間の下側が隔壁28によって水平方向に二分されており、この隔壁28によって水平方向に二分された空間が一対の蓄熱室18,20となっている。更に、隔壁28よりも上側に形成される空間が、蓄熱室18,20の一端を連通する燃焼室22となっている。なお、この隔壁28も上述した本体ケーシング26と同様に、例えばステンレスやハステロイ(ヘインズ社登録商標)と言った金属等の高耐熱材料で形成されている。 Thethermal decomposition furnace 12 is a device for thermally decomposing the exhaust gas E, and is formed of a pair of heat storage chambers 18 and 20 having a heat storage body 16 and a combustion chamber 22 provided with a heating means 24.
Specifically, thethermal decomposition furnace 12 has a main casing 26 in which a high heat-resistant material such as stainless steel or a metal called Hastelloy (registered trademark of Haynes Co., Ltd.) is formed into an angular tube shape or a cylindrical shape. The main body casing 26 is erected so that the axis thereof is directed in the vertical direction, and a partition wall 28 is provided in the interior from the bottom to near the upper portion in the height direction (vertical direction). That is, the lower side of the internal space of the thermal decomposition furnace 12 is divided in the horizontal direction by the partition 28, and the space divided in the horizontal direction by the partition 28 is a pair of heat storage chambers 18 and 20. Furthermore, a space formed above the partition wall 28 is a combustion chamber 22 communicating one end of the heat storage chambers 18 and 20. The partition wall 28 is also formed of a high heat-resistant material such as stainless steel or metal called Hastelloy (registered trademark of Haynes Co., Ltd.), as in the case of the main body casing 26 described above.
具体的には、この熱分解炉12は、例えばステンレスやハステロイ(ヘインズ社登録商標)と言った金属等の高耐熱材料を角筒形状或いは円筒形状に形成した本体ケーシング26を有する。この本体ケーシング26は、その軸が鉛直方向を向くように立設されており、その内部には、底面から高さ方向(鉛直方向)上部近傍まで隔壁28が設けられている。つまり、熱分解炉12は、その内部空間の下側が隔壁28によって水平方向に二分されており、この隔壁28によって水平方向に二分された空間が一対の蓄熱室18,20となっている。更に、隔壁28よりも上側に形成される空間が、蓄熱室18,20の一端を連通する燃焼室22となっている。なお、この隔壁28も上述した本体ケーシング26と同様に、例えばステンレスやハステロイ(ヘインズ社登録商標)と言った金属等の高耐熱材料で形成されている。 The
Specifically, the
上記蓄熱室18,20の内部空間において排ガスEの通流方向を横切るように配設される蓄熱体16は、アルミナやコーディライト等と言ったセラミックからなるハニカム構造の固体蓄熱材である。図示実施形態のものでは、蓄熱室18,20における排ガスEの通流方向に蓄熱体16が二段取り付けられている。
The heat storage body 16 disposed so as to cross the flow direction of the exhaust gas E in the internal space of the heat storage chambers 18 and 20 is a solid heat storage material of a honeycomb structure made of ceramic such as alumina or cordierite. In the illustrated embodiment, the heat storage bodies 16 are mounted in two stages in the flow direction of the exhaust gas E in the heat storage chambers 18 and 20.
上記燃焼室22には、その内部空間を加熱する熱源である加熱手段24が取り付けられる。ここで、この加熱手段24としては、燃焼室22内を1200℃前後位まで昇温させることができるものが好ましく、例えば、電熱式ヒーター,火炎式バーナー,非移行型或いは移行型のプラズマトーチなどを好適に用いることができる。
なお、燃焼室22の内壁面には、必要に応じて、耐火材で形成された内貼部材が貼設される。 Thecombustion chamber 22 is provided with a heating means 24 which is a heat source for heating the internal space. Here, as the heating means 24, one capable of raising the temperature in the combustion chamber 22 to about 1200 ° C. is preferable. For example, an electrothermal heater, a flame burner, a non-transfer type or a transition type plasma torch, etc. Can be suitably used.
In addition, on the inner wall surface of thecombustion chamber 22, an inner pasting member formed of a refractory material is pasted as needed.
なお、燃焼室22の内壁面には、必要に応じて、耐火材で形成された内貼部材が貼設される。 The
In addition, on the inner wall surface of the
排ガス給排機構14は、排ガス供給ダクト30を通じて供給される排ガスEを上記一対の蓄熱室18,20に対して一定時間間隔をおいて交互に供給すると共に、上記燃焼室22で加熱分解された後、上記排ガスEが供給されていない蓄熱室18,20を通過して熱分解炉12から排出される処理済みの排ガスEを処理ガス排気ダクト32へと送給する配管系であり、第1~第4の流体通路40a~40dと、第1~第4の開閉弁42a~42dとで形成されている。
The exhaust gas supply and discharge mechanism 14 alternately supplies the exhaust gas E supplied through the exhaust gas supply duct 30 to the pair of heat storage chambers 18 and 20 alternately at constant time intervals, and is thermally decomposed in the combustion chamber 22. It is a piping system for feeding the treated exhaust gas E exhausted from the thermal decomposition furnace 12 after passing through the heat storage chambers 18 and 20 to which the exhaust gas E is not supplied, to the treated gas exhaust duct 32, The fourth to fourth fluid passages 40a to 40d and the first to fourth on-off valves 42a to 42d are formed.
すなわち、上記排ガス給排機構14は、一端が排ガス供給ダクト30の下流端へ、また他端が熱分解炉12の一方の蓄熱室18下端の出入口側へ接続された第1流体通路40aと,一端が熱分解炉12の他方の蓄熱室20下端の出入口側へ、また他端が処理ガス排気ダクト32の上流端へ接続された第2流体通路40bと,第1流体通路40aに介設された第1開閉弁42aと,第2流体通路40bに介設された第2開閉弁42bと,一端が第1流体通路40aの第1開閉弁42aよりも上流部分に分岐状に接続されると共に他端が第2流体通路40bの第2開閉弁42bよりも上流部分に分岐状に接続された第3流体通路40cと,一端が第1流体通路40aの第1開閉弁42aよりも下流部分に分岐状に接続されると共に他端が第2流体通路40bの第2開閉弁42bよりも下流部分に分岐状に接続された第4流体通路40dと,第3流体通路40cに介設された第3開閉弁42cと,第4流体通路40dに介設された第4開閉弁42dとで大略構成されている。
That is, the exhaust gas supply / discharge mechanism 14 has a first fluid passage 40a whose one end is connected to the downstream end of the exhaust gas supply duct 30 and the other end is connected to the inlet / outlet side of the lower end of one heat storage chamber 18 of the thermal decomposition furnace 12; A second fluid passage 40b is connected at one end to the inlet / outlet side of the lower end of the other heat storage chamber 20 of the thermal decomposition furnace 12, and the other end is connected to the upstream end of the processing gas exhaust duct 32 and a first fluid passage 40a. The first on-off valve 42a, the second on-off valve 42b interposed in the second fluid passage 40b, and one end of the first on-off valve 42a of the first fluid passage 40a are connected in a branched manner upstream from the first on-off valve 42a. The third fluid passage 40c, the other end of which is connected in a branched manner upstream of the second on-off valve 42b of the second fluid passage 40b, and one end on the downstream side of the first on-off valve 42a of the first fluid passage 40a. Connected in a branched manner and the other end is the second flow A fourth fluid passage 40d connected in a branched manner downstream of the second on-off valve 42b of the passage 40b, a third on-off valve 42c interposed in the third fluid passage 40c, and a fourth fluid passage 40d It is roughly configured by the provided fourth on-off valve 42d.
滞留用タンク34は、熱分解炉12から排出された排ガスEを一時的に滞留させる容器体であり、ステンレスなどの金属材料からなり、内部に排ガス滞留空間44が設けられた角筒形状或いは円筒形状のタンク本体46を有する。
ここで、本発明の排ガス処理装置10を、排ガスE中の除害対象成分がPFCsなどである、半導体製造工程より排出される排ガスEの処理に用いる場合、滞留用タンク34の排ガス滞留空間44の容積は、蓄熱室18,20の何れか一室分の容積の5倍~10倍の範囲内であるのが好ましい。排ガス滞留空間44の容積が蓄熱室18,20の何れか一室分の容積の5倍より小さい場合には、生(未処理)の排ガスEが排ガス滞留空間44に滞留したとしても、実操業において除害対象成分を排出基準で定められた濃度以下にまで希釈するのが困難になり、逆に、排ガス滞留空間44の容積が蓄熱室18,20の何れか一室分の容積の10倍より大きな場合には、排ガスの通流速度等にかかわらず生の排ガスEの除害対象成分を排出基準で定められた濃度以下にまで容易に希釈することができるようになるものの、大型化したタンク本体46の設置に多くのスペースが必要になるからである。
なお、図示実施形態では、滞留用タンク34が処理ガス排気ダクト32の途中に設けられた場合を示しているが、この滞留用タンク34は、排ガス給排機構14と処理ガス排気ダクト32との間に設けるようにしてもよい。 Theretention tank 34 is a container body for temporarily retaining the exhaust gas E discharged from the thermal decomposition furnace 12, and is made of a metal material such as stainless steel, and has a rectangular cylindrical shape or a cylinder in which the exhaust gas retention space 44 is provided. It has a shaped tank body 46.
Here, when the exhaustgas processing apparatus 10 of the present invention is used for treating exhaust gas E discharged from a semiconductor manufacturing process in which the component to be harmed in the exhaust gas E is PFCs or the like, the exhaust gas retention space 44 of the retention tank 34 The volume of the heat storage chamber 18 is preferably in the range of 5 to 10 times the volume of any one of the heat storage chambers 18 and 20. When the volume of the exhaust gas retention space 44 is smaller than five times the volume of any one of the heat storage chambers 18 and 20, the actual (untreated) exhaust gas E remains in the exhaust gas retention space 44, even if In this case, it becomes difficult to dilute the abatement target component below the concentration determined on the discharge basis, and conversely, the volume of the exhaust gas retention space 44 is 10 times the volume of any one of the heat storage chambers 18 and 20. In the case of a larger size, although it becomes possible to easily dilute the component to be harmed of the raw exhaust gas E to a concentration determined by the emission standard or less regardless of the flow rate of the exhaust gas, etc. This is because the installation of the tank body 46 requires a lot of space.
In the illustrated embodiment, theretention tank 34 is provided in the middle of the processing gas exhaust duct 32. However, the retention tank 34 includes the exhaust gas supply and discharge mechanism 14 and the processing gas exhaust duct 32. It may be provided between them.
ここで、本発明の排ガス処理装置10を、排ガスE中の除害対象成分がPFCsなどである、半導体製造工程より排出される排ガスEの処理に用いる場合、滞留用タンク34の排ガス滞留空間44の容積は、蓄熱室18,20の何れか一室分の容積の5倍~10倍の範囲内であるのが好ましい。排ガス滞留空間44の容積が蓄熱室18,20の何れか一室分の容積の5倍より小さい場合には、生(未処理)の排ガスEが排ガス滞留空間44に滞留したとしても、実操業において除害対象成分を排出基準で定められた濃度以下にまで希釈するのが困難になり、逆に、排ガス滞留空間44の容積が蓄熱室18,20の何れか一室分の容積の10倍より大きな場合には、排ガスの通流速度等にかかわらず生の排ガスEの除害対象成分を排出基準で定められた濃度以下にまで容易に希釈することができるようになるものの、大型化したタンク本体46の設置に多くのスペースが必要になるからである。
なお、図示実施形態では、滞留用タンク34が処理ガス排気ダクト32の途中に設けられた場合を示しているが、この滞留用タンク34は、排ガス給排機構14と処理ガス排気ダクト32との間に設けるようにしてもよい。 The
Here, when the exhaust
In the illustrated embodiment, the
上記の処理ガス排気ダクト32における上記滞留用タンク34よりも下流側には、排気ファン48が接続されており、この排気ファン48が稼働することによって排ガス処理装置10の内部が常に大気圧よりも低い圧力(=負圧)に保たれる。このため、熱分解処理前の排ガスEや処理済みで排ガスEなどが誤って排ガス処理装置10から外部へ漏れ出すことがない。
An exhaust fan 48 is connected downstream of the retention tank 34 in the process gas exhaust duct 32. When the exhaust fan 48 operates, the inside of the exhaust gas processing apparatus 10 is always at a pressure higher than atmospheric pressure. It is kept at low pressure (= negative pressure). For this reason, there is no possibility that the exhaust gas E before the thermal decomposition treatment and the exhaust gas E and the like after treatment are accidentally leaked from the exhaust gas treatment apparatus 10 to the outside.
なお、本実施形態の排ガス処理装置10における熱分解炉12の燃焼室22内を除く他の部分には、排ガスEに含まれる、或いは排ガスEを分解することによって生じるフッ酸などの腐食性成分による腐食から各部を守るため、塩化ビニル樹脂,ポリエチレン樹脂,不飽和ポリエステル樹脂及びフッ素樹脂などによる耐腐食性のライニングやコーティングが施されている。
In the other part of the thermal decomposition furnace 12 of the exhaust gas processing apparatus 10 according to the present embodiment except for the inside of the combustion chamber 22, a corrosive component such as hydrofluoric acid contained in the exhaust gas E or produced by decomposing the exhaust gas E In order to protect each part from corrosion due to corrosion, a corrosion resistant lining or coating of vinyl chloride resin, polyethylene resin, unsaturated polyester resin, fluorine resin or the like is applied.
次に、以上のように構成された排ガス処理装置10を用いて排ガスEの除害処理を行う際には、まず始めに、排ガス処理装置10の運転スイッチ(図示せず)をオンにして熱分解炉12内の加熱手段24を作動させ、熱分解炉12内の加熱を開始する。続いて、燃焼室22内の温度が当該排ガスEに含まれる除害対象成分の熱分解温度に達すると、排気ファン48を作動させ、排ガス処理装置10への排ガスEの導入を開始させる。
ここで、排ガス処理装置10への排ガスE導入開始時に、排ガス給排機構14を図1の状態、すなわち、第1開閉弁42a及び第2開閉弁42bを開操作し、第3開閉弁42c及び第4開閉弁42dを閉操作した状態にすると、排ガス供給ダクト30を通じて供給される排ガスEは、先ず第1流体通路40aを通って蓄熱室18へと導入され、ここで蓄熱体16より熱を与えられ予熱された後、燃焼室22へと送られる。そして、燃焼室22で所定の処理対象成分が加熱分解されて処理済みと成った排ガスEは、蓄熱室20を通り、蓄熱体16と間で熱交換して冷却された後、第2流体通路40bを通過して処理ガス排気ダクト32へと与えられる。その後、滞留用タンク34,排気ファン48を通過して大気中へと放出される。 Next, when the exhaust gas E is detoxified using the exhaustgas processing apparatus 10 configured as described above, first, the operation switch (not shown) of the exhaust gas processing apparatus 10 is turned on to perform heat treatment. The heating means 24 in the cracking furnace 12 is operated to start heating in the pyrolysis furnace 12. Subsequently, when the temperature in the combustion chamber 22 reaches the thermal decomposition temperature of the abatement target component contained in the exhaust gas E, the exhaust fan 48 is operated to start the introduction of the exhaust gas E into the exhaust gas processing device 10.
Here, at the start of the introduction of exhaust gas E into the exhaustgas processing device 10, the exhaust gas supply / discharge mechanism 14 is in the state of FIG. 1, ie, the first on-off valve 42a and the second on-off valve 42b are opened. When the fourth on-off valve 42d is closed, the exhaust gas E supplied through the exhaust gas supply duct 30 is first introduced into the heat storage chamber 18 through the first fluid passage 40a, where the heat is transferred from the heat storage body 16 After being given and preheated, it is sent to the combustion chamber 22. Then, the exhaust gas E in which the predetermined processing target component is thermally decomposed and treated in the combustion chamber 22 passes through the heat storage chamber 20 and is cooled by heat exchange with the heat storage body 16, and then the second fluid passage It passes through 40 b to the process gas exhaust duct 32. Thereafter, it passes through the retention tank 34 and the exhaust fan 48 and is released to the atmosphere.
ここで、排ガス処理装置10への排ガスE導入開始時に、排ガス給排機構14を図1の状態、すなわち、第1開閉弁42a及び第2開閉弁42bを開操作し、第3開閉弁42c及び第4開閉弁42dを閉操作した状態にすると、排ガス供給ダクト30を通じて供給される排ガスEは、先ず第1流体通路40aを通って蓄熱室18へと導入され、ここで蓄熱体16より熱を与えられ予熱された後、燃焼室22へと送られる。そして、燃焼室22で所定の処理対象成分が加熱分解されて処理済みと成った排ガスEは、蓄熱室20を通り、蓄熱体16と間で熱交換して冷却された後、第2流体通路40bを通過して処理ガス排気ダクト32へと与えられる。その後、滞留用タンク34,排気ファン48を通過して大気中へと放出される。 Next, when the exhaust gas E is detoxified using the exhaust
Here, at the start of the introduction of exhaust gas E into the exhaust
続いて、上記排ガス処理装置10の稼働開始から所定時間が経過すると、排ガス給排機構14が図2の状態へと切り換わる。すなわち、第3開閉弁42c及び第4開閉弁42dを開操作し、第1開閉弁42a及び第2開閉弁42bを閉操作した状態へと切り換わる。そうすると、排ガス供給ダクト30を通じて供給される排ガスEは、先ず第3流体通路40cを通って蓄熱室20へと導入され、そこで蓄熱体16より熱を与えられ予熱された後、燃焼室22へと送られる。そして、燃焼室22で所定の処理対象成分が加熱分解されて処理済みと成った排ガスEは、蓄熱室18を通り、蓄熱体16と間で熱交換して冷却された後、第4流体通路40dを通過して処理ガス排気ダクト32へと与えられる。
Subsequently, when a predetermined time has elapsed from the start of operation of the exhaust gas processing device 10, the exhaust gas supply and discharge mechanism 14 is switched to the state of FIG. That is, the third on-off valve 42c and the fourth on-off valve 42d are opened, and the first on-off valve 42a and the second on-off valve 42b are closed. Then, the exhaust gas E supplied through the exhaust gas supply duct 30 is first introduced into the heat storage chamber 20 through the third fluid passage 40 c, and after being given heat from the heat storage body 16 and preheated there, to the combustion chamber 22. Sent. Then, the exhaust gas E in which the predetermined processing target component is thermally decomposed and treated in the combustion chamber 22 passes through the heat storage chamber 18 and is cooled by heat exchange with the heat storage body 16, and then the fourth fluid passage It passes through 40 d to the process gas exhaust duct 32.
ここで、排ガス給排機構14が図1の状態から図2の状態へと切り換わった際、燃焼室22を通過していない生の排ガスEが、蓄熱室18から当該蓄熱室18一室分の容量だけ処理ガス排気ダクト32へと送られることになるが、このような生の排ガスEは、滞留用タンク34内で滞留する間に排出基準で定められた濃度以下にまで希釈されるようになる。
以下、再び排ガス給排機構14が作動して、図1の状態へと切り換わり、これ以降の排ガス処理装置10稼働中は、所定時間間隔をおいて上述の動作が繰り返される。 Here, when the exhaust gas supply /discharge mechanism 14 is switched from the state of FIG. 1 to the state of FIG. 2, raw exhaust gas E not passing through the combustion chamber 22 is equivalent to one heat storage chamber 18 from the heat storage chamber 18. The volume of the raw exhaust gas E is sent to the treatment gas exhaust duct 32 by the volume of become.
Thereafter, the exhaust gas supply anddischarge mechanism 14 is activated again to switch to the state of FIG. 1, and the above operation is repeated at predetermined time intervals during the operation of the exhaust gas processing system 10 thereafter.
以下、再び排ガス給排機構14が作動して、図1の状態へと切り換わり、これ以降の排ガス処理装置10稼働中は、所定時間間隔をおいて上述の動作が繰り返される。 Here, when the exhaust gas supply /
Thereafter, the exhaust gas supply and
次に、図3に示す第2の実施形態の排ガス処理装置10について説明する。
上述した第1実施形態と異なる部分は、主として、滞留用タンク34内にスプレーノズル36が取り付けられた点である。なお、これ以外の部分は前記第1実施形態と同じであるので、同じ構成については第1実施形態と同じ符号を付すと共に、前記第1実施形態の説明を援用して本実施形態の説明に代える。 Next, an exhaustgas processing system 10 according to a second embodiment shown in FIG. 3 will be described.
The difference from the first embodiment described above is mainly that thespray nozzle 36 is mounted in the retention tank 34. The other parts are the same as those in the first embodiment, and therefore, the same components as those in the first embodiment are denoted by the same reference numerals as in the first embodiment, and the description of the first embodiment is used to describe the present embodiment. Take over.
上述した第1実施形態と異なる部分は、主として、滞留用タンク34内にスプレーノズル36が取り付けられた点である。なお、これ以外の部分は前記第1実施形態と同じであるので、同じ構成については第1実施形態と同じ符号を付すと共に、前記第1実施形態の説明を援用して本実施形態の説明に代える。 Next, an exhaust
The difference from the first embodiment described above is mainly that the
スプレーノズル36は、滞留用タンク34内の排ガス滞留空間44に滞留する排ガスEを液洗するため、水などの洗浄液を噴射するものである。
このスプレーノズル36は、滞留用タンク34内に挿入された薬液供給配管50の先端部(下流端部)に取り付けられている。その薬液供給配管50の後端(上流端)は、例えば薬液として水を使用する場合には、水道(図示せず)に接続される。また、その際、薬液供給配管50の途中には、水道より供給する洗浄水の量を調整する流量調整バルブ52が取り付けられる。
なお、図示実施形態のものでは、スプレーノズル36から噴射され、滞留用タンク34の底に貯まった洗浄水を汲み上げるポンプ54が設置されており、このポンプ54のデリベリ側に接続された汲み上げ配管56は、流量調整バルブ52よりも下流側の薬液供給配管50に接続されている。このため、汲み上げ配管56に取り付けられた開閉弁58を開操作すると共に、流量調整バルブ52の開度を絞って閉操作することにより、スプレーノズル36より噴射する洗浄水をリサイクルして繰り返し使用することができるようになる。 Thespray nozzle 36 sprays a cleaning liquid such as water to wash the exhaust gas E staying in the exhaust gas retention space 44 in the retention tank 34.
Thespray nozzle 36 is attached to the tip (downstream end) of the chemical solution supply pipe 50 inserted into the retention tank 34. The rear end (upstream end) of the chemical solution supply pipe 50 is connected to a water supply (not shown), for example, when water is used as the chemical solution. Further, at that time, a flow rate adjusting valve 52 for adjusting the amount of cleaning water supplied from the water supply is attached in the middle of the chemical solution supply pipe 50.
In the illustrated embodiment, apump 54 is installed which pumps the washing water jetted from the spray nozzle 36 and stored in the bottom of the retention tank 34. A pumping pipe 56 connected to the delivery side of the pump 54 is installed. Is connected to the chemical solution supply pipe 50 on the downstream side of the flow rate adjustment valve 52. Therefore, by opening and closing the on-off valve 58 attached to the pumping pipe 56 and throttling the flow control valve 52 to close it, the cleaning water sprayed from the spray nozzle 36 is recycled and used repeatedly. Will be able to
このスプレーノズル36は、滞留用タンク34内に挿入された薬液供給配管50の先端部(下流端部)に取り付けられている。その薬液供給配管50の後端(上流端)は、例えば薬液として水を使用する場合には、水道(図示せず)に接続される。また、その際、薬液供給配管50の途中には、水道より供給する洗浄水の量を調整する流量調整バルブ52が取り付けられる。
なお、図示実施形態のものでは、スプレーノズル36から噴射され、滞留用タンク34の底に貯まった洗浄水を汲み上げるポンプ54が設置されており、このポンプ54のデリベリ側に接続された汲み上げ配管56は、流量調整バルブ52よりも下流側の薬液供給配管50に接続されている。このため、汲み上げ配管56に取り付けられた開閉弁58を開操作すると共に、流量調整バルブ52の開度を絞って閉操作することにより、スプレーノズル36より噴射する洗浄水をリサイクルして繰り返し使用することができるようになる。 The
The
In the illustrated embodiment, a
本実施形態の排ガス処理装置10によれば、排ガスEの種類によっては、燃焼室22での加熱分解後に水溶性成分や粉塵などを副成する場合もあるが、上述のようなスプレーノズル36を設けることにより、大気中へ放出する熱分解処理済みの排ガスEの中からこれら水溶性成分や粉塵などを洗い流して除去することができる。
According to the exhaust gas processing apparatus 10 of the present embodiment, depending on the type of exhaust gas E, there may be by-products such as water-soluble components and dust after thermal decomposition in the combustion chamber 22. By providing it, these water-soluble components and dust can be washed away and removed from the thermally decomposed exhaust gas E released to the atmosphere.
なお、上述した第1及び第2実施形態は、次のように変更可能である。
上述の各実施形態の排ガス処理装置10に、熱分解炉12へ導入する処理対象の排ガスEを液洗する湿式の入口スクラバー(図示せず)を加えるようにしてもよい。このような入口スクラバーを加えることにより、熱分解炉12へ導入する排ガスEから水溶性成分や粉塵などを予め除去することができ、蓄熱体16の目詰まりをより一層効果的に低減させることができるようになる。 The first and second embodiments described above can be modified as follows.
A wet inlet scrubber (not shown) may be added to the exhaustgas processing device 10 of each of the above-described embodiments to wash the exhaust gas E to be treated introduced into the thermal decomposition furnace 12. By adding such an inlet scrubber, water-soluble components and dust can be removed in advance from the exhaust gas E introduced into the thermal decomposition furnace 12, and clogging of the heat storage body 16 can be more effectively reduced. become able to.
上述の各実施形態の排ガス処理装置10に、熱分解炉12へ導入する処理対象の排ガスEを液洗する湿式の入口スクラバー(図示せず)を加えるようにしてもよい。このような入口スクラバーを加えることにより、熱分解炉12へ導入する排ガスEから水溶性成分や粉塵などを予め除去することができ、蓄熱体16の目詰まりをより一層効果的に低減させることができるようになる。 The first and second embodiments described above can be modified as follows.
A wet inlet scrubber (not shown) may be added to the exhaust
また、上述の各実施形態の排ガス処理装置10では、熱分解炉12に一対の蓄熱室18,20を設ける場合を示したが、これら蓄熱室18,20の少なくとも一方が使用不能となった際に排ガスEを通流させる1又は複数の予備の蓄熱室(図示せず)を備えるようにしてもよい。このような予備の蓄熱室の分だけ熱分解炉12の容積は大きくなるが、例えば一対の蓄熱室18,20のうち一方の蓄熱体16が目詰まりを起こして排ガスEの通流が不能になった場合であっても、排ガスEを通流させる蓄熱室を予備のものに切り換えるだけで、排ガス処理装置10の運転を停止することなく、連続運転可能時間を延長させることができるようになる。
Moreover, in the exhaust gas processing apparatus 10 of each above-mentioned embodiment, although the case where a pair of thermal storage chambers 18 and 20 were provided in the thermal decomposition furnace 12 was shown, when at least one of these thermal storage chambers 18 and 20 became unusable. May be provided with one or more spare heat storage chambers (not shown) through which the exhaust gas E flows. Although the volume of the thermal decomposition furnace 12 is increased by the amount of such a spare heat storage chamber, for example, the heat storage body 16 of one of the pair of heat storage chambers 18 and 20 is clogged and the exhaust gas E can not flow Even in the case where it becomes, the continuous operation possible time can be extended without stopping the operation of the exhaust gas processing device 10 only by switching the heat storage chamber through which the exhaust gas E flows to the spare one. .
さらに、上述の各実施形態では、熱分解炉12として、本体ケーシング26の軸が鉛直方向を向くように立設されたものを示しているが、熱分解炉12は、かかる構造に限定されるものではなく、例えば、本体ケーシング26の軸が水平方向を向くように倒伏させた構造などであってもよい。
Furthermore, in the above-mentioned each embodiment, although what was erected so that the axis of main part casing 26 might turn to the perpendicular direction is shown as thermal decomposition furnace 12, thermal decomposition furnace 12 is limited to this structure For example, it may be a structure in which the axis of the main body casing 26 is laid down so as to face the horizontal direction.
10…排ガス処理装置
12…熱分解炉
14…排ガス給排機構
16…蓄熱体
18…蓄熱室
20…蓄熱室
22…燃焼室
24…加熱手段
30…排ガス供給ダクト
32…処理ガス排気ダクト
34…滞留用タンク
36…スプレーノズル
E…排ガス DESCRIPTION OFSYMBOLS 10 ... Exhaust gas processing apparatus 12 ... Thermal decomposition furnace 14 ... Exhaust gas supply-and-discharge mechanism 16 ... Heat storage body 18 ... Thermal storage chamber 20 ... Thermal storage chamber 22 ... Combustion chamber 24 ... Heating means 30 ... Exhaust gas supply duct 32 ... Process gas exhaust duct 34 ... Retention Tank 36 ... spray nozzle E ... exhaust gas
12…熱分解炉
14…排ガス給排機構
16…蓄熱体
18…蓄熱室
20…蓄熱室
22…燃焼室
24…加熱手段
30…排ガス供給ダクト
32…処理ガス排気ダクト
34…滞留用タンク
36…スプレーノズル
E…排ガス DESCRIPTION OF
Claims (4)
- 蓄熱体(16)を有する一対の蓄熱室(18)(20)と、上記蓄熱室(18)(20)の一端を連通すると共にその内部を加熱する加熱手段(24)が設けられた燃焼室(22)とで構成された熱分解炉(12)、及び、
排ガス供給ダクト(30)を通じて供給される排ガス(E)を上記一対の蓄熱室(18)(20)に対して一定時間間隔をおいて交互に供給すると共に、上記燃焼室(22)で加熱分解された後、上記排ガス(E)が供給されていない蓄熱室(18)(20)を通過して熱分解炉(12)から排出される処理済みの排ガス(E)を処理ガス排気ダクト(32)へと送給する排ガス給排機構(14)を具備する排ガス処理装置であって、
上記排ガス給排機構(14)と上記処理ガス排気ダクト(32)との間、又は、上記処理ガス排気ダクト(32)の途中に、熱分解炉(12)から排出された排ガス(E)を一時的に滞留させる滞留用タンク(34)が装備されている、
ことを特徴とする排ガス処理装置。 A combustion chamber provided with a pair of heat storage chambers (18) and (20) having a heat storage body (16) and heating means (24) for connecting one end of the heat storage chambers (18) and (20) and heating the inside (22) and a thermal decomposition furnace (12), and
The exhaust gas (E) supplied through the exhaust gas supply duct (30) is alternately supplied to the pair of heat storage chambers (18) (20) at a constant time interval, and thermal decomposition is performed in the combustion chamber (22) The treated exhaust gas (E) discharged from the thermal decomposition furnace (12) after passing through the heat storage chambers (18) (20) to which the exhaust gas (E) is not supplied is treated An exhaust gas treatment apparatus having an exhaust gas supply / discharge mechanism (14) for feeding to
The exhaust gas (E) discharged from the thermal decomposition furnace (12) is placed between the exhaust gas supply / discharge mechanism (14) and the process gas exhaust duct (32) or in the middle of the process gas exhaust duct (32). A temporary holding tank (34) is provided.
An exhaust gas processing apparatus characterized by - 請求項1の排ガス処理装置において、
前記滞留用タンク(34)内に、当該滞留用タンク(34)に供給される排ガス(E)を液洗するスプレーノズル(36)が取り付けられている、ことを特徴とする排ガス処理装置。 In the exhaust gas treatment apparatus of claim 1,
In the retention tank (34), a spray nozzle (36) for washing the exhaust gas (E) supplied to the retention tank (34) is attached. - 請求項1又は2の排ガス処理装置において、
前記熱分解炉(12)へ導入する前記処理対象の排ガス(E)を液洗する湿式の入口スクラバーが装備されている、ことを特徴とする排ガス処理装置。 In the exhaust gas treatment apparatus of claim 1 or 2,
An exhaust gas treating apparatus, comprising: a wet inlet scrubber for liquid-washing the exhaust gas (E) to be treated introduced into the thermal decomposition furnace (12). - 請求項1の排ガス処理装置において、
前記熱分解炉(12)には、前記一対の蓄熱室(18)(20)の少なくとも一方が使用不能となった際に排ガス(E)を通流させる1又は複数の予備の蓄熱室を更に備える、ことを特徴とする排ガス処理装置。 In the exhaust gas treatment apparatus of claim 1,
The thermal decomposition furnace (12) further includes one or more spare heat storage chambers that allow exhaust gas (E) to flow when at least one of the pair of heat storage chambers (18) (20) becomes unusable. An exhaust gas treatment apparatus comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/005260 WO2017068609A1 (en) | 2015-10-19 | 2015-10-19 | Exhaust gas treatment device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/005260 WO2017068609A1 (en) | 2015-10-19 | 2015-10-19 | Exhaust gas treatment device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017068609A1 true WO2017068609A1 (en) | 2017-04-27 |
Family
ID=58557057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/005260 WO2017068609A1 (en) | 2015-10-19 | 2015-10-19 | Exhaust gas treatment device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017068609A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112797411A (en) * | 2020-12-16 | 2021-05-14 | 华润环保发展有限公司 | Energy-saving solid waste pyrolysis device and solid waste pyrolysis process method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09323088A (en) * | 1996-06-04 | 1997-12-16 | 英正 ▲鶴▼田 | Treatment of waste water containing ammonia |
JPH1043538A (en) * | 1996-07-30 | 1998-02-17 | Trinity Ind Corp | Heat storage deodorization treating device |
JPH1085541A (en) * | 1996-09-12 | 1998-04-07 | Takasago Thermal Eng Co Ltd | Gaseous impurity treating system |
JPH10113535A (en) * | 1996-10-07 | 1998-05-06 | Mitsubishi Heavy Ind Ltd | Process and device for desulfurization interrestrial heat power generation facility |
JPH1135957A (en) * | 1997-07-22 | 1999-02-09 | Mitsubishi Heavy Ind Ltd | Gas refining and gas refining facility |
WO2000011405A1 (en) * | 1998-08-21 | 2000-03-02 | Key Engineering Co. Ltd. | Evaporative and regenerative waste water incineration system |
JP2003021316A (en) * | 2001-07-03 | 2003-01-24 | Matsushita Environment Airconditioning Eng Co Ltd | Cleaner for exhaust gas generated in board manufacturing device having photo process |
JP2003287215A (en) * | 2002-03-28 | 2003-10-10 | Chugai Ro Co Ltd | Operation method for heat accumulation type exhaust gas treatment facility |
GB2497273A (en) * | 2011-11-19 | 2013-06-12 | Edwards Ltd | Apparatus for treating a gas stream |
-
2015
- 2015-10-19 WO PCT/JP2015/005260 patent/WO2017068609A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09323088A (en) * | 1996-06-04 | 1997-12-16 | 英正 ▲鶴▼田 | Treatment of waste water containing ammonia |
JPH1043538A (en) * | 1996-07-30 | 1998-02-17 | Trinity Ind Corp | Heat storage deodorization treating device |
JPH1085541A (en) * | 1996-09-12 | 1998-04-07 | Takasago Thermal Eng Co Ltd | Gaseous impurity treating system |
JPH10113535A (en) * | 1996-10-07 | 1998-05-06 | Mitsubishi Heavy Ind Ltd | Process and device for desulfurization interrestrial heat power generation facility |
JPH1135957A (en) * | 1997-07-22 | 1999-02-09 | Mitsubishi Heavy Ind Ltd | Gas refining and gas refining facility |
WO2000011405A1 (en) * | 1998-08-21 | 2000-03-02 | Key Engineering Co. Ltd. | Evaporative and regenerative waste water incineration system |
JP2003021316A (en) * | 2001-07-03 | 2003-01-24 | Matsushita Environment Airconditioning Eng Co Ltd | Cleaner for exhaust gas generated in board manufacturing device having photo process |
JP2003287215A (en) * | 2002-03-28 | 2003-10-10 | Chugai Ro Co Ltd | Operation method for heat accumulation type exhaust gas treatment facility |
GB2497273A (en) * | 2011-11-19 | 2013-06-12 | Edwards Ltd | Apparatus for treating a gas stream |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112797411A (en) * | 2020-12-16 | 2021-05-14 | 华润环保发展有限公司 | Energy-saving solid waste pyrolysis device and solid waste pyrolysis process method |
CN112797411B (en) * | 2020-12-16 | 2023-10-20 | 华润环保发展有限公司 | Energy-saving solid waste pyrolysis device and solid waste pyrolysis process method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101995211B1 (en) | Exhaust gas processing device | |
US8246732B2 (en) | Exhaust gas cleaning apparatus | |
KR20090104804A (en) | Gas processor | |
JP2006170603A (en) | Waste gas treating device | |
CN115193234B (en) | NO remover and semiconductor tail gas treatment equipment | |
JP6336059B2 (en) | Heat exchanger and exhaust gas treatment apparatus using the heat exchanger | |
KR101792633B1 (en) | Discharging fluid treatment apparatus for semiconductor device manufacturing equipment | |
JP2017124345A (en) | Exhaust gas detoxification device | |
WO2017068609A1 (en) | Exhaust gas treatment device | |
JP2005087958A (en) | Exhaust gas introducing structure and exhaust gas treating apparatus using the structure | |
KR100743399B1 (en) | Chlorine gas and perfluoride treatment device generated in semiconductor manufacturing process | |
JP2007260557A (en) | Ozone gas decomposition device and treatment system | |
JP7279985B2 (en) | Gas treatment furnace and exhaust gas treatment equipment using the same | |
JP7021730B1 (en) | Semiconductor manufacturing exhaust gas treatment equipment | |
JP6549344B1 (en) | Exhaust gas abatement system | |
KR100996352B1 (en) | Powder removal device of scrubber for waste gas treatment | |
WO2022208848A1 (en) | Device for treating pfc-containing exhaust gas | |
KR100840481B1 (en) | Powder removing device of exhaust line of semiconductor process equipment | |
KR101576212B1 (en) | Scrubber With Function for Pre Wet | |
JP2006175317A (en) | Treatment apparatus of exhaust gas from semiconductor manufacturing process | |
KR101415375B1 (en) | Gas purification apparatus | |
JP3776576B2 (en) | Semiconductor manufacturing exhaust gas abatement apparatus and abatement method | |
KR20240067864A (en) | Detoxification device, sediment removal means, and sediment removal method | |
JP2023085615A (en) | Three-way valve, exhaust gas treatment device, exhaust gas treatment system, and exhaust gas treatment method | |
KR100777576B1 (en) | Gas scrubber in CBD process using NF3 as cleaning gas and its operation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15906617 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15906617 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |