JPS62292604A - Oxygen recycling ozonizer - Google Patents

Oxygen recycling ozonizer

Info

Publication number
JPS62292604A
JPS62292604A JP13514286A JP13514286A JPS62292604A JP S62292604 A JPS62292604 A JP S62292604A JP 13514286 A JP13514286 A JP 13514286A JP 13514286 A JP13514286 A JP 13514286A JP S62292604 A JPS62292604 A JP S62292604A
Authority
JP
Japan
Prior art keywords
ozone
oxygen
reaction tank
gas
ozone reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13514286A
Other languages
Japanese (ja)
Other versions
JPH0472761B2 (en
Inventor
Takanori Nanba
難波 敬典
Shinji Endo
伸司 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13514286A priority Critical patent/JPS62292604A/en
Publication of JPS62292604A publication Critical patent/JPS62292604A/en
Publication of JPH0472761B2 publication Critical patent/JPH0472761B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/00086Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
    • G11B20/00855Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving a step of exchanging information with a remote server

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To prevent impurities from entering recovered oxygen by placing an ozone reaction tank composed of two or more tanks, blowing ozonized oxygen into the 1st ozone reaction tank to capture impurities present in a substance to be treated and exhausting the oxygen contg. the captured impurities from the tank. CONSTITUTION:Oxygen as starting material in a gas holder 1 is ozonized in an ozonizer 2 and the ozonized oxygen is blown into a liq. to be treated in the 1st and the 2nd ozone reaction tanks 31, 32 as fine bubbles from the bottoms through valves 21, 22. The tanks 31, 32 have a common partition wall and communicate with each other at the lower part, so the gas in the tanks 31, 32 is exhausted from the tops without mixing. The exhaust gas from the 1st tank 31 is released from the system after the remaining ozone is decomposed in a waste ozone decomposer 7. The exhaust gas from the 2nd tank 32 is sent to a cooling dehumidifier 5 by a blower 4, the resulting liq. is drained and the dehumidified gas is dried with an adsorption type gas drier 6 and returned to the gas holder 1 as starting oxygen material.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野j この発明は酸素リサイクルオゾン発生装置、とくにその
回収ガス中へ被処理物と共存する揮発性有機物および窒
素が混入することを防止して、長時間にわたって安定で
効率よくオゾンを製造することを可能にするものである
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Industrial Field of Application] This invention relates to an oxygen recycling ozone generator, in particular, to a recovery gas from which volatile organic matter and nitrogen coexisting with the treated material are mixed. This prevents this and makes it possible to produce ozone stably and efficiently over a long period of time.

[従来の技術] 第2図は例えば実開昭55−133286号公報に示さ
れた従来の酸素リサイクルオゾン発生装置を示す構成図
であり、図中(1)は原料ガス溜め、(2)はオゾン発
生器、(3)はオゾン反応槽、(4)はプロア、(5)
は冷却除温器、(6)は吸着式ガス乾燥機、(8)は脱
気塔、(9)は散水ノズル、(10)は排気ポンプ、(
11)は水位検出器、(12)は水位検出WEよりその
開度もしくは開閉状態を制御されるコントロールパルプ
、(13)は給水ポンプである。
[Prior Art] Fig. 2 is a block diagram showing a conventional oxygen recycling ozone generator disclosed in, for example, Japanese Utility Model Application Publication No. 55-133286. In the figure, (1) is a raw material gas reservoir, and (2) is a Ozone generator, (3) is ozone reaction tank, (4) is Proa, (5)
is a cooling desuperheater, (6) is an adsorption gas dryer, (8) is a deaeration tower, (9) is a water nozzle, (10) is an exhaust pump, (
11) is a water level detector, (12) is a control pulp whose opening degree or opening/closing state is controlled by the water level detection WE, and (13) is a water supply pump.

次にこの従来装置の動作を説明する。原料ガス溜め(1
)から出た原料酸素はオゾン発生器(2)でオゾン化酸
素(そのオゾン濃度は通常数96)になり、オゾン反応
槽(3)底部より微細気泡さして被処理水中に電気され
る。これにより上記オゾン化酸素中のオゾンは水中に醪
解して消費される。この際に酸素も一部は水中に溶解し
て消費されるが伐りは水中より排出される。この排出さ
れ九酸索はプロア(4)で収引加圧された後、図示しな
い冷凍機より低温プラインが送られている冷却除ti!
 !!1(5)で5℃位に冷却され、ガス中に含まれて
いた水分は凝縮され、ドレインとして除かれる。冷却除
湿器(5)を出たガスは吸着式ガス乾燥機(6)で露点
が一40℃以下Kt燥され、再び原料酸素として原料ガ
ス溜め(1)に送られるもので、このような循環系は酸
素リサイクル系と呼ばれている。なお、オゾンKl!換
された酸素および水に溶解して系外に流出した酸素に相
当する量の酸素は補給酸素とL2て補給される。
Next, the operation of this conventional device will be explained. Raw material gas reservoir (1
) The raw material oxygen emitted from the ozone generator (2) becomes ozonized oxygen (the ozone concentration is usually number 96), which is then electrically charged into the water to be treated through fine bubbles from the bottom of the ozone reaction tank (3). As a result, the ozone in the ozonized oxygen is dissolved in water and consumed. At this time, some of the oxygen is dissolved in the water and consumed, but the felling is discharged from the water. This discharged nine-acid cable is drawn down and pressurized by a proa (4), and then cooled and removed by a low-temperature prine from a refrigerator (not shown).
! ! In step 1 (5), the gas is cooled to about 5° C., and the moisture contained in the gas is condensed and removed as a drain. The gas exiting the cooling dehumidifier (5) is dried in an adsorption type gas dryer (6) with a dew point of 140°C or less, and then sent to the raw material gas reservoir (1) again as raw material oxygen. The system is called an oxygen recycling system. In addition, Ozone Kl! An amount of oxygen equivalent to the exchanged oxygen and the oxygen dissolved in water and flowing out of the system is replenished with supplementary oxygen L2.

一方、オゾン反応槽(3)へ送られてくる被処理物即ち
原水は、オゾン反応槽(3)よ#)排出されるガス中に
溶解していた窒素および揮発性有機物が混入しないよう
に脱気塔(8)で脱気される。脱気塔(8)は排気ポン
プ(10) Kよって減圧状態にあシ、原水がコントロ
ールパルプ(12)を通じて脱気塔(8)へ吸入される
。この際に1原水は飲水ノズル(9)より散水されて脱
気されるものである。水位検出器(11)は給水ポンプ
(13) Kよシ脱気塔(8)からオゾン反応槽(3)
へ送給される水量と同量の原水がコントロールパルプ(
12)を通って吸入されるように1このコン) o −
ルハ7L/ フ(12)の開度を制御するために設置さ
れており脱気塔(8)の水位を一定に保つ。
On the other hand, the material to be treated, that is, the raw water sent to the ozone reaction tank (3), is desorbed to prevent nitrogen and volatile organic matter dissolved in the gas discharged from the ozone reaction tank (3) from being mixed in. It is degassed in the air tower (8). The deaeration tower (8) is brought into a reduced pressure state by the exhaust pump (10) K, and raw water is sucked into the deaeration tower (8) through the control pulp (12). At this time, 1 raw water is sprayed from a drinking water nozzle (9) and degassed. The water level detector (11) is connected to the water supply pump (13) and the deaeration tower (8) to the ozone reaction tank (3).
The same amount of raw water as the amount of water sent to the control pulp (
12) as inhaled through 1 this con) o -
It is installed to control the opening of the Luha 7L/fu (12) and keep the water level of the degassing tower (8) constant.

上記のように、酸素リサイクル系内の酸素ガス中の揮発
性有機物や窒素の混入を防止することはオゾンを効率よ
く製造するために極めて重要である。電気学会論文誌B
198巻24j17頁紀戟の様に20容量での窒素の混
入は15%のオゾン発生効率の低下を、また米国化学会
発行r 0zon・Chemistry and Te
chnology J (1959年発行)305頁記
載のようKll重量%有機物の混入は全くオゾンを発生
させないほど大きな悪影響をもたらす。従って、脱気塔
(8)を用いて原水中に溶存している揮発性有機物や窒
素がリサイクルガス中に混入するのを防ぐことにより、
初めて効率よくオゾンが製造できるのである。
As mentioned above, it is extremely important to prevent volatile organic matter and nitrogen from being mixed into the oxygen gas in the oxygen recycling system in order to efficiently produce ozone. Institute of Electrical Engineers of Japan Journal B
Vol. 198, p. 24j, p. 17, the mixing of nitrogen at 20 volumes decreases the ozone generation efficiency by 15%, and the American Chemical Society publishes r 0zon・Chemistry and Te.
As described on p. 305 of Chnology J (published in 1959), the incorporation of Kll weight % organic matter has such a large adverse effect that no ozone is generated. Therefore, by using the degassing tower (8) to prevent volatile organic matter and nitrogen dissolved in the raw water from being mixed into the recycled gas,
For the first time, ozone can be produced efficiently.

第3図は第2の従来例で、図中(1)〜(6)は第2図
のものと同一もしくけ相当の物を示す。(14)は内部
に加熱ヒーターもしくは紫外線を発するランプが紋けら
れた反応器であり、プロア(4)と冷却除混器(5)の
間に設けられる。
FIG. 3 shows a second conventional example, in which (1) to (6) indicate the same mechanism as that in FIG. 2. A reactor (14) is equipped with a heating heater or a lamp that emits ultraviolet rays, and is installed between the prourator (4) and the cooling mixer (5).

この第2の従来例も第1の従来例と同様の動作を行なう
が、オゾン反応槽(3)K供給される原水は脱気処理さ
れておらず、溶存する揮発性有機物および窒素はオゾン
化酸素の曝気により追い出され、オゾン反応槽(3)か
ら排出されるガスに同伴して反応器(14)に送入され
る。第1の従来例で説明しえようにリサイクルガス中に
揮発性有機物が共存するとオゾン発生効率が着く低下す
るので、反応器(14)内では揮発性有機物をオゾンと
反応させてオゾン発生にあまり影響を与えないかもしく
は反応器(14)以降の流路系内で除去できる炭酸ガス
と水に分解する。反応器(14)の具体例は加熱式、光
反応式等が挙げられ、各々オゾン反応槽(3)から回収
された少量のオゾン、揮発性有機物、水蒸気を含む酸素
ガスに対して加熱や光照射の効果とオゾンの酸化力によ
り含有されている揮発性有機物を水と炭酸ガスに酸化す
る。このようKして、オゾン発生に悪影響をもたらす揮
発性有機物を除去することKより、効率よくオゾンを製
造できる。
This second conventional example also operates in the same way as the first conventional example, but the raw water supplied to the ozone reaction tank (3) K is not degassed, and dissolved volatile organic matter and nitrogen are ozonized. Oxygen is expelled by aeration and sent to the reactor (14) together with the gas discharged from the ozone reactor (3). As can be explained in the first conventional example, if volatile organic substances coexist in the recycled gas, the ozone generation efficiency decreases, so in the reactor (14), the volatile organic substances are reacted with ozone to reduce ozone generation. It decomposes into carbon dioxide and water, which have no influence or can be removed in the flow path system after the reactor (14). Specific examples of the reactor (14) include a heating type, a photoreaction type, etc., and each reactor (14) is heated or exposed to light for oxygen gas containing a small amount of ozone, volatile organic matter, and water vapor recovered from the ozone reaction tank (3). Volatile organic substances contained are oxidized to water and carbon dioxide by the effect of irradiation and the oxidizing power of ozone. Ozone can be produced more efficiently by removing volatile organic substances that adversely affect ozone generation.

なお、有機物の酸化に必要なオゾンの量がオゾン反応槽
(3)から回収される酸素中に含まれる量では不足の場
合には、オゾン発生器(2)からオゾン反応槽(3)へ
送られるオゾン化酸素を分岐して分岐路(15)、弁(
16)を通して直接反応器(14)に補給することもあ
る。
In addition, if the amount of ozone necessary for oxidizing organic matter is insufficient in the amount contained in the oxygen recovered from the ozone reaction tank (3), the ozone is sent from the ozone generator (2) to the ozone reaction tank (3). The ozonized oxygen is branched into a branch passage (15) and a valve (
The reactor (14) may also be fed directly through the reactor (16).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

オゾン発生に悪影響をもたらす揮発性有機物や窒素を収
り除くため、第1の従来例では減圧ポンプ、脱気塔など
複雑な構成と制御および動力を必要とし、また第2の従
来例では加熱もしくは光源のための電力が必要で、オゾ
ン発生のための消費電力を増加させる。ま次第2の従来
例では窒素の除去が全くなされておらず、リサイクルガ
スへの窒素の混入によるオゾン発生効率の低下が免れな
い等の問題を抱えている。
In order to remove volatile organic substances and nitrogen that have a negative effect on ozone generation, the first conventional example requires complicated configurations, controls, and power such as a decompression pump and degassing tower, and the second conventional example requires heating or Electricity is required for the light source, increasing power consumption for ozone generation. In the second conventional example, nitrogen is not removed at all, and there are problems such as a reduction in ozone generation efficiency due to nitrogen being mixed into the recycled gas.

この発明は、上記のような問題点を解消するためになさ
れたもので、構成も簡単でかつ全く動力を使用せずに回
収酸素への揮発性有機物や窒素の混入を防止できる酸素
リサイクルオゾン発生装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and is an oxygen recycling ozone generation system that has a simple configuration and can prevent volatile organic matter and nitrogen from being mixed into recovered oxygen without using any power. The purpose is to obtain equipment.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係わる酸素リサイクルオゾン発生装置は、オ
ゾン反応槽を2種以上で構成し、被処理物を各オゾン反
応槽に直列〈通じ、オゾン化酸素を各々のオゾン反応槽
に並列に供給し、被処理物が最初に供給される第1のオ
ゾン反応槽からの排気を系外に放出し、2段以降の第2
オゾン反応槽からの排気を回収してリサイクルせしめる
ようKしたものである。
The oxygen recycling ozone generator according to the present invention comprises two or more types of ozone reaction tanks, the material to be treated is passed through each ozone reaction tank in series, ozonated oxygen is supplied to each ozone reaction tank in parallel, The exhaust gas from the first ozone reaction tank, where the material to be treated is initially supplied, is released outside the system, and the second ozone reaction tank from the second stage onwards is
The exhaust gas from the ozone reactor is collected and recycled.

〔作用] この発ELにおいては、第1のオゾン反R5槽にオゾン
化酸素を曝気することKより、被処理物に共存している
揮発性有機物や窒素を曝気ガス中に収り込みオゾン反応
槽外iab出し、2段目以降のオゾン反応槽からの排気
中へのこれら揮発性有機物や窒素の混入が防止でき、オ
ゾン発生の効率を常に高く保つことができる。
[Function] In this EL, by aerating ozonized oxygen into the first ozone anti-R5 tank, volatile organic matter and nitrogen coexisting in the object to be treated are trapped in the aeration gas and the ozone reaction occurs. It is possible to prevent these volatile organic substances and nitrogen from being taken out of the tank and into the exhaust gas from the second and subsequent ozone reaction tanks, and the efficiency of ozone generation can be maintained at a high level at all times.

〔実施例〕〔Example〕

第1図は被処理物として液状物を対象にした時のこの発
明の一実施例による酸素リサイクルオゾン発生装置を示
す構成図であり、(1)、(2)、(4)〜(6)は従
来装置と同一のものである。(3)は内部に隔壁を設け
2槽の反応槽(31)および(32) K分割されたオ
ゾン反応槽、(7)は廃オゾン分解器、(21)および
(22)は流量調整用の弁である。オゾン発生器(2)
とオゾン反応槽(3)を結ぶ流路は分岐し、弁(21)
および弁(22)を介してそれだれ分割された第1およ
び第2のオゾン反応令(31)、(32)の下部に接続
されている。また、反応槽への排気の管路は第1のオゾ
ン反応槽(31)は廃オゾン分解器(7)へ、第2のオ
ゾン反応槽(32) Fiプロア(4)に接続されてい
る。
FIG. 1 is a block diagram showing an oxygen recycling ozone generator according to an embodiment of the present invention when a liquid material is used as the object to be treated. (1), (2), (4) to (6) is the same as the conventional device. (3) is a two-tank reaction tank with a partition wall inside (31) and (32) K-divided ozone reaction tank, (7) is a waste ozone decomposer, and (21) and (22) are two reaction tanks for adjusting the flow rate. It is a valve. Ozone generator (2)
The flow path connecting the ozone reaction tank (3) is branched, and a valve (21)
and is connected to the lower part of the first and second ozone reaction chambers (31) and (32) which are respectively divided via a valve (22). Further, as for the exhaust gas pipes to the reaction tanks, the first ozone reaction tank (31) is connected to the waste ozone decomposer (7), and the second ozone reaction tank (32) is connected to the Fi proa (4).

次に、第1図を用いてこの発F3AKもとすく上記実施
例の動作を説明する。原料ガス溜め(1)から出た原料
酸素はオゾン発生器(2)でオゾン化酸素(そのオゾン
濃度は通常WC*)になり、分岐されて抜弁(21)お
よび(22)を経て第1のオゾン反応槽(31)および
第2のオゾン反応槽(32)の底部より微細気泡として
被処理液中に散気される。これにより上記オゾン化酸素
中のオゾンは液中に溶解して消費される。第1のオゾン
反応槽(31)および第2のオゾン反応槽(32)は檜
の下部を除いて隔壁によって仕切られており、第1のオ
ゾン反応槽(31)および第2のオゾン反応槽(32)
 K散気されてガスは互いに混ざり合うことなくオゾン
反EX槽(3)の上部から排気される。第1のオゾン反
応槽(31)からの排気は廃オゾン分解器(7)内で残
留する未反応オゾンを完全に分解した後系外に放出され
る。4i82のオゾン反応槽(32)からの排気はプロ
ア(4)で吸引加圧された後、図示しない冷凍機よシ低
温プラインが送られている冷却除湿器(5)で5℃位に
冷却され、ガス中に含まれていた水分は凝縮され、ドレ
インとして除かれる。冷却除湿器(5)を出たガスは吸
着式ガス乾燥機(6)で露点が一40℃以下に乾燥され
、再び原料酸素として原料ガス溜め(1)に送られる。
Next, the operation of the above-described embodiment will be explained using FIG. The raw material oxygen that comes out of the raw material gas reservoir (1) becomes ozonized oxygen (the ozone concentration is usually WC*) in the ozone generator (2), and is branched off to the first outlet via vent valves (21) and (22). Fine bubbles are diffused into the liquid to be treated from the bottoms of the ozone reaction tank (31) and the second ozone reaction tank (32). As a result, the ozone in the ozonized oxygen is dissolved in the liquid and consumed. The first ozone reaction tank (31) and the second ozone reaction tank (32) are separated by a partition wall except for the lower part of the cypress, and the first ozone reaction tank (31) and the second ozone reaction tank ( 32)
The gases are exhausted from the upper part of the ozone anti-EX tank (3) without mixing with each other. The exhaust gas from the first ozone reaction tank (31) completely decomposes unreacted ozone remaining in the waste ozone decomposer (7) before being discharged to the outside of the system. The exhaust gas from the ozone reaction tank (32) of the 4i82 is suctioned and pressurized by a proa (4), and then cooled to about 5°C by a cooling dehumidifier (5) to which a low-temperature line is sent to a refrigerator (not shown). , the moisture contained in the gas is condensed and removed as drain. The gas exiting the cooling dehumidifier (5) is dried in an adsorption type gas dryer (6) to a dew point of 140° C. or less, and is again sent to the raw material gas reservoir (1) as raw material oxygen.

一方被処理液は、第1のオゾン反応槽(31)の上部よ
り流入し、第1のオゾン反応槽(31)および第2のオ
ゾン反応槽(32)の隔壁のない部分から第2のオゾン
反応槽(32)へ流入する。このようにして第1のオゾ
ン反応槽(31)および第2のオゾン反応槽(32)内
で充分オゾンと反応して処理液として系外に流出する。
On the other hand, the liquid to be treated flows from the upper part of the first ozone reaction tank (31), and the second ozone It flows into the reaction tank (32). In this manner, the ozone reacts sufficiently with ozone in the first ozone reaction tank (31) and the second ozone reaction tank (32) and flows out of the system as a treatment liquid.

第1のオゾン反応槽(31)および第2のオゾン反応槽
(32)内における物質の収支について説明すると、ま
ずオゾンは気泡から液中に移動して液中の還元性物質を
酸化して消費される。気泡中の酸素は生1c第1のオゾ
ン反応槽(31)で飽和状態まで溶解し、第2のオゾン
反応槽(32)では液中に溶解することなく殆どが排気
として回収される。また、液中に共存する揮発性有機物
や窒素は溶解平衡に従って第1のオゾン反応槽(31)
内でその殆どが気泡内に移動して糸外に排出される。従
って、第2のオゾン反応槽(32)内に被処理液が流入
するときには揮発性有機物や蟹業は被処理液には含まれ
ておらず、第2のオゾン反応槽(32)から回収される
排気には上記揮発性有機物や窒素の混入が防止できる。
To explain the balance of substances in the first ozone reaction tank (31) and the second ozone reaction tank (32), first, ozone moves from bubbles into the liquid and is consumed by oxidizing reducing substances in the liquid. be done. The oxygen in the bubbles is dissolved to a saturated state in the first ozone reaction tank (31), and most of it is recovered as exhaust gas without being dissolved in the liquid in the second ozone reaction tank (32). In addition, volatile organic substances and nitrogen coexisting in the liquid are removed from the first ozone reaction tank (31) according to their solubility equilibrium.
Most of it moves into air bubbles and is discharged to the outside of the yarn. Therefore, when the liquid to be treated flows into the second ozone reaction tank (32), volatile organic substances and crabgrass are not contained in the liquid to be treated and are recovered from the second ozone reaction tank (32). The above volatile organic substances and nitrogen can be prevented from being mixed into the exhaust gas.

被処理物が粒状の固体もしくはスラリー状であっても、
その空隙に充満していた空気は供給されてくるオゾン化
酸素と置換するので容易に系外に排出できる。また、付
着している揮発性有機物も気相へ移動して除去できる。
Even if the object to be processed is granular solid or slurry,
The air filling the gap is replaced by the supplied ozonized oxygen and can be easily discharged from the system. Further, attached volatile organic substances can also be transferred to the gas phase and removed.

なお、第1のオゾン反応槽(31)へのオゾン化酸素の
供給量は被処理液量や圧力、温度によって異るが、液中
への酸素の溶解量以上であればよく、また多い程効果的
に揮発性有機物や窒素が除去できる。しかし、供給量が
多過ぎると酸素の消費が増しオゾン製造のコストが高く
なる。これらの関係から水溶液を対象にする場合にはガ
ス・液比を慨ね0.04から0.025に設定すると経
済性を損ねることなくオゾンを製造できる。
The amount of ozonized oxygen supplied to the first ozone reaction tank (31) varies depending on the amount of liquid to be treated, pressure, and temperature, but it is sufficient as long as it is equal to or greater than the amount of oxygen dissolved in the liquid, and the larger the amount, the better. Volatile organic substances and nitrogen can be effectively removed. However, if the supply amount is too large, oxygen consumption increases and the cost of ozone production increases. From these relationships, when using an aqueous solution, ozone can be produced without sacrificing economic efficiency by setting the gas/liquid ratio generally between 0.04 and 0.025.

補給ガスに関して、純酸素を用いなくても酸素リサイク
ル方式を導入することにより空気原料のオゾン発生装置
より安価にオゾンが製造できる。
Regarding supplementary gas, by introducing an oxygen recycling system, ozone can be produced at a lower cost than with an air-based ozone generator without using pure oxygen.

その場合の酸素濃度の下限は実験的に60容量%である
ことが分かつている。さらに、この実施例ではオゾン反
Ji5槽(3)を隔壁で分割したものを示したが、複数
のオゾン反応槽が各々独立したものであっても同等の効
果で得られることはいうまでもない。
It has been experimentally determined that the lower limit of oxygen concentration in that case is 60% by volume. Furthermore, although this example shows the ozone anti-Ji5 tank (3) divided by partition walls, it goes without saying that the same effect can be obtained even if multiple ozone reaction tanks are each independent. .

〔発明の効果」 以上のように、この発明によればオゾン反応槽を2種以
上で構成し、被処理物を各オゾン反F5慴に直列に通じ
、かつオゾン化酸素の流れを各オゾン反応槽に対して並
列に供給し、被処理物が最初に入る第1のオゾン反応槽
からの排気を系外に排出し、第2以降のオゾン反応槽か
らの排気をオゾン発生器に循環させるようにしたので、
被処理物からの回収酸素へ揮発性有機物や窒素の混入が
防止でき、装置が安価にまた余分の動力を投入しなくと
もオゾン発生を高効率に行なえる効果がある。
[Effects of the Invention] As described above, according to the present invention, the ozone reaction tank is composed of two or more types, the object to be treated is connected in series to each ozone reactor, and the flow of ozonated oxygen is connected to each ozone reaction tank. The ozone reactor is supplied in parallel to the tanks, the exhaust from the first ozone reaction tank into which the material to be treated first enters is discharged to the outside of the system, and the exhaust from the second and subsequent ozone reactors is circulated to the ozone generator. So,
It is possible to prevent volatile organic matter and nitrogen from being mixed into the oxygen recovered from the object to be treated, and the device has the effect of being able to generate ozone with high efficiency at a low cost and without inputting extra power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による酸素リサイクルオゾ
ン発生装置を示す構成図、並びに第2図および第3図は
各々従来の酸素リサイクルオゾン発生装置を示す構成図
である。 図中、(1)は原料ガス溜め、(2)はオゾン発生器、
(3)はオゾン反応槽、 (31)は第1のオゾン反応
槽、(32)は第2のオゾン反応槽、(4)はプロアで
ある。 なお、図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a block diagram showing an oxygen recycling ozone generator according to an embodiment of the present invention, and FIGS. 2 and 3 are block diagrams showing conventional oxygen recycling ozone generators, respectively. In the figure, (1) is the raw material gas reservoir, (2) is the ozone generator,
(3) is an ozone reaction tank, (31) is a first ozone reaction tank, (32) is a second ozone reaction tank, and (4) is a proa. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)オゾン発生器から出たオゾン化酸素をオゾン反応
槽に送り、このオゾン反応槽に送られる被処理物と反応
させて排出される酸素を上記オゾン発生器へ循環して原
料酸素として利用する酸素リサイクルオゾン発生装置に
おいて、上記オゾン反応槽を2種以上で構成し、上記被
処理物を上記各オゾン反応槽に直列に通じ、かつ上記オ
ゾン化酸素の流れを上記各オゾン反応槽に対して並列に
供給し、上記被処理物が最初に入る第1のオゾン反応槽
からの排気を系外に排出し、第2以降のオゾン反応槽か
らの排気を上記オゾン発生器に循環させるようにしたこ
とを特徴とする酸素リサイクルオゾン発生装置。
(1) Send the ozonized oxygen emitted from the ozone generator to the ozone reaction tank, react with the material to be treated sent to the ozone reaction tank, and circulate the discharged oxygen to the ozone generator to use it as raw material oxygen. In the oxygen recycling ozone generator, the ozone reaction tank is composed of two or more types, the object to be treated is connected to each of the ozone reaction tanks in series, and the flow of the ozonated oxygen is directed to each of the ozone reaction tanks. The ozone reactor is supplied in parallel, the exhaust from the first ozone reaction tank into which the object to be treated first enters is discharged to the outside of the system, and the exhaust from the second and subsequent ozone reactors is circulated to the ozone generator. This is an oxygen recycling ozone generator that is characterized by:
(2)第1の反応槽に供給するオゾン化酸素の流量をガ
ス・液比で0.04〜0.25の範囲に設定することを
特徴とする特許請求の範囲第1項記載の酸素リサイクル
オゾン発生装置。
(2) Oxygen recycling according to claim 1, characterized in that the flow rate of ozonized oxygen supplied to the first reaction tank is set in a gas/liquid ratio range of 0.04 to 0.25. Ozone generator.
(3)オゾン発生券に補給される原料ガス中の酸素濃度
が60〜100%であることを特徴とする特許請求の範
囲第1項又は第2項記載の酸素リサイクルオゾン発生装
置。
(3) The oxygen recycling ozone generator according to claim 1 or 2, wherein the oxygen concentration in the raw material gas supplied to the ozone generation ticket is 60 to 100%.
JP13514286A 1986-06-10 1986-06-10 Oxygen recycling ozonizer Granted JPS62292604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13514286A JPS62292604A (en) 1986-06-10 1986-06-10 Oxygen recycling ozonizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13514286A JPS62292604A (en) 1986-06-10 1986-06-10 Oxygen recycling ozonizer

Publications (2)

Publication Number Publication Date
JPS62292604A true JPS62292604A (en) 1987-12-19
JPH0472761B2 JPH0472761B2 (en) 1992-11-19

Family

ID=15144786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13514286A Granted JPS62292604A (en) 1986-06-10 1986-06-10 Oxygen recycling ozonizer

Country Status (1)

Country Link
JP (1) JPS62292604A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135498A (en) * 1989-10-19 1991-06-10 Japan Steel Works Ltd:The Ozone reactor
US10486113B2 (en) 2014-12-08 2019-11-26 Technische Universität Berlin Fluid distribution device for a gas-liquid contactor, gas-liquid contactor and method for adding a gas to a liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135498A (en) * 1989-10-19 1991-06-10 Japan Steel Works Ltd:The Ozone reactor
US10486113B2 (en) 2014-12-08 2019-11-26 Technische Universität Berlin Fluid distribution device for a gas-liquid contactor, gas-liquid contactor and method for adding a gas to a liquid

Also Published As

Publication number Publication date
JPH0472761B2 (en) 1992-11-19

Similar Documents

Publication Publication Date Title
US3923955A (en) Process for deodorising waste or exhaust gases
GB2023565A (en) Process for treating water with ozone
US5415786A (en) Process for treating water with ozone
US4256710A (en) Process for deodorization
PL166828B1 (en) Method of removing hydrogen sulfide and/or carbon disulfide from flue gases
JPS62292604A (en) Oxygen recycling ozonizer
EP0242941B1 (en) Process and apparatus for the deodorization of air
SE9701947D0 (en) Process for separating gaseous elemental mercury from a gas
US3841961A (en) Method for the carbonation of sulphide-containing green liquor solutions
US4135891A (en) Purifying exhaust gases containing organic and inorganic materials
RU2096547C1 (en) Method and apparatus for whitening cellulose-containing material (versions)
EP0078780B1 (en) A method in the production of hydrogen peroxide
JPH01275402A (en) Oxygen recycling ozonizer system
JP4228144B2 (en) Solid polymer water electrolysis hydrogen production system
NO814429L (en) SYSTEM FOR CLEANING OF GENTLY GAS.
JPH0661543B2 (en) Ozone water production equipment
CN220176473U (en) Natural rubber factory production waste gas treatment device
JP3426833B2 (en) Oxygen recovery system for ozone bleaching system
JPS5913032Y2 (en) Oxygen recycling ozone water treatment equipment
US714160A (en) Process of extracting bromin from brine.
JPS608962B2 (en) Oxygen recycling ozone generator
JPS5522367A (en) Treatment of high concentration waste water
CN114560444A (en) Oxygen recovery system and recovery method for ozone oxidation device
JPS632149Y2 (en)
CA1074028A (en) Method and apparatus for treating aqueous liquids with ozone

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees