JPH0472375B2 - - Google Patents

Info

Publication number
JPH0472375B2
JPH0472375B2 JP4739481A JP4739481A JPH0472375B2 JP H0472375 B2 JPH0472375 B2 JP H0472375B2 JP 4739481 A JP4739481 A JP 4739481A JP 4739481 A JP4739481 A JP 4739481A JP H0472375 B2 JPH0472375 B2 JP H0472375B2
Authority
JP
Japan
Prior art keywords
irradiation
charged particle
particle beam
substrate
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4739481A
Other languages
Japanese (ja)
Other versions
JPS57162337A (en
Inventor
Shinya Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4739481A priority Critical patent/JPS57162337A/en
Publication of JPS57162337A publication Critical patent/JPS57162337A/en
Publication of JPH0472375B2 publication Critical patent/JPH0472375B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、荷電粒子線を用いた微細パターン形
成方法、すなわち、荷電粒子線リソグラフイ方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a fine pattern forming method using a charged particle beam, that is, a charged particle beam lithography method.

(従来の技術) 従来のパターン形成方法は、光学露光用マスク
を用いたマスク原図転写技術によつていた。しか
し、パターン寸法を露光に用いる光の波長に近い
程度に微細にしてくると、こうした方法でパター
ンを形成するのは原理的にも限界になつた。
(Prior Art) A conventional pattern forming method has been based on a mask original pattern transfer technique using an optical exposure mask. However, as pattern dimensions became finer to the extent that they approached the wavelength of the light used for exposure, forming patterns using this method reached its theoretical limits.

近年では、従来の光学露光技術によるよりも微
細なパターンを形成する技術として荷電粒子線照
射技術が利用されるようになつた。荷電粒子線照
射技術も改良が進み、0.5ミクロン程度に小さく
絞つた丸形断面をもつ荷電粒子線でパターンを一
筆書き的にぬりつぶす方法から、矩形などに成形
された数ミクロンから数十ミクロンの断面形寸法
をもつ荷電粒子線を用いる方法が多く使用される
ようになり、パターンをぬりつぶす時間が大幅に
短縮された。
In recent years, charged particle beam irradiation technology has come to be used as a technology for forming finer patterns than conventional optical exposure technology. Charged particle beam irradiation technology has also been improved, from a method in which a charged particle beam with a round cross section narrowed to about 0.5 microns is used to fill in a pattern in one stroke, to a method in which a cross section of several microns to several tens of microns formed into a rectangular shape is used. Methods using charged particle beams with specific dimensions have come into widespread use, and the time required to fill in patterns has been significantly shortened.

以下、従来の描画方法の具体例を述べる。図形
を、第1図aのように数十nmないし数十μmの大
きさの照射域に分割し、同じ断面形寸法をもつ荷
電粒子線により、各照射域に於いて、感荷電粒子
線層が照射部と非照射部とで現像液に対し十分大
きな溶解速度比をもつまで(以下適正照射時間と
呼ぶ)、荷電粒子線を各照射域に順次照射するこ
とが行われている。即ち、先ず第1照射域1を適
正照射時間まで照射し、次に第2照射域2の照射
に移ることを矢印3のように続けて図形を描画す
ることが通常行われている。
A specific example of the conventional drawing method will be described below. The figure is divided into irradiation regions of several tens of nanometers to several tens of micrometers in size as shown in Figure 1a, and charged particle beams with the same cross-sectional dimensions are used to create a charged particle beam layer in each irradiation region. Each irradiation area is sequentially irradiated with a charged particle beam until the irradiated area and the non-irradiated area have a sufficiently large dissolution rate ratio with respect to the developer (hereinafter referred to as appropriate irradiation time). That is, the first irradiation area 1 is first irradiated for an appropriate irradiation time, and then the second irradiation area 2 is irradiated, as shown by arrow 3, to draw a figure.

(発明が解決しようとする問題点) しかし数10ミクロンと大きな断面形寸法をもつ
ために電流量の大きな荷電粒子線でパターンを形
成しようとした場合、0.5ミクロン程度の小さな
断面形寸法をもつ荷電粒子線を用いていた時では
問題とならなかつた照射粒子線のもつエネルギー
によつて、パターン形成に芳しくない結果をもた
らすようになつた。基板中に入射した荷電粒子線
により基板は局所的に加熱され、該照射域内の基
板表面およびこれと接している感荷電粒子線層の
温度は第1図bのように上昇する。なぜならば、
基板および基板上に形成された感荷電粒子線層の
温度上昇は入射荷電粒子のもつエネルギーが感荷
電粒子線層および基板中で熱に変わり、感粒子線
層中および基板中を熱拡散するという照射エネル
ギーと熱拡散のバランスで決まるゆえに、大きな
断面形状で入射した荷電粒子線の場合には、その
荷電粒子線によつて照射された感荷電粒子線層お
よび基板の中央部における温度上昇が、その荷電
粒子線の断面形寸法の大きさに比例して大きくな
るからである。さらに、この温度上昇の幾何学的
分布は、鋭く矩形状に成形された断面形状の照射
荷電粒子パターンを大幅になだらかにしてしまう
効果をもつからである。通常、感荷電粒子線層は
高分子材料からなり、数百度Cで熱分解してしま
う。熱分解に至らない場合でも熱化学反応を起こ
す。通常、感荷電粒子線層を荷電粒子線でパター
ン形成する場合、数keVから数十keVの入射荷電
粒子線が感荷電粒子線層および基板中で非弾性散
乱し、感荷電粒子線層中の数eVのエネルギーが
分布する領域をパターン形成領域として考えてい
る。この数eVのエネルギーが分布する領域の形
状は、照射荷電粒子線の鋭い矩形断面形状をほぼ
忠実に再現するものになり、荷電粒子線リソグラ
フイ技術が微細パターン形成に利用されるゆえん
になつた。ところが上述したように、数百度Cの
ぼやけたパターン分布が数eVの鋭い分布に重畳
し、結果としてぼやけたパターンしか得られなく
なり、感荷電粒子線層の解像度が大幅に劣化する
結果となる。
(Problem to be solved by the invention) However, when trying to form a pattern with a charged particle beam with a large current amount because it has a large cross-sectional dimension of several tens of microns, The energy of the irradiated particle beam, which did not pose a problem when particle beams were used, began to produce unfavorable results in pattern formation. The substrate is locally heated by the charged particle beam incident on the substrate, and the temperature of the substrate surface within the irradiation area and the charged particle beam layer in contact with the substrate rises as shown in FIG. 1b. because,
The rise in temperature of the substrate and the charged particle beam layer formed on the substrate is due to the fact that the energy of the incident charged particles is converted into heat in the charged particle beam layer and the substrate, and heat is diffused in the sensitive particle beam layer and the substrate. Since it is determined by the balance between irradiation energy and thermal diffusion, in the case of a charged particle beam incident with a large cross-sectional shape, the temperature rise at the center of the charged particle beam layer and the substrate irradiated by the charged particle beam is This is because the size increases in proportion to the cross-sectional size of the charged particle beam. Furthermore, this geometrical distribution of temperature rise has the effect of significantly smoothing out the irradiated charged particle pattern, which has a sharp rectangular cross-section. Usually, the charged particle beam layer is made of a polymeric material and thermally decomposes at several hundred degrees Celsius. A thermochemical reaction occurs even if it does not result in thermal decomposition. Normally, when patterning a charged particle beam layer with a charged particle beam, an incident charged particle beam of several keV to several tens of keV is inelastically scattered in the charged particle beam layer and the substrate. The region where energy of several eV is distributed is considered as the pattern formation region. The shape of the region where this energy of several eV is distributed almost faithfully reproduces the sharp rectangular cross-sectional shape of the irradiated charged particle beam, which is why charged particle beam lithography technology is used for forming fine patterns. . However, as mentioned above, the blurred pattern distribution of several hundred degrees Celsius is superimposed on the sharp distribution of several eV, resulting in only a blurred pattern being obtained, resulting in a significant deterioration of the resolution of the charged particle beam layer.

説明をより具体的にすると、第2図に示したA
点における温度上昇は以下の式(1)で表わされる。
To make the explanation more concrete, A shown in Figure 2
The temperature rise at a point is expressed by the following equation (1).

T(P,Z1,Z2,R,t1,C,ρ,D) =2P/Cρ∫Z2 Z1R 0t1 02пr・(4пDt)-3/2 ・exp[−(r2+z2)/4Dt]dt・dr・dz
……(1) 但し T(度)は温度上昇。
T (P, Z 1 , Z 2 , R, t 1 , C, ρ, D) = 2P/Cρ∫ Z2 Z1R 0t1 0 2пr・(4пDt) -3/2・exp[−(r 2 +z 2 )/4Dt] dt・dr・dz
...(1) However, T (degrees) is the temperature rise.

P(W/cm3)は単位時間、単位体積当りの発熱
量で発熱領域は基板表面からの深さZ1(cm)から
Z2(cm)までの半径R(cm)の領域。
P (W/cm 3 ) is the amount of heat generated per unit time and unit volume, and the heating area is from the depth Z 1 (cm) from the substrate surface.
Area of radius R (cm) up to Z 2 (cm).

t1(sec)は照射時間。 t 1 (sec) is the irradiation time.

D(cm2/sec)は基板の熱伝導率を比熱C
(Joule/(g・deg))と密度ρ(g/cm3)との積
で除した熱拡散率。
D (cm 2 /sec) is the thermal conductivity of the substrate, which is the specific heat C
Thermal diffusivity divided by the product of (Joule/(g・deg)) and density ρ (g/cm 3 ).

Z1(cm)はPの説明中に記載。 Z 1 (cm) is stated in the explanation of P.

Z2(cm)はPの説明中に記載。 Z 2 (cm) is stated in the explanation of P.

R(cm)はPの説明中に記載。 R (cm) is stated in the explanation of P.

C(Joule/(g・deg))はDの説明中に記載。 C (Joule/(g・deg)) is described in the explanation of D.

ρ(g/cm3)はDの説明中に記載。 ρ (g/cm 3 ) is described in the explanation of D.

適正照射時間における温度上昇により、感荷電
粒子線層の現像処理後の残膜率曲線に於いて残膜
率が50%になる照射荷電粒子線量の感荷電粒子線
層の温度上昇に起因する変動値が15%をこえる
(以下、感荷電粒子線の熱変質と呼ぶ。)ような場
合には、所望の図形形状を精度よく得ることはで
きなかつた。
Changes in the irradiated charged particle dose due to the temperature rise in the charged particle beam layer that result in a residual film rate of 50% in the residual film rate curve after development processing of the charged particle beam layer due to a temperature rise during the appropriate irradiation time. When the value exceeds 15% (hereinafter referred to as thermal alteration of the charged particle beam), it was not possible to obtain the desired shape with high accuracy.

一方、単位時間、単位面積当りの荷電粒子線照
射量を少なくすること、あるいは、荷電粒子線断
面形寸法を小さくすることによつて、この問題を
解決しようとするとパターン描画時間を大幅に短
縮する利点が失われてしまう。
On the other hand, if this problem is solved by reducing the amount of charged particle beam irradiation per unit time or unit area, or by reducing the cross-sectional dimensions of the charged particle beam, the pattern drawing time will be significantly reduced. The advantage will be lost.

ことここに至つては、パターン描画時間を大幅
に短縮するために荷電粒子線断面形寸法を大きく
した利点は、精度の高い微細パターンを得るとい
う要求を満足しなくなり、逆に障害になるに至つ
ている。
At this point, the advantage of increasing the cross-sectional dimensions of the charged particle beam in order to significantly shorten the pattern writing time no longer satisfies the requirement to obtain fine patterns with high precision, and on the contrary, it has become a hindrance. It's on.

説明の内容をより明確にするために、荷電粒子
線として今日広く用いられている電子線を使用し
た場合で説明する。これは説明の便宜であり、本
発明を限定するものではない。
In order to make the content of the explanation more clear, a case will be explained in which an electron beam, which is widely used today, is used as a charged particle beam. This is for illustrative purposes only and is not intended to limit the invention.

単分散ポリスチレン感電子線レジストの場合
に、どの程度のレジストパターン形状とレジスト
感度が電子線照射によつてレジスト温度上昇があ
る場合とない場合でいかに異なつているかの実施
例を以下に示す。第5図aはSi基板上の単分散ポ
リスチレンの現像後のパターン断面写真である。
写真の下部にあるマーカー線の間隔は0.5μmを示
している。第5図bは第5図aのSi基板をSiO2
基板に変えただけである。他の条件、すなわち、
電子線照射条件および現像処理条件などは全て同
一にしてある。第5図aと第5図bは12.5μm×
12.5μmの矩形形状電子線で照射した場合のパタ
ーンである。第5図bの右下の突出した膜は断面
写真を得るために基板およびレジストを切断した
際に生じたもので、本説明とは関係のないもので
ある。本説明に関係のある部分は第5図aおよび
b中央部にある、電子線照射および現像処理によ
つて生じたレジストのくぼんだ部分である。
SiO2基板の方は、基板の熱拡散率がSi基板と比
較し2桁も小さいために、照射電子線のもつ加速
エネルギーが急速に熱拡散できず、単分散ポリス
チレン層が加熱され、感度が高感度側に変化し、
パターン断面形状が悪くなつた。Si基板とSiO2
基板とで、どれほど単分散ポリスチレン層の電子
線に対する感度が異なるかを示したのが第6図で
ある。単分散ポリスチレンはネガ型レジストであ
る。すなわち電子照射線量が多いほど現像後の規
格化残膜率が増大する。規格化残膜率とは、電子
線照射前の膜厚で現像処理後の膜厚を割つたもの
である。第6図に於いて、曲線20はSiO2基板
上に設けた単分散ポリスチレンの感度曲線であ
り、曲線21はSi基板上に設けた単分散ポリスチ
レンの感度曲線である。SiO2基板上の感度がSi
基板上のそれと比べて15パーセント低照電子線量
側に変化している。第6図における電子線照射条
件および現像条件は、第5図を得た条件と同一で
ある。第5図および第6図のように、基板材質に
よつてパターン形状および感度が異なることは、
10μm以上の大きな電子線断面形寸法をもつため
に電流量の大きな条件で電子線パターン描画をす
るようになつて顕在化してきたことであり、従来
の1μm以下の電子線断面形寸法の場合では通常の
電子線パターン描画装置を用いるかぎり問題はな
かつたことである。
In the case of a monodisperse polystyrene electron beam sensitive resist, an example will be shown below to show how the resist pattern shape and resist sensitivity differ depending on whether or not the resist temperature is increased by electron beam irradiation. FIG. 5a is a cross-sectional photograph of a pattern of monodisperse polystyrene on a Si substrate after development.
The interval between the marker lines at the bottom of the photo is 0.5 μm. Figure 5b shows the Si substrate in Figure 5a using SiO 2
I just changed it to a board. Other conditions, i.e.
The electron beam irradiation conditions, development processing conditions, etc. are all the same. Figures 5a and 5b are 12.5μm×
This is a pattern obtained when irradiated with a 12.5 μm rectangular electron beam. The protruding film at the lower right of FIG. 5b was produced when the substrate and resist were cut to obtain a cross-sectional photograph, and is not relevant to this explanation. The portion relevant to this explanation is the depressed portion of the resist caused by electron beam irradiation and development processing, which is located in the center of FIGS. 5a and 5b.
For the SiO 2 substrate, the thermal diffusivity of the substrate is two orders of magnitude lower than that of the Si substrate, so the accelerated energy of the irradiated electron beam cannot be rapidly thermally diffused, and the monodisperse polystyrene layer is heated, reducing the sensitivity. Changes to high sensitivity side,
The cross-sectional shape of the pattern deteriorated. Si substrate and SiO2
FIG. 6 shows how much the sensitivity of the monodisperse polystyrene layer to the electron beam differs depending on the substrate. Monodisperse polystyrene is a negative resist. That is, the higher the electron irradiation dose, the higher the normalized residual film rate after development. The normalized residual film ratio is the film thickness after development divided by the film thickness before electron beam irradiation. In FIG. 6, curve 20 is a sensitivity curve of monodisperse polystyrene provided on a SiO 2 substrate, and curve 21 is a sensitivity curve of monodisperse polystyrene provided on a Si substrate. The sensitivity on SiO2 substrate is
Compared to that on the substrate, the electron beam dose has changed to 15% lower. The electron beam irradiation conditions and development conditions in FIG. 6 are the same as those for obtaining FIG. 5. As shown in Figures 5 and 6, the pattern shape and sensitivity differ depending on the substrate material.
This has become apparent as electron beam patterns have been drawn under conditions of large current due to the large electron beam cross-sectional dimensions of 10 μm or more, and in the case of conventional electron beam cross-sectional dimensions of 1 μm or less There were no problems as long as a normal electron beam pattern drawing device was used.

さて第5図のbでは第5図のaに比べてレジス
トパターン間にすじ状のレジストが多く残り、レ
ジストパターンをマスクにして基板をエツチング
することは不可能である。第6図の説明で述べた
ように、そのことは残膜率が50パーセントの照射
電子線量が15%変化したならば第5図のbのよう
にレジストパターン形成が不可能になることを示
している。第5図に示したレジストパターンすな
わち、レジスト層とレジスト層の間隔の設計寸法
は1.5μmの場合である。2μmないし3μmのパター
ン形成をも含む場合を考慮しても、50パーセント
残膜率の照射電子線量が20%程度変化すると第5
図のbと同様にパターン形成が不可能になると考
えられる。
Now, in FIG. 5b, more striped resist remains between the resist patterns than in FIG. 5a, and it is impossible to etch the substrate using the resist pattern as a mask. As mentioned in the explanation of Figure 6, this means that if the irradiation electron beam dose with a residual film rate of 50% changes by 15%, it will become impossible to form a resist pattern as shown in Figure 5b. ing. The resist pattern shown in FIG. 5, that is, the design dimension of the distance between the resist layers is 1.5 μm. Even considering the case of pattern formation of 2 μm to 3 μm, if the irradiated electron beam dose changes by about 20% with a 50% film remaining rate, the fifth
It is thought that pattern formation becomes impossible, similar to b in the figure.

第5図と第6図でSi基板とSiO2基板の場合を
比較したが、これは基板の材質の差を比較したも
のではなく、温度によるレジストパターン形成の
程度を調べたものである。即ち熱拡散の良いSi基
板で良好なパターン形成ができるとき、熱拡散の
悪いSiO2基板で、どのくらいの温度上昇でレジ
ストパターン形成に不良がおこるかを実験したも
のである。更にその温度上昇の値を具体的に調べ
るためのシミユレーシヨンについて次に述べる。
Although the cases of Si substrate and SiO 2 substrate are compared in FIG. 5 and FIG. 6, this is not a comparison of the difference in the material of the substrate, but an investigation of the degree of resist pattern formation due to temperature. In other words, when a good pattern can be formed on a Si substrate with good thermal diffusion, we conducted an experiment to see how much temperature rise would cause defects in resist pattern formation on a SiO 2 substrate with poor thermal diffusion. Furthermore, a simulation for specifically examining the value of the temperature rise will be described next.

次に第5図および第6図で述べたSi基板と
SiO2基板とで、どの程度のレジスト層の温度変
化があつたのかを考察する。照射電子線がレジス
ト層およびその下の基板に入射した場合の分布は
テイー・イー・エバハート(T.E.Everhart)氏
などにより解明されている。(T.E.Everhart and
P.H.Hoff,J.Appl.Phys.42,5837(1971))それ
により、レジスト層および基板中における発熱分
布がわかるので熱拡散方程式を解くことにより、
上昇温度分布を解析的、又は計算機シミユレーシ
ヨンで求めることができる。
Next, the Si substrate described in Figures 5 and 6
Let's consider how much temperature change occurred in the resist layer compared to the SiO 2 substrate. The distribution of the electron beam incident on the resist layer and the underlying substrate has been elucidated by TEE Everhart and others. (TE Everhart and
PHHoff, J. Appl. Phys. 42, 5837 (1971)) By solving the heat diffusion equation, the heat distribution in the resist layer and substrate can be determined.
The temperature increase distribution can be determined analytically or by computer simulation.

説明をより具体的にすると、第2図に示したA
点における温度上昇は式(1)で表わされる。
To make the explanation more concrete, A shown in Figure 2
The temperature rise at a point is expressed by equation (1).

照射電子線によつて感電子線層の温度がどの程
度上昇するかこの計算式に従い、シミユレートし
てみる。通常、シリコンとかガラス等の基板の上
に1ミクロン程度の厚さをもつ感電子線層を設
け、20keV程度の加速エネルギーおよび0.4A/
cm2程度の電流密度をもつた電子線が照射するよう
な場合が典型的である。(例えば、日本電子株式
会社製JBX−6型可変矩形電子線描画装置)計
算の便宜上幅14μm直径の円形成形電子ビームを
20keV,0.4A/cm2の条件で照射した場合の例を
第7図に示した。照射電子線の加速エネルギーが
20keVの場合には、照射電子線の大部分が高分子
からなる感電子線層を通過して基板中で熱となる
ので、感電子線層と基板との接触面である基板表
面上の上昇温度を示した。また上昇温度が最高に
なる成形電子線の中央部における上昇温度であ
る。比較のため、熱拡散率が8.7×10-1cm2/secの
シリコンが基板である場合23と、8.1×10-1
cm2/secのガラスが基板である場合22を示した。
500μsecの連続電子線照射によりガラス基板表面
は約300度の温度上昇値を示す。光学転写用マス
クが基板の場合には、ガラスの上に約800Åの金
属クロム層が設けてあるが、膜厚が薄すぎて数パ
ーセントの温度上昇低下にしか金属クロム層の影
響はない。ゆえに通常の光学転写マスクを電子線
でパターン形成する場合は第7図のガラス基板の
場合22が対応している。
Let's simulate how much the temperature of the electron beam sensitive layer increases due to the irradiation electron beam according to this calculation formula. Usually, an electron beam-sensitive layer with a thickness of about 1 micron is provided on a substrate such as silicon or glass, and an acceleration energy of about 20 keV and 0.4 A /
A typical case is irradiation with an electron beam with a current density of about cm 2 . (For example, JBX-6 variable rectangular electron beam lithography system manufactured by JEOL Ltd.) For convenience of calculation, a circularly shaped electron beam with a width of 14 μm in diameter was used.
Figure 7 shows an example of irradiation under the conditions of 20 keV and 0.4 A/cm 2 . The acceleration energy of the irradiated electron beam is
In the case of 20keV, most of the irradiated electron beam passes through the electron beam-sensitive layer made of polymer and becomes heat in the substrate, so that the electron beam rises above the substrate surface, which is the contact surface between the electron beam-sensitive layer and the substrate. It showed the temperature. It is also the temperature rise at the center of the shaping electron beam where the temperature rise is highest. For comparison, when the substrate is silicon with a thermal diffusivity of 8.7×10 -1 cm 2 /sec23 and 8.1×10 -1
22 was shown when the substrate was glass with cm 2 /sec.
The surface of the glass substrate shows a temperature increase of about 300 degrees by continuous electron beam irradiation for 500 μsec. When the optical transfer mask is a substrate, a metal chromium layer of about 800 Å is provided on the glass, but the film is so thin that the metal chromium layer only has an effect on reducing the temperature rise by a few percent. Therefore, when patterning a normal optical transfer mask using an electron beam, the case 22 of the glass substrate shown in FIG. 7 corresponds.

次に、許容上昇温度を200度とした場合の、照
射電流密度、矩形幅、照射時間の組み合せの制限
条件を第8図に示す。0.4A/cm2の場合24およ
び4A/cm2の場合25の照射電流密度をパラメー
タに横軸を照射領域の半径、縦軸を照射時間とし
た。第8図に示した曲線25,26の意味は、そ
の曲線25,26よりも右上側が200度以上の温
度上昇領域であるということである。すなわち
0.4A/cm2の照射電流密度の場合には、10μmの電
子線矩形幅では150μsec以下の電子線照射時間で
ないと、200度以上の基板表面上昇温度になるこ
とを示している。第8図はガラス基板の場合であ
り、シリコン基板の場合は第7図に示したように
上昇温度はガラス基板と比較し一桁低いので、
200度の制限曲線は全体に右上に移行する。第8
図は電子線を用いる場合の本発明の方法が必要と
なることを明示した実施例である。
Next, FIG. 8 shows the limiting conditions for combinations of irradiation current density, rectangular width, and irradiation time when the allowable temperature increase is 200 degrees. The horizontal axis is the radius of the irradiation area and the vertical axis is the irradiation time using the irradiation current density of 24 in the case of 0.4 A/cm 2 and 25 in the case of 4 A/cm 2 as parameters. The meaning of the curves 25 and 26 shown in FIG. 8 is that the upper right side of the curves 25 and 26 is a temperature increase region of 200 degrees or more. i.e.
In the case of an irradiation current density of 0.4 A/cm 2 and an electron beam rectangular width of 10 μm, it is shown that unless the electron beam irradiation time is 150 μsec or less, the substrate surface temperature will rise by 200 degrees or more. Figure 8 shows the case of a glass substrate, and in the case of a silicon substrate, as shown in Figure 7, the temperature rise is one order of magnitude lower than that of a glass substrate.
The 200 degree limit curve generally shifts to the upper right. 8th
The figure shows an example clearly showing that the method of the present invention is required when using an electron beam.

本発明の目的は、前記の従来の欠点を除去しパ
ターン描画時間をほとんど増加させることなく、
かつ、感荷電粒子線層の温度上昇を抑制し、従来
にない荷電粒子線リソグラフイ方法を提供するこ
とである。
It is an object of the present invention to eliminate the above-mentioned conventional drawbacks and to provide a method for writing patterns without increasing pattern drawing time.
Another object of the present invention is to suppress the temperature rise of a charged particle beam layer and provide a charged particle beam lithography method that has never existed before.

(問題点を解決するための手段) 本発明では、まず、荷電粒子線の照射にともな
う感荷電粒子線層の温度上昇によつて所望の図形
形状を精度良く得られなくなる限界の連続照射時
間t0を基板材料、感荷電粒子線材料、照射加速電
圧、荷電粒子線の電流密度、面積をパラメータと
して予め求めておく。次いで従来の第1図aと同
様に第3図aのように図形を数十nmないし数十
μmの大きさの照射域に分割し、上述の大きさの
荷電粒子線を照射するものであるが、各照射域間
の距離が4√0(cm)離れた2つ又は2つ以上
の照射域を1組として、まず第1組4の第1照射
域5に別変質を生じない時間t0秒だけ荷電粒子線
を照射し、しかる後同じ組4の次の照射域6に移
り、これに荷電粒子線を照射し、t0秒後にさらに
同じ組4の次の照射域7に移ることを第3図矢印
8のように順次続け、第1組4内の全ての照射域
を照射する。このように他の照射域を照射してい
る間に、第1照射域5は基板内の熱伝導により冷
却される。この他の照射域を照射している時間が
最初に第1照射域5を照射した時間より長けれ
ば、この第1照射域5の基板表面の温度は、再び
照射前の温度に戻つている。従つて、矢印9のよ
うに再び第1照射域5の照射を開始し、t0秒だけ
荷電粒子線を照射する。この後、同じ組内の他の
照射域の照射を矢印10のように行う。この時、
他の照射域においても、基板表面の温度は照射前
の温度に戻つている。この手順を各照射域におけ
る照射時間の合計が適正照射時間となるまで続け
る。t0秒より短い時間で適正露光時間になれば、
それ以上の照射は行わない。
(Means for Solving the Problems) In the present invention, first, the continuous irradiation time t is the limit at which the desired shape cannot be obtained with high accuracy due to the temperature rise of the charged particle beam layer accompanying the irradiation of the charged particle beam. 0 is determined in advance using the substrate material, charged particle beam material, irradiation acceleration voltage, charged particle beam current density, and area as parameters. Next, as in the conventional Figure 1a, the figure is divided into irradiation areas of several tens of nanometers to several tens of micrometers in size, as shown in Figure 3a, and a charged particle beam of the above-mentioned size is irradiated. However, if two or more irradiation areas with a distance of 4√ 0 (cm) between each irradiation area are defined as a set, first, the time t during which no other alteration occurs in the first irradiation area 5 of the first set 4. Irradiate the charged particle beam for 0 seconds, then move to the next irradiation area 6 of the same group 4, irradiate it with the charged particle beam, and then move to the next irradiation area 7 of the same group 4 after t 0 seconds. The steps are continued sequentially as shown by arrow 8 in FIG. 3, and all the irradiation areas in the first set 4 are irradiated. While the other irradiation areas are being irradiated in this manner, the first irradiation area 5 is cooled by heat conduction within the substrate. If the time during which the other irradiation areas are irradiated is longer than the time during which the first irradiation area 5 is first irradiated, the temperature of the substrate surface in the first irradiation area 5 has returned to the temperature before irradiation. Therefore, irradiation of the first irradiation area 5 is started again as indicated by the arrow 9, and the charged particle beam is irradiated for t0 seconds. After this, irradiation of other irradiation areas in the same group is performed as shown by arrow 10. At this time,
In other irradiation areas as well, the temperature of the substrate surface returns to the temperature before irradiation. This procedure is continued until the total irradiation time in each irradiation area reaches the appropriate irradiation time. t If the proper exposure time is achieved in a time shorter than 0 seconds,
No further irradiation is performed.

このようにして、第1組の照射が終了した後、
第2組11に移り第1組と同様の手順を続ける。
In this way, after the first set of irradiation is completed,
Move to the second set 11 and continue the same procedure as the first set.

第4図に以上述べた手順を示す。 FIG. 4 shows the procedure described above.

なお、ここで述べた感荷電粒子線層の別変質と
は、発明が解決しようとする問題点の項で述べ
た、感荷電粒子線層の現像処理後の残膜率曲線に
於いて残膜率が50%になる照射荷電粒子線量の感
荷電粒子線層の温度上昇に起因する変動値が15%
をこえるような場合には、所望の図形形状を精度
よく得ることはできなつたことを指している。
It should be noted that the other deterioration of the charged particle beam layer mentioned here refers to the residual film rate curve after development of the charged particle beam layer mentioned in the section of the problem to be solved by the invention. The fluctuation value due to the temperature rise in the charged particle beam layer of the irradiated charged particle dose is 15% when the rate is 50%.
If it exceeds , it means that the desired graphic shape could not be obtained with high accuracy.

(作用) この時の各照射域における基板表面及びこれと
セツトする感荷電粒子線層の温度変化は第3図b
のようになる。温度上昇12において、荷電粒子
線照射時間は常にt0秒あるいはt0秒以下であり、
基板表面温度は感荷電粒子線層の熱変質温度を越
えず感荷電粒子線層の熱変質は生じない。また、
温度下降時13には基板表面は元の温度に戻り、
次に温度上昇時においても荷電粒子線照射時間は
t0秒あるいはt0秒以下であり基板表面温度は感荷
電粒子線層の熱変質温度をこえることはない。
(Function) The temperature changes of the substrate surface and the charged particle beam layer set therein in each irradiation area at this time are shown in Figure 3b.
become that way. At temperature rise 12, the charged particle beam irradiation time is always t 0 seconds or less than t 0 seconds,
The substrate surface temperature does not exceed the thermal alteration temperature of the charged particle beam layer, and no thermal alteration of the charged particle beam layer occurs. Also,
When the temperature drops, the substrate surface returns to its original temperature at 13.
Next, even when the temperature rises, the charged particle beam irradiation time is
t is 0 seconds or less than t 0 seconds, and the substrate surface temperature does not exceed the thermal alteration temperature of the charged particle beam layer.

説明をより具体的にすると、第2図に示したA
点における温度上昇は式(1)で表わされる。また、
荷電粒子線照射遮断後の温度下降の結果、照射前
の初期温度との温度差は式(2)で表される値とな
る。
To make the explanation more concrete, A shown in Figure 2
The temperature rise at a point is expressed by equation (1). Also,
As a result of the temperature drop after the charged particle beam irradiation is cut off, the temperature difference from the initial temperature before irradiation becomes a value expressed by equation (2).

T(P,Z1,Z2,R,t1,t2,C,ρ,D) =2P/Cρ∫Z2 Z1R 0t1+t2 t22пr・(4пDt)-3
/2
・exp[−(r2+z2)/4Dt]dt・dr・dz
……(2) 但し T(度)は温度上昇。
T (P, Z 1 , Z 2 , R, t 1 , t 2 , C, ρ, D) = 2P/Cρ∫ Z2 Z1R 0t1+t2 t2 2пr・(4пDt) -3
/2
・exp[−(r 2 +z 2 )/4Dt]dt・dr・dz
...(2) However, T (degrees) is the temperature rise.

P(W/cm3)は照射時における単位時間、単位
体積当りの発熱量で発熱領域は基板表面からの深
さZ1(cm)からZ2(cm)までの半径R(cm)の領域。
P (W/cm 3 ) is the heat generation amount per unit time and unit volume during irradiation, and the heat generation area is an area with radius R (cm) from depth Z 1 (cm) to Z 2 (cm) from the substrate surface. .

t1(sec)は照射時間。 t 1 (sec) is the irradiation time.

t2(sec)は照射遮断後の経過時間。 t 2 (sec) is the elapsed time after irradiation cutoff.

D(cm2/sec)は基板の熱伝導率を比熱C
(Joule/(g・deg))と密度ρ(g/cm3)との積
で除した熱拡散率。
D (cm 2 /sec) is the thermal conductivity of the substrate, which is the specific heat C
Thermal diffusivity divided by the product of (Joule/(g・deg)) and density ρ (g/cm 3 ).

Z1(cm)はPの説明中に記載。 Z 1 (cm) is stated in the explanation of P.

Z2(cm)はPの説明中に記載。 Z 2 (cm) is stated in the explanation of P.

R(cm)はPの説明中に記載。 R (cm) is stated in the explanation of P.

C(Joule/(g・deg))はDの説明中に記載。 C (Joule/(g・deg)) is described in the explanation of D.

ρ(g/cm3)はDの説明中に記載。 ρ (g/cm 3 ) is described in the explanation of D.

(実施例) 以下、本発明の実施例を従来の方法と並べて記
載する。
(Example) Hereinafter, an example of the present invention will be described in parallel with a conventional method.

溶融石英基板上にCrを80nm蒸着し、この上に
感電子線樹脂PMMAを300nm塗布する。Crおよ
びPMMAは薄いため、熱伝導には寄与せず熱伝
導率は溶融石英基板の熱伝導特性(熱拡散率D=
8.1×10-3cm2/sec)によつて決まる。加速電圧
20keV、電流密度400mA/cm2、大きさ10μm□ の
電子線で100μm離れた2つの10μm□ の図形を描
画した。
80 nm of Cr is deposited on the fused silica substrate, and 300 nm of electron beam sensitive resin PMMA is applied on top of this. Since Cr and PMMA are thin, they do not contribute to heat conduction, and their thermal conductivity is determined by the thermal conductivity characteristics of the fused silica substrate (thermal diffusivity D =
8.1×10 -3 cm 2 /sec). acceleration voltage
Two 10 μm square shapes separated by 100 μm were drawn using an electron beam of 20 keV, current density of 400 mA/cm 2 , and size of 10 μm square.

第9図bのように図形Aを90μsec照射し、次に
図形Bを90μsec照射することを5回くり返し、最
後に図形Aを50μsec照射し、図形Bを50μsec照射
した結果、熱変質による異常なしに図形を描画す
ることができ、描画所要時間の増加は1図形当り
10μsecと、2%であつた。この10μsecの増加は電
子線を照射位置にセツトし、照射を始める前に必
要な安定時間によるものであり、電子回路の進歩
により、短くなる。
As shown in Figure 9b, figure A was irradiated for 90 μsec, then figure B was irradiated for 90 μsec, which was repeated 5 times, and finally figure A was irradiated for 50 μsec and figure B was irradiated for 50 μsec. As a result, there was no abnormality due to thermal alteration. You can draw shapes in
It was 10 μsec and 2%. This 10 μsec increase is due to the stabilization time required to set the electron beam at the irradiation position and before commencing irradiation, which will become shorter as electronic circuits advance.

一方、従来の方法で、第9図aのように各図形
をPMMAの適正照射時間500μsecで順番に照射し
た場合、両図形とも照射開始後100μsecで熱変質
を生じ、所望の図形形状を得ることはできなかつ
た。熱変質を避けるため、電流密度を2分の1と
して描画した場合所望の図形形状を得ることはで
きたが、描画所要時間は2倍の2msecを必要とし
た。
On the other hand, when each figure is sequentially irradiated with the appropriate irradiation time of 500 μsec for PMMA as shown in Figure 9a using the conventional method, thermal alteration occurs in both figures 100 μsec after the start of irradiation, and the desired figure shape cannot be obtained. I couldn't. In order to avoid thermal deterioration, the desired shape could be obtained when the current density was reduced to 1/2, but the time required for drawing was doubled to 2 msec.

(発明の効果) 従つて、本発明によれば、感荷電粒子線層の熱
変質を避けるための電流密度低下に伴う、描画所
要時間の増加無しに、熱変質による異常のない図
形を描画することができる効果が得られる。
(Effects of the Invention) Therefore, according to the present invention, a figure free from abnormalities due to thermal alteration can be drawn without increasing the drawing time due to a reduction in current density to avoid thermal alteration of the charged particle beam layer. You can get the desired effect.

以上の説明、特に実施例に対する説明において
理解を助けるために、特定の荷電粒子線、感荷電
粒子線層及びその膜厚、特定の基板、特定の露光
条件について説明したが他の荷電粒子線例えば
H,He,Pなどについても、また他の基板、例
えばSi,Al2O3などについても、また露光条件例
えば照射加速電圧、荷電粒子線の電流密度、面積
の異なる場合についても、感荷電粒子線層の温度
上昇によつて所望の図形形状を精度良く得られな
くなる限界の連続照射時間t0を適正に設定するこ
とで、また他の感荷電粒子線層例えばAZ,P
(MMA−MA)などについても適正照射時間を
得るためのくり返し回数を変えることにより、本
発明の適用が可能である。また、説明において各
照射時間をt0としたが、くり返し回数を増加させ
ない範囲で各照射時間をt0以下の任意の時間とす
ることでも本発明の適用は可能となる。
In the above description, especially in the description of the examples, specific charged particle beams, charged particle beam layers and their film thicknesses, specific substrates, and specific exposure conditions have been described, but other charged particle beams, e.g. The charged particle By appropriately setting the continuous irradiation time t0 , which is the limit at which the desired shape cannot be obtained with high accuracy due to the temperature rise of the line layer, it is possible to prevent other charged particle beam layers such as AZ, P
The present invention can also be applied to (MMA-MA) etc. by changing the number of repetitions to obtain an appropriate irradiation time. Further, in the description, each irradiation time is set to t 0 , but the present invention can also be applied by setting each irradiation time to an arbitrary time equal to or less than t 0 as long as the number of repetitions is not increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは従来の図形描画方法の一実施例を示
す図。第1図bは従来の図形描画方法における各
照射域の基板表面の上昇温度を示す図。第2図は
式(1)、式(2)を説明するための模式図で、説明をよ
り具体的にするために円筒座標系で近似し、図中
の斜線で示した半径Rで表面からの深さZ1および
Z2の範囲内に発熱分布を限定している。図中の発
熱分布の中心上のA点(即ち、照射域の中心)を
代表点としている。第3図aは本発明の図形描画
方法の一実施例を示す図。第3図bは本発明の図
形描画方法における各照射域の基板表面の上昇温
度を示す図。第4図は本発明の実施手順を示すフ
ローチヤート。第5図aおよび第5図bは、本発
明の原点である感荷電粒子線層描画部の生成パタ
ーン形状との相関関係を視覚的に説明するために
示した感荷電粒子線層の表面および断面の走査型
電子顕微鏡写真である。第5図aは熱の作用をあ
まり受けない場合を示し、第5図bは熱の作用を
より多く受ける場合を示している。第6図は単分
散ポリスチレンの電子線に対する感度曲線を示す
図。第7図は電子線照射による基板表面の上昇温
度を示す図。第8図は電子線照射における、照射
電流密度、照射領域の半径、照射時間の組み合せ
制限条件を示す図。第9図aは従来の図形描画方
法の一実施例を示す図。第9図bは本発明の図形
描画方法の一実施例を示す図。 図において各記号はそれぞれ次のものを示す。
1……第1照射域、2……第2照射域、3……照
射順序、4……第1組、5……第1照射域、6…
…第2照射域、7……第3照射域、8……照射順
序、9……照射順序、10……照射順序、11…
…第2組、12……荷電粒子線照射時の温度上
昇、13……荷電粒子線非照射時の温度下降、2
0……ガラス基板上の単分散ポリスチレンの感度
曲線、21……シリコン基板上の単分散ポリスチ
レンの感度曲線、22……ガラス基板上に電子線
を照射した場合の上昇温度、23……シリコン基
板上に電子線を照射した場合の上昇温度、24…
…照射電流密度0.4A/cm2の場合に基板表面上昇
温度が200度となるような、照射時間と照射領域
の半径との組み合せ、25……照射電流密度
4A/cm2の場合に基板表面上昇温度が200度となる
ような、照射時間と照射領域の半径との組み合
せ、A……発熱分布の中心の延長線と基板表面と
の交点、Z1……発熱分布の基板表面からの距離、
Z2……発熱分布の基板表面からの距離、R……発
熱分布の半径。
FIG. 1a is a diagram showing an example of a conventional graphic drawing method. FIG. 1b is a diagram showing the temperature rise on the substrate surface in each irradiation area in the conventional graphic drawing method. Figure 2 is a schematic diagram for explaining Equations (1) and (2). To make the explanation more concrete, it is approximated by a cylindrical coordinate system, and from the surface with a radius R indicated by diagonal lines in the figure. depth Z 1 and
The heat distribution is limited within the range of Z 2 . Point A at the center of the heat generation distribution in the figure (that is, the center of the irradiation area) is taken as a representative point. FIG. 3a is a diagram showing an embodiment of the graphic drawing method of the present invention. FIG. 3b is a diagram showing the temperature rise on the substrate surface in each irradiation area in the graphic drawing method of the present invention. FIG. 4 is a flowchart showing the implementation procedure of the present invention. FIGS. 5a and 5b show the surface of the charged particle beam layer and This is a scanning electron micrograph of a cross section. FIG. 5a shows a case where the device is not affected by heat much, and FIG. 5b shows a case where it is affected by a large amount of heat. FIG. 6 is a diagram showing the sensitivity curve of monodisperse polystyrene to electron beams. FIG. 7 is a diagram showing the temperature rise on the substrate surface due to electron beam irradiation. FIG. 8 is a diagram showing combination limiting conditions of irradiation current density, radius of irradiation area, and irradiation time in electron beam irradiation. FIG. 9a is a diagram showing an example of a conventional graphic drawing method. FIG. 9b is a diagram showing an embodiment of the graphic drawing method of the present invention. In the figure, each symbol indicates the following.
1...First irradiation area, 2...Second irradiation area, 3...Irradiation order, 4...First set, 5...First irradiation area, 6...
...Second irradiation area, 7...Third irradiation area, 8...Irradiation order, 9...Irradiation order, 10...Irradiation order, 11...
...Second set, 12...Temperature rise during charged particle beam irradiation, 13...Temperature fall when charged particle beam is not irradiated, 2
0...Sensitivity curve of monodisperse polystyrene on a glass substrate, 21...Sensitivity curve of monodisperse polystyrene on a silicon substrate, 22...Temperature rise when electron beam is irradiated on a glass substrate, 23...Silicon substrate Temperature rise when electron beam is irradiated on the top, 24...
...Combination of irradiation time and radius of irradiation area such that the substrate surface temperature rise is 200 degrees when the irradiation current density is 0.4A/ cm2 , 25...Irradiation current density
A combination of the irradiation time and the radius of the irradiation area such that the substrate surface temperature rise is 200 degrees in the case of 4A/cm 2 , A...The intersection of the extension line of the center of the heat generation distribution and the substrate surface, Z 1 ... ...distance of heat distribution from the substrate surface,
Z 2 ... Distance of heat distribution from the substrate surface, R ... Radius of heat generation distribution.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上の感荷電粒子線層に荷電粒子線を照射
して図形を描画する荷電粒子線リソグラフイ方法
において、荷電粒子線の照射にともなう感荷電粒
子線層の温度上昇によつて所望の図形形状を精度
良く得られなくなる限界の連続照射時間t0を基板
材料、感荷電粒子線材料、照射加速電圧、荷電粒
子線の電流密度、荷電粒子線の面積をパラメータ
として予め求めておき、描画すべき図形を数十
nmないし数十μmの大きさの照射域に分割し、各
照射域間の距離が4√0cm(D(cm2/sec)は基
板の熱伝導率を比熱C(Joule/(g・deg))と
密度ρ(g/cm3)との積で除した熱拡散率、t0
(sec)は各照射域での連続照射時間)離れた少な
くとも二つの照射域を一組として、まず一つの組
の照射域の第1の照射域にt0秒あるいはそれ以下
の時間だけ荷電粒子線を照射してそのあと同じ組
の次の照射域に荷電粒子線を移動させて照射しさ
らに同じ組内の他の照射域に移動させて照射する
手順を各照射域の合計照射量が適正露光量になる
まで続け、そのあと次の組に荷電粒子線を移して
同じ手順を行い、同様にして他のすべての組の照
射域を照射することを特徴とする荷電粒子線リソ
グラフイ方法。
1 In a charged particle beam lithography method in which a charged particle beam is irradiated onto a charged particle beam layer on a substrate to draw a figure, the desired figure is drawn by the temperature rise of the charged particle beam layer accompanying the irradiation of the charged particle beam. The continuous irradiation time t0 , which is the limit at which the shape cannot be obtained with high accuracy, is determined in advance using the substrate material, charged particle beam material, irradiation acceleration voltage, current density of the charged particle beam, and area of the charged particle beam as parameters, and then drawn. Dozens of power figures
The irradiation area is divided into irradiation areas ranging in size from nm to several tens of μm, and the distance between each irradiation area is 4√ 0 cm (D (cm 2 /sec) is the specific heat C (Joule/(g・deg)), which is the thermal conductivity of the substrate. )) and the density ρ (g/cm 3 ), t 0
(sec) is the continuous irradiation time in each irradiation area) At least two irradiation areas separated from each other are set as a set, and charged particles are first applied to the first irradiation area of one set of irradiation areas for a time of t 0 seconds or less. The procedure is to irradiate the charged particle beam, then move the charged particle beam to the next irradiation area in the same group and irradiate it, and then move it to other irradiation areas in the same group and irradiate it so that the total irradiation dose for each irradiation area is appropriate. A charged particle beam lithography method characterized by continuing until the exposure dose is reached, then transferring the charged particle beam to the next group and performing the same procedure, and irradiating the irradiation areas of all other groups in the same way.
JP4739481A 1981-03-31 1981-03-31 Charged particle beam type lithographic method Granted JPS57162337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4739481A JPS57162337A (en) 1981-03-31 1981-03-31 Charged particle beam type lithographic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4739481A JPS57162337A (en) 1981-03-31 1981-03-31 Charged particle beam type lithographic method

Publications (2)

Publication Number Publication Date
JPS57162337A JPS57162337A (en) 1982-10-06
JPH0472375B2 true JPH0472375B2 (en) 1992-11-18

Family

ID=12773888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4739481A Granted JPS57162337A (en) 1981-03-31 1981-03-31 Charged particle beam type lithographic method

Country Status (1)

Country Link
JP (1) JPS57162337A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996728A (en) * 1982-11-25 1984-06-04 Fujitsu Ltd Method for formation of resist pattern
JPS60130826A (en) * 1983-12-20 1985-07-12 Toshiba Corp Charged beam drawing method
JPS60173833A (en) * 1984-02-13 1985-09-07 Nippon Telegr & Teleph Corp <Ntt> Method for apparatus for forming pattern
JPS60196941A (en) * 1984-02-29 1985-10-05 Fujitsu Ltd Electron beam exposure
JPH0719740B2 (en) * 1984-05-28 1995-03-06 株式会社東芝 Method of forming resist pattern

Also Published As

Publication number Publication date
JPS57162337A (en) 1982-10-06

Similar Documents

Publication Publication Date Title
JP4514754B2 (en) Imprint technology by capillary action
US6821682B1 (en) Repair of localized defects in multilayer-coated reticle blanks for extreme ultraviolet lithography
Schmid et al. Light-coupling masks for lensless, sub-wavelength optical lithography
JP5265728B2 (en) Imprint lithography
US7179396B2 (en) Positive tone bi-layer imprint lithography method
KR900001650B1 (en) Pattern forming method using high current density electron beam
US7947608B2 (en) Positive tone bi-layer method
JP2003534651A (en) Method for producing template and template produced by the method
Däschner et al. General aspheric refractive micro‐optics fabricated by optical lithography using a high energy beam sensitive glass gray‐level mask
US10074544B2 (en) Developer free positive tone lithography by thermal direct write
JPH0472375B2 (en)
JPH0472377B2 (en)
JP6312675B2 (en) High resolution electron lithography substrate and corresponding lithography method
JP2000039702A (en) Transfer and processing method of fine pattern
US20060110845A1 (en) Method of manufacturing micro-structure element by utilizing molding glass
JP6155720B2 (en) Nanoimprint template pattern arrangement method and nanoimprint template
JPH0472376B2 (en)
JP2003223006A (en) Method for forming optical structure and three- dimensional optical structure
JP2013180508A (en) Mold for imprinting and forming method of microstructure
US7261830B2 (en) Applying imprinting material to substrates employing electromagnetic fields
KR100975785B1 (en) Laser assisted direct imprint lithography
JPS57160127A (en) Manufacture of transcribe mask for x-ray exposure
JP6206632B2 (en) Nanoimprint blanks and method for producing nanoimprint templates
TWI668097B (en) Material filling film, monolithic film, laminated film, laminated body, and method for manufacturing material filling film
JP3041916B2 (en) Method for manufacturing lens array