JPH0472376B2 - - Google Patents

Info

Publication number
JPH0472376B2
JPH0472376B2 JP4739681A JP4739681A JPH0472376B2 JP H0472376 B2 JPH0472376 B2 JP H0472376B2 JP 4739681 A JP4739681 A JP 4739681A JP 4739681 A JP4739681 A JP 4739681A JP H0472376 B2 JPH0472376 B2 JP H0472376B2
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
substrate
irradiation
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4739681A
Other languages
Japanese (ja)
Other versions
JPS57162426A (en
Inventor
Katsumi Suzuki
Shinya Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4739681A priority Critical patent/JPS57162426A/en
Publication of JPS57162426A publication Critical patent/JPS57162426A/en
Publication of JPH0472376B2 publication Critical patent/JPH0472376B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • G03F7/2065Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam using corpuscular radiation other than electron beams

Description

【発明の詳細な説明】 この発明は荷電粒子線を用いた微細パターン形
成方法、すなわち、荷電粒子線リソグラフイ方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fine pattern forming method using a charged particle beam, that is, a charged particle beam lithography method.

従来のパターン形成方法は、光学露光用マスク
を用いたマスク原図転写技術によつていた。
A conventional pattern forming method has been based on a mask original pattern transfer technique using an optical exposure mask.

しかし、パターン寸法を露光に用いる光の波長
に近い程度に微細にしてくると、こうした方法で
パターンを形成するのは、原理的にも限界になつ
た。
However, as pattern dimensions become finer to the extent that they approach the wavelength of the light used for exposure, forming patterns using this method reaches its theoretical limits.

近年では、従来の光学露光技術によるよりも微
細なパターンを形成する技術として荷電粒子線照
射技術が利用されるようになつた。荷電粒子線照
射技術も改良が進み、0.5ミクロン程度に小さく
絞つた丸形断面をもつ荷電粒子線でパターンを一
筆書き的にぬりつぶす方法から、矩形などに成形
された数ミクロンから数十ミクロンの断面形寸法
をもつ荷電粒子線を用いる方法が多く使用される
ようになり、パターンをぬりつぶす時間が大幅に
短縮された。
In recent years, charged particle beam irradiation technology has come to be used as a technology for forming finer patterns than conventional optical exposure technology. Charged particle beam irradiation technology has also been improved, from a method in which a charged particle beam with a round cross section narrowed to about 0.5 microns is used to fill in a pattern in one stroke, to a method in which a cross section of several microns to several tens of microns formed into a rectangular shape is used. Methods using charged particle beams with specific dimensions have come into widespread use, and the time required to fill in patterns has been significantly shortened.

しかし、数10ミクロンと大きな断面形寸法をも
つために電流量の大きな荷電粒子線でパターンを
形成しようとした場合0.5ミクロン程度の小さな
断面形寸法をもつ荷電粒子線を用いていた時では
問題とならなかつた照射粒子線のもつエネルギー
によつて、パターン形成に芳しくない結果をもた
らすようになつた。
However, if you try to form a pattern with a charged particle beam with a large current amount because it has a large cross-sectional dimension of several tens of microns, there will be a problem when using a charged particle beam with a small cross-sectional dimension of about 0.5 microns. Due to the energy of the irradiated particle beam, it began to produce unfavorable results in pattern formation.

なぜならば、基板および基板上に形成された感
荷電粒子線層に荷電粒子を入射する場合に、感荷
電粒子線層の温度上昇は、入射荷電粒子のもつエ
ネルギーが感荷電粒子線層および基板中で熱に変
わり、感粒子線層中および基板中を熱拡散すると
いう照射エネルギーと熱拡散のバランスで決まる
ゆえに、大きな断面形状で入射した荷電粒子線の
場合には、その荷電粒子線によつて照射された感
荷電粒子線層および基板の中央部における温度上
昇が、その荷電粒子線の断面形寸法の大きさに比
例して大きくなるからである。さらに、この温度
上昇の幾何学的分布は、鋭く矩形状に成形された
断面形状の照射荷電粒子パターンを大幅になだら
かにしてしまう効果をもつからである。通常、感
荷電粒子線層は高分子材料からなり、数百度Cで
熱分解してしまう。熱分解に至らない場合でも熱
化学反応を起こす。通常、感荷電粒子線層を荷電
粒子線でパターン形成する場合、数keVから数十
keVの入射荷電粒子線が感荷電粒子線層および基
板中で非弾性散乱し、感荷電粒子線層中の数eV
のエネルギーが分布する領域をパターン形成領域
として考えている。この数eVのエネルギーが分
布する領域の形状は、照射荷電粒子線の鋭い矩形
断面形状をほぼ忠実に再現するものになり、荷電
粒子線リソグラフイー技術が微細パターン形成に
利用されるゆえんになつた。ところが、上述した
ように数百度Cのぼやけたパターン分布が数eV
の鋭い分布に重畳し、結果としてぼやけたパター
ンしか得られなくなり、感荷電粒子層の解像度が
大幅に劣化する結果となる。ことここに至つて
は、パターン描画時間を大幅に短縮するために、
荷電粒子線断面形寸法を大きくした利点は、精度
の高い微細パターンを得るという要求を満足しな
くなり、逆に障害になるに至つている。
This is because when charged particles are incident on a substrate and a charged particle beam layer formed on the substrate, the temperature rise in the charged particle beam layer is caused by the energy of the incident charged particles in the charged particle beam layer and the substrate. This is determined by the balance between irradiation energy and thermal diffusion, which converts into heat and diffuses heat in the particle beam sensitive layer and substrate.In the case of a charged particle beam incident with a large cross-section, the This is because the temperature rise at the center of the irradiated charged particle beam layer and the substrate increases in proportion to the cross-sectional size of the charged particle beam. Furthermore, this geometrical distribution of temperature rise has the effect of significantly smoothing out the irradiated charged particle pattern, which has a sharp rectangular cross-section. Usually, the charged particle beam layer is made of a polymeric material and thermally decomposes at several hundred degrees Celsius. A thermochemical reaction occurs even if it does not result in thermal decomposition. Normally, when patterning a charged particle beam layer with a charged particle beam, the voltage range is from several keV to several tens of keV.
An incident charged particle beam of keV is inelastically scattered in the charged particle beam layer and the substrate, and a few eV in the charged particle beam layer is scattered.
The area where the energy is distributed is considered to be the pattern formation area. The shape of the region where this energy of several eV is distributed almost faithfully reproduces the sharp rectangular cross-sectional shape of the irradiated charged particle beam, which is why charged particle beam lithography technology is used for forming fine patterns. . However, as mentioned above, the blurred pattern distribution of several hundred degrees Celsius
superimposed on the sharp distribution of the charged particle layer, resulting in only a blurred pattern and a significant deterioration in the resolution of the charged particle layer. In order to significantly shorten the pattern drawing time,
The advantage of increasing the cross-sectional size of a charged particle beam no longer satisfies the requirement of obtaining a highly accurate fine pattern, and has instead become an obstacle.

以下に本発明の実施例を述べるにあたり、説明
の内容をより明確にするために、荷電粒子線とし
て今日広く用いられている電子線を使用した場合
で説明する。これは説明の便宜であり本発明を限
定するものではない。
In describing the embodiments of the present invention below, in order to make the content of the explanation more clear, a case will be described in which an electron beam, which is widely used today, is used as a charged particle beam. This is for convenience of explanation and is not intended to limit the invention.

単分散ポリスチレン感電子線レジストの場合に
どの程度のレジストパターン形状とレジスト感度
が、電子線照射によつてレジスト温度上昇がある
場合とない場合で、いかに異なつているかの実施
例を以下に示す。第1図aはSi基板上の単分散ポ
リスチレンの現像後のパターン断面写真である。
写真の下部にあるマーカー線の間隔は0.5μmを示
している。第1図bは、第1図aのSi基板を
SiO2基板に変えただけである。他の条件、すな
わち、電子線照射条件および現像処理条件などは
全て同一にしてある。第1図aとbの電子線照射
条件は12.5μm×12.5μmの矩形形条電子線で照射
した場合のパターンである。
Examples of how the resist pattern shape and resist sensitivity of monodisperse polystyrene electron beam-sensitive resists differ depending on whether or not there is a rise in resist temperature due to electron beam irradiation are shown below. FIG. 1a is a cross-sectional photograph of a pattern of monodisperse polystyrene on a Si substrate after development.
The interval between the marker lines at the bottom of the photo is 0.5 μm. Figure 1b shows the Si substrate in Figure 1a.
I just changed it to a SiO 2 substrate. All other conditions, such as electron beam irradiation conditions and development processing conditions, were kept the same. The electron beam irradiation conditions shown in FIGS. 1a and 1b are patterns for irradiation with a rectangular electron beam of 12.5 μm×12.5 μm.

第1図bの右下の突出した膜は断面写真を得る
ために基板およびレジストを切断した際に生じた
もので、本説明とは関係のないものである。本説
明に関係のある部分は第1図aおよびb中央部に
ある、電子線照射および現像処理によつて生じた
レジストのくぼんだ部分である。
The protruding film at the lower right of FIG. 1b was produced when the substrate and resist were cut to obtain a cross-sectional photograph, and is not relevant to this explanation. The portion relevant to this description is the depressed portion of the resist caused by electron beam irradiation and development processing, which is located at the center of FIGS. 1a and 1b.

SiO2基板の方は、基板の熱拡散率がSi基板と
比較し、2桁も小さいために、照射電子線のもつ
加速エネルギーが急速に熱拡散できず、単分散ポ
リスチレン層が加熱され、感度が高感度側に変化
し、パターン断面形状が悪くなつた。Si基板と
SiO2基板とで、どれほど単分散ポリスチレンの
電子線に対する感度が異なるかを示したのが、第
2図である。単分散ポリスチレンはネガ型レジス
トである。すなわち、電子線照射量が多いほど現
像後の規格化残膜率が増大する。規格化残膜率と
は、電子線照射前の膜厚で現像処理後の膜厚を割
つたものである。第2図に於いて、曲線20は
SiO2基板上に設けた単分散ポリスチレンの感度
曲線であり、曲線21はSi基板上に設けた単分散
ポリスチレンの感度曲線である。SiO2基板上の
感度がSi基板上のそれと比べて15パーセント低照
電子線量側に変化している。第2図における電子
線照射条件および現像条件は第1図を得た条件と
同一である。第1図および第2図のように基板材
質によつてパターン形状および感度が異なること
は、10μm以上の大きな電子線断面形寸法をもつ
ために電流量の大きな条件で電子線パターン描画
をするようになつて顕在化してきたことであり、
従来の1μm以下の電子線断面形寸法の場合では通
常の電子線パターン描画装置を用いるかぎり問題
はなかつたことである。
For the SiO 2 substrate, the thermal diffusivity of the substrate is two orders of magnitude lower than that of the Si substrate, so the accelerated energy of the irradiated electron beam cannot be rapidly thermally diffused, and the monodisperse polystyrene layer is heated, resulting in a decrease in sensitivity. changed to the high-sensitivity side, and the cross-sectional shape of the pattern became worse. Si substrate and
Figure 2 shows how much the sensitivity of monodisperse polystyrene to electron beams differs depending on the SiO 2 substrate. Monodisperse polystyrene is a negative resist. That is, the larger the amount of electron beam irradiation, the higher the normalized residual film rate after development. The normalized residual film ratio is the film thickness after development divided by the film thickness before electron beam irradiation. In Figure 2, the curve 20 is
This is a sensitivity curve of monodisperse polystyrene provided on a SiO 2 substrate, and curve 21 is a sensitivity curve of monodisperse polystyrene provided on a Si substrate. The sensitivity on the SiO 2 substrate changes to the lower electron dose side by 15% compared to that on the Si substrate. The electron beam irradiation conditions and development conditions in FIG. 2 are the same as those under which FIG. 1 was obtained. The fact that the pattern shape and sensitivity differ depending on the substrate material as shown in Figures 1 and 2 is because the electron beam pattern has a large cross-sectional dimension of 10 μm or more, so it is necessary to draw the electron beam pattern under conditions of a large current. This is something that has become more obvious over time.
In the case of the conventional electron beam cross-sectional size of 1 μm or less, there was no problem as long as a normal electron beam pattern drawing device was used.

さて、第1図のbでは、第1図のaに比べてレ
ジストパターン間にすじ状のレジストが多く残り
レジストパターンをマスクにして基板をエツチン
グすることは不可能である。第2図の説明で述べ
たように、そのことは残膜率が50パーセントの照
射電子線量が15%変化したならば、第1図のbの
ようにレジストパターン形成が不可能になること
を示している。第1図に示したレジストパターン
すなわちレジスト層とレジスト層の間隔の設計寸
法は、1.5μmの場合である。2μmないし3μmのパ
ターン形成をも含む場合を考慮しても、50パーセ
ント残膜率の照射電子線量が20%変化すると第1
図のbと同様にパターン形成が不可能になると考
えられる。
Now, in FIG. 1B, there are more stripes of resist between the resist patterns than in FIG. 1A, and it is impossible to etch the substrate using the resist patterns as a mask. As mentioned in the explanation of Figure 2, this means that if the irradiated electron beam dose with a residual film rate of 50% changes by 15%, it will become impossible to form a resist pattern as shown in Figure 1b. It shows. The design dimension of the resist pattern shown in FIG. 1, that is, the distance between the resist layers, is 1.5 μm. Even considering the case of pattern formation of 2 μm to 3 μm, if the irradiated electron beam dose changes by 20% with a 50% remaining film rate, the first
It is thought that pattern formation becomes impossible, similar to b in the figure.

次に第1図および第2図で述べたSi基板と
SiO2基板とで、どの程度のレジスト層の温度変
化が、あつたのかを考察する。照射電子線がレジ
スト層およびその下の基板に入射した場合の分布
はテイー・イー・エバハート(T.E.Everhart)
氏などにより解明されている。(T.E.Everhart
and P.H.Hoff,J.Appl.Phys.42,5837(1971))
それによりレジスト層および基板中における発熱
分布がわかるので、熱拡散方程式を解くことによ
り、上昇温度分布を解析的、又は計算機シミユレ
ーシヨンで求めることができる。説明をより具体
的にするために、第3図に示したように円筒座標
系で近似できる場合とする。第3図の斜線で示し
た半径Rで表面から深さZ1およびZ2の範囲内に発
熱分布を限定し、その発熱分布の中心上のA点に
おける温度上昇は以下の積分式(1)で表わすことが
できる。
Next, with the Si substrate described in Figures 1 and 2,
Let's consider how much temperature change occurred in the resist layer compared to the SiO 2 substrate. The distribution when the irradiation electron beam is incident on the resist layer and the underlying substrate is TEEverhart
This has been elucidated by Mr. (TE Everhart
and PHHoff, J.Appl.Phys.42, 5837 (1971))
As a result, the heat generation distribution in the resist layer and the substrate can be determined, and by solving the thermal diffusion equation, the temperature increase distribution can be determined analytically or by computer simulation. To make the explanation more concrete, let us assume a case that can be approximated by a cylindrical coordinate system as shown in FIG. The heat generation distribution is limited to the range of depths Z 1 and Z 2 from the surface with the radius R indicated by the diagonal line in Figure 3, and the temperature rise at point A at the center of the heat generation distribution is calculated using the following integral formula (1). It can be expressed as

T(P,Z1,Z2,R,t0,C,ρ,D) =2P/Cρ∫Z2 Z1R 0t0 02πr(4πDt)-3/2 exp〔−(r2+z2)/4Dt〕dt dr dz ……(1) 但し、T(度)は上昇温度 P(W/cm3)は単位時間、単位体積当りの発熱
量で、発熱領域は基板表面から深さz1(cm)から
z2(cm)までの半径R(cm)の領域。
T (P, Z 1 , Z 2 , R, t 0 , C, ρ, D) = 2P/Cρ∫ Z2 Z1R 0t0 0 2πr (4πDt) -3/2 exp [-(r 2 + z 2 )/4Dt〕dt dr dz ……(1) However, T (degrees) is the rising temperature, P (W/cm 3 ) is the amount of heat generated per unit time and unit volume, and the heating area is the depth z 1 from the substrate surface. From (cm)
Area of radius R (cm) up to z 2 (cm).

t0(sec)は発熱時間。 t 0 (sec) is the heat generation time.

D(cm2/sec)は基板の熱伝導率を比熱C
(Joule/(g・deg)と密度ρ(g/cm3)との積
で除した熱拡散率。
D (cm 2 /sec) is the thermal conductivity of the substrate, which is the specific heat C
(Thermal diffusivity divided by the product of Joule/(g・deg) and density ρ (g/cm 3 ).

z1(cm)はPの説明中に記載。 z 1 (cm) is stated in the explanation of P.

z2(cm)はPの説明中に記載。 z 2 (cm) is stated in the explanation of P.

R(cm)はPの説明中に記載。 R (cm) is stated in the explanation of P.

C(Joule/(g・deg))はDの説明中に記載。 C (Joule/(g・deg)) is described in the explanation of D.

ρ(g/cm3)はDの説明中に記載。 ρ (g/cm 3 ) is described in the explanation of D.

照射電子線によつて感電子線層の温度が、どの
程度上昇するかこの計算式に従い、シミユレート
してみる。通常、シリコンとかガラス等の基板の
上に1ミクロン程度の厚さをもつ感電子線層を設
け、20keV程度の加速エネルギーおよび0.4A/
cm2程度の電流密度をもつた電子線が照射するよう
な場合が典型的である。(例えば、日本電子株式
会社製JBX−6型可変矩形電子線描画装置)計
算の便宜上幅14μm直径の円形成形電子ビームを
20keV,0.4A/cm2の条件で照射した場合の例を
第4図に示した。深さ方向の発熱分布のz1とz2
は、それぞれ1.5μmおよび2.5μmと近似した。照
射電子線の加速エネルギーが20keVの場合には照
射電子線の大部分が高分子からなる感電子線層を
通過して基板中で熱となるので、感電子線層と基
板との接触面である基板表面上の上昇温度を示し
た。また、上昇温度が最高になる成形電子線の中
央部における上昇温度である。比較のため、熱拡
散率が8.7×10-1cm2/secのシリコンが基板である
場合23と、8.1×10-3cm2/secのガラスが基板で
ある場合22を示した。500μsecの連続電子線照
射により、ガラス基板表面は約300度の温度上昇
値を示す。光学転写用マスクが基板の場合には、
ガラスの上に約800Åの金属クロム層が設けてあ
るが、膜厚が薄すぎて数パーセントの温度上昇低
下にしか金属クロム層の影響はない。
Let's simulate how much the temperature of the electron beam sensitive layer rises due to the irradiation electron beam according to this calculation formula. Usually, an electron beam-sensitive layer with a thickness of about 1 micron is provided on a substrate such as silicon or glass, and an acceleration energy of about 20 keV and 0.4 A /
A typical case is irradiation with an electron beam with a current density of about cm 2 . (For example, JBX-6 variable rectangular electron beam lithography system manufactured by JEOL Ltd.) For convenience of calculation, a circularly shaped electron beam with a width of 14 μm in diameter was used.
Figure 4 shows an example of irradiation under the conditions of 20 keV and 0.4 A/cm 2 . z 1 and z 2 of heat distribution in depth direction
were approximated as 1.5 μm and 2.5 μm, respectively. When the acceleration energy of the irradiated electron beam is 20 keV, most of the irradiated electron beam passes through the electron beam-sensitive layer made of polymer and becomes heat in the substrate. Indicates increased temperature on a certain substrate surface. Further, it is the temperature increase at the center of the shaping electron beam where the temperature increase is the highest. For comparison, cases 23 where the substrate is silicon with a thermal diffusivity of 8.7×10 −1 cm 2 /sec and cases 22 where the substrate is glass with a thermal diffusivity of 8.1×10 −3 cm 2 /sec are shown. By continuous electron beam irradiation for 500 μsec, the surface of the glass substrate shows a temperature increase of about 300 degrees. If the optical transfer mask is the substrate,
A metallic chromium layer of approximately 800 Å thick is placed on top of the glass, but it is so thin that the metallic chromium layer only has an effect on reducing temperature rise by a few percent.

ゆえに通常の光学転写マスクを電子線でパター
ン形成する場合は第4図のガラス基板の場合22
が対応している。
Therefore, when patterning a normal optical transfer mask with an electron beam, 22 is used for the glass substrate shown in Figure 4.
is compatible.

この発明の目的は、成形荷電粒子線リソグラフ
イが描画時間短縮方法として優秀である以上、基
板材料の熱拡散率と感荷電粒子線層の温度上昇の
関係に考察を加えることにより、適切なる荷電粒
子線照射条件を与え、感荷電粒子線層の温度上昇
を抑制し、従来にない荷電粒子線リソグラフイ方
法を提供することにある。
Since molded charged particle beam lithography is an excellent method for shortening drawing time, the purpose of this invention is to obtain appropriate charging by considering the relationship between the thermal diffusivity of the substrate material and the temperature rise of the charged particle beam layer. The object of the present invention is to provide an unprecedented charged particle beam lithography method by providing particle beam irradiation conditions and suppressing the temperature rise of a charged particle beam layer.

本発明による荷電粒子線リソグラフイ方法の特
徴は、荷電粒子線照射によつて生じた感荷電粒子
線層の温度上昇に起因する該感荷電粒子線層の解
像度の劣化を防止するために、荷電粒子線の照射
条件中の照射時間を制限し、その制限の基準とし
て該感荷電粒子線層の感度曲線(現像による規格
化残膜率対照射荷電粒子線量のグラフ)の該感荷
電粒子線層の温度上昇に起因する、残膜率50%に
対応する照射荷電粒子線量の変化量を15%以内と
する点にある。制限の方法としては、荷電粒子線
流を間歇的に遮断し、照射によつて上昇した該感
荷電粒子線層の温度を時間平均で下げる方法を用
いることが特徴となつている。
A feature of the charged particle beam lithography method according to the present invention is that, in order to prevent deterioration of the resolution of the charged particle beam layer due to a temperature rise in the charged particle beam layer caused by charged particle beam irradiation, The irradiation time during the particle beam irradiation conditions is limited, and the sensitivity curve of the charged particle beam layer (graph of the normalized residual film rate by development versus irradiated charged particle dose) is used as a reference for the limitation. The goal is to keep the amount of change in the irradiated charged particle dose, which corresponds to a 50% residual film rate, due to a temperature rise within 15%. The limiting method is characterized by the use of a method in which the charged particle beam flow is interrupted intermittently and the temperature of the charged particle beam layer, which has risen due to irradiation, is lowered on a time average basis.

本発明の実施例を以下に示す。第4図に示した
ようにガラス基板上に電子線照射した場合は、照
射時間が経過するとともに基板表面上昇温度の値
が増加していく。感電子線材料の代表的な物質で
あるポリメチルメタアクリレート(PMMA)の
最適照射電子線量は、200μC/cm2であるので、
0.4A/cm2の照射電流密度では500μsecの照射時間
が必要となり、その場合、第4図によると電子線
が照射された部分の温度は、300度C以上に上昇
してしまい、PMMAが熱分解をしてしまい、
PMMAの微細なパターンを形成することが不可
能になる。そこで例えば100度まで基板表面温度
が上昇したら一度電子線照射を止め、ほぼもとの
基板表面温度にもどるまでまち、再び電子線照射
を開始して再び基板表面温度が100度になつたら
電子線照射を停止するという作業を繰り返す。
PMMAを用いた場合には、電子線照射時間が合
計して500μsecになるまで上記作業を繰り返すこ
とにより、PMMAの温度上昇を100度以下に抑制
し、しかも、最適照射電流量も確保することがで
きる。もちろん温度上昇を100度以下の50度にし
たい場合は、上記繰り返し作業における連続した
電子線照射時間を短縮することによつて実現でき
る。本発明の実施例を、さらに詳しく説明するた
めに第5図に作業内容として示す。第6図に第5
図のフローチヤートに従つて電子線照射した場合
の第7段階から第12段階までの流れにおける基板
表面温度の上昇カーブを概念的に示す。電子線照
射時間t4を4回のt1と残りのtに分割し、5回の
間歇的な電子線照射とした場合である。互々の電
子線照射のt1時間以内には、基板表面最大上昇温
度の希望値24以下になるようにt1を選んである。
t2はt2時間の電子線照射停止で、ほぼ元の基板表
面温度にもどり、次のt1時間の電子線照射を行つ
ても基板表面上昇温度は、基板表面最大上昇温度
の希望値24以下になるように選んである。第5図
において第13段階の判断で第5段階に逆もどりす
る場合を示したが、第1段階に逆もどりしてもよ
い。この場合は電子線照射される基板の材質が場
所によつて異なる場合は特に有効に使用される。
第5図の第2段階と第3段階で決定するt1時間と
t2時間を決定し、各電子線照射パターン毎に決め
られる照射電子線断面形寸法毎に異なるt1時間と
t2時間を選び出すことが本発明の特徴的な方法で
ある。通常、半導体産業において実用的に用いれ
る基板材料および感電子線材料の種類の数は、そ
れほど多くないので本文中の積分式(1)から求めた
第4図を、それぞれの材料について求め、照射電
子線断面形寸法および照射電流密度をパラメータ
に第6図のt1とt2を表にすることは容易である。
Examples of the present invention are shown below. When a glass substrate is irradiated with an electron beam as shown in FIG. 4, the value of the substrate surface temperature rise increases as the irradiation time elapses. The optimal irradiation electron dose for polymethyl methacrylate (PMMA), which is a typical electron beam-sensitive material, is 200 μC/cm 2 .
An irradiation current density of 0.4 A/cm 2 requires an irradiation time of 500 μsec, and in that case, as shown in Figure 4, the temperature of the area irradiated with the electron beam rises to more than 300 degrees Celsius, causing PMMA to heat up. I ended up disassembling it,
It becomes impossible to form fine patterns in PMMA. For example, when the substrate surface temperature rises to 100 degrees, stop the electron beam irradiation, wait until the substrate surface temperature almost returns to the original, start electron beam irradiation again, and when the substrate surface temperature reaches 100 degrees again, Repeat the process of stopping irradiation.
When using PMMA, by repeating the above steps until the total electron beam irradiation time reaches 500μsec, it is possible to suppress the temperature rise of PMMA to 100 degrees or less, and also ensure the optimum irradiation current amount. can. Of course, if it is desired to reduce the temperature rise to 50 degrees, which is less than 100 degrees, this can be achieved by shortening the continuous electron beam irradiation time in the above-mentioned repeated operations. In order to explain the embodiment of the present invention in more detail, FIG. 5 shows the working contents. 5 in Figure 6
12 conceptually shows the rise curve of the substrate surface temperature in the flow from the 7th stage to the 12th stage when electron beam irradiation is performed according to the flowchart shown in the figure. This is a case where the electron beam irradiation time t4 is divided into four times t1 and the remaining time t, resulting in five intermittent electron beam irradiations. t 1 was selected so that the maximum temperature rise on the substrate surface would be below the desired value of 24 within 1 hour of each electron beam irradiation.
At t 2 , when the electron beam irradiation is stopped for t 2 hours, the substrate surface temperature almost returns to the original temperature, and even if electron beam irradiation is performed for the next t 1 hour, the substrate surface temperature rise remains at the desired value of the maximum substrate surface temperature rise 24 The following have been selected. Although FIG. 5 shows a case where the determination at step 13 causes the process to return to step 5, it is also possible to return to step 1. This method is particularly effective when the material of the substrate to which the electron beam is irradiated differs depending on the location.
t 1 hour determined in the second and third stages of Figure 5
t 2 hours is determined, and a different t 1 hour and
Selecting t 2 hours is a characteristic method of the present invention. Normally, the number of types of substrate materials and electron beam-sensitive materials that are practically used in the semiconductor industry is not so large, so Figure 4 obtained from the integral formula (1) in the main text is calculated for each material, and the irradiation It is easy to tabulate t 1 and t 2 in FIG. 6 using the electron beam cross-sectional dimensions and irradiation current density as parameters.

本発明の具体的な実施例の説明において、照射
した電子ビームが第3図のような円柱形状の基板
中の発熱分布をもたらすと簡略化した。実際は表
面方向およびR方向にぼやけた分布をもつ。
In the description of the specific embodiments of the present invention, it has been simplified that the irradiated electron beam produces a heat distribution in a cylindrical substrate as shown in FIG. In reality, the distribution is blurred in the surface direction and R direction.

しかし、その影響は本文中のモデル計算の結果
を数パーセントのオーダーで変更する程度であ
り、本発明の実施例の説明の主旨を変えるもので
はない。また、具体的に第6図のt1とt2の表を作
成する場合、照射電子線断面形寸法を例えば1μm
〜4μm,4μm〜8μm,8μm〜12μmなどとグルー
プ分けしても実用的にさしつかえない。その理由
は基板表面最大上昇温度の希望値に余裕をもたせ
た値を採用することができるからである。
However, the effect thereof is on the order of several percent to change the results of the model calculations in the main text, and does not change the gist of the explanation of the embodiments of the present invention. In addition, when specifically creating the table of t 1 and t 2 in Fig. 6, the cross-sectional dimension of the irradiated electron beam is set to 1 μm, for example.
There is no practical problem even if it is divided into groups such as ~4 μm, 4 μm to 8 μm, and 8 μm to 12 μm. The reason for this is that it is possible to adopt a value with a margin in the desired value of the maximum temperature rise on the substrate surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aおよび第1図bは、本発明の原点であ
る感荷電粒子線層描画部の熱と生成パターン形状
との相関関係を視覚的に説明するために示した感
荷電粒子線層の表面および断面の走査型電子顕微
鏡写真である。第1図aは熱の作用をあまり受け
ない場合を示し、第1図bは熱の作用をより多く
受ける場合を示している。第2図は単分散ポリス
チレンの感度曲線。第3図は式(1)を説明するため
の模式図。第4図は電子線照射による基板表面の
上昇温度。第5図は本発明の実施手順。第6図は
本発明の図形描画方法における照射域の基板表面
の上昇温度。 図において各記号は、それぞれ次のものを示
す。1から14は本発明の実施手順における各段
階。20……ガラス基板上の単分散ポリスチレン
の感度曲線。21……シリコン基板上の単分散ポ
リスチレンの感度曲線。22……ガラス基板上に
電子線を照射した場合の上昇温度。23……シリ
コン基板上に電子線を照射した場合の上昇温度。
24……基板表面最大上昇温度の希望値。A……
発熱分布の中心の延長線と基板表面との交点。Z1
……発熱分布の基板表面からの距離。Z2……発熱
分布の基板表面からの距離。R……発熱分布の半
径。t1……電子線照射時間。t2……電子線照射停
止時間。t3……電子線照射時間。t……電子線照
射時間。
Figures 1a and 1b are diagrams of the charged particle beam layer shown to visually explain the correlation between the heat of the charged particle beam drawing section and the generated pattern shape, which is the origin of the present invention. Scanning electron micrographs of the surface and cross section. FIG. 1a shows a case where the material is not affected by heat much, and FIG. 1b shows a case where it is subjected to a large amount of heat. Figure 2 shows the sensitivity curve of monodisperse polystyrene. FIG. 3 is a schematic diagram for explaining formula (1). Figure 4 shows the temperature increase on the substrate surface due to electron beam irradiation. FIG. 5 shows the procedure for implementing the present invention. FIG. 6 shows the temperature increase on the substrate surface in the irradiation area in the graphic drawing method of the present invention. In the figure, each symbol indicates the following. 1 to 14 are each step in the implementation procedure of the present invention. 20... Sensitivity curve of monodispersed polystyrene on a glass substrate. 21... Sensitivity curve of monodisperse polystyrene on silicon substrate. 22...Temperature rise when electron beam is irradiated onto the glass substrate. 23...Temperature rise when electron beam is irradiated onto silicon substrate.
24... Desired value of maximum temperature rise on the substrate surface. A...
The intersection of the extension line of the center of the heat distribution and the substrate surface. Z 1
...Distance of heat distribution from the substrate surface. Z 2 ... Distance of heat distribution from the substrate surface. R...radius of heat distribution. t 1 ...Electron beam irradiation time. t 2 ...Electron beam irradiation stop time. t 3 ...Electron beam irradiation time. t...Electron beam irradiation time.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上の感荷電粒子線層に荷電粒子線を間欠
的に照射して図形を描画する荷電粒子線リソグラ
フイ方法において、荷電粒子線の照射にともなう
感荷電粒子線層の温度上昇によつて所望の図形形
状を精度良く得られなくなる限界あるいはそれ以
下の連続照射時間t1と照射を遮断してからほぼも
との温度に戻るまでの時間t2の組合せを基板材
料、感荷電粒子線材料、照射加速電圧、荷電粒子
線の電流密度、荷電粒子線の断面積をパラメータ
として予め求めておき、これに基づいて荷電粒子
線の照射と遮断の繰り返しを適正照射量になるま
で行い、図形を描画することを特徴とする荷電粒
子線リソグラフイ方法。
1 In a charged particle beam lithography method in which a charged particle beam is intermittently irradiated onto a charged particle beam layer on a substrate to draw a figure, the temperature rise of the charged particle beam layer due to the irradiation of the charged particle beam The combination of the continuous irradiation time t 1 , which is at or below the limit at which the desired shape cannot be obtained with high accuracy, and the time t 2 , which is the time from irradiation interruption until the temperature returns to almost the original temperature, is used for substrate materials and charged particle beam materials. , the irradiation acceleration voltage, the current density of the charged particle beam, and the cross-sectional area of the charged particle beam are determined in advance as parameters, and based on these, the irradiation and interruption of the charged particle beam are repeated until the appropriate dose is reached, and the figure is created. A charged particle beam lithography method characterized by drawing.
JP4739681A 1981-03-31 1981-03-31 Charged particle beam lithography method Granted JPS57162426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4739681A JPS57162426A (en) 1981-03-31 1981-03-31 Charged particle beam lithography method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4739681A JPS57162426A (en) 1981-03-31 1981-03-31 Charged particle beam lithography method

Publications (2)

Publication Number Publication Date
JPS57162426A JPS57162426A (en) 1982-10-06
JPH0472376B2 true JPH0472376B2 (en) 1992-11-18

Family

ID=12773947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4739681A Granted JPS57162426A (en) 1981-03-31 1981-03-31 Charged particle beam lithography method

Country Status (1)

Country Link
JP (1) JPS57162426A (en)

Also Published As

Publication number Publication date
JPS57162426A (en) 1982-10-06

Similar Documents

Publication Publication Date Title
Schmid et al. Light-coupling masks for lensless, sub-wavelength optical lithography
US8066930B2 (en) Forming a layer on a substrate
US8349241B2 (en) Method to arrange features on a substrate to replicate features having minimal dimensional variability
CN100373528C (en) Laser assisted direct imprint lithography
EP2567290B1 (en) Fabrication of nanometer and micrometer structures with continuous reliefs
Fernandez et al. Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays
Singer et al. Direct-write thermocapillary dewetting of polymer thin films by a laser-induced thermal gradient
Carbaugh et al. Photolithography with polymethyl methacrylate (PMMA)
JP2000514933A (en) Grayscale mask and depth pattern transfer technology using inorganic chalcogenide glass
JP2011062975A (en) Mold for molding and processing method of mold surface
JP2012019076A (en) Pattern formation method
US20060036051A1 (en) Composition to provide a layer with uniform etch characteristics
US20150303064A1 (en) Developer Free Positive Tone Lithography by Thermal Direct Write
JPH0472376B2 (en)
JPH0472375B2 (en)
JPH0472377B2 (en)
TWI259330B (en) Stencil mask, production method thereof, exposure apparatus, exposure method and electronic device production method
EP1716452B1 (en) Method for providing a thin film having a chemical composition that is spatially structured on a micrometric or nanometric scale on a substrate
JPH0653106A (en) Formation of fine resist pattern
JPS57160127A (en) Manufacture of transcribe mask for x-ray exposure
JP2003223006A (en) Method for forming optical structure and three- dimensional optical structure
Tormen et al. Three-dimensional micro-and nanostructuring by combination of nanoimprint and x-ray lithography
JP4396320B2 (en) Method for producing blazed diffraction grating, blazed diffraction grating and optical sheet
Ehrhardt et al. Self-organized submicron structures in photoresist films by UV-laser irradiation at water-confined conditions
JP2014072500A (en) Blank for nanoimprint and method of manufacturing template for nanoimprint