JPH0472377B2 - - Google Patents

Info

Publication number
JPH0472377B2
JPH0472377B2 JP4739781A JP4739781A JPH0472377B2 JP H0472377 B2 JPH0472377 B2 JP H0472377B2 JP 4739781 A JP4739781 A JP 4739781A JP 4739781 A JP4739781 A JP 4739781A JP H0472377 B2 JPH0472377 B2 JP H0472377B2
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
irradiation
substrate
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4739781A
Other languages
Japanese (ja)
Other versions
JPS57162427A (en
Inventor
Shinya Hasegawa
Katsumi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4739781A priority Critical patent/JPS57162427A/en
Publication of JPS57162427A publication Critical patent/JPS57162427A/en
Publication of JPH0472377B2 publication Critical patent/JPH0472377B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • G03F7/2065Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam using corpuscular radiation other than electron beams

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、荷電粒子線を用いた微細パターン
形成方法、すなわち、荷電粒子線リソグラフイ方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for forming fine patterns using charged particle beams, that is, a charged particle beam lithography method.

(従来の技術) 従来のパターン形成方法は、光学露光用マスク
を用いたマスク原図転写技術によつていた。しか
し、パターン寸法を露光に用いる光の波長に近い
程度に微細にしてくると、こうした方法でパター
ンを形成するのは原理的にも限界になつた。
(Prior Art) A conventional pattern forming method has been based on a mask original pattern transfer technique using an optical exposure mask. However, as pattern dimensions became finer to the extent that they approached the wavelength of the light used for exposure, forming patterns using this method reached its theoretical limits.

近年では、従来の光学露光技術によるよりも微
細なパターンを形成する技術として荷電粒子線照
射技術が利用されるようになつた。荷電粒子線照
射技術も改良が進み、0.5ミクロン程度に小さく
絞つた丸形断面をもつ荷電粒子線でパターンを一
筆書き的にぬりつぶす方法から、矩形などに成形
された数ミクロンから数十ミクロンの断面形寸法
をもつ荷電粒子線を用いる方法が多く使用される
ようになり、パターンをぬりつぶす時間が大幅に
短縮された。
In recent years, charged particle beam irradiation technology has come to be used as a technology for forming finer patterns than conventional optical exposure technology. Charged particle beam irradiation technology has also been improved, from a method in which a charged particle beam with a round cross section narrowed to about 0.5 microns is used to fill in a pattern in one stroke, to a method in which a cross section of several microns to several tens of microns formed into a rectangular shape is used. Methods using charged particle beams with specific dimensions have come into widespread use, and the time required to fill in patterns has been significantly shortened.

以下、従来の描画方法の具体例を述べる。 A specific example of the conventional drawing method will be described below.

図形を、第1図aのように数十nmないし数十
μmの大きさの照射域に分割し、同じ断面形寸法
をもつ荷電粒子線により、各照射域に於いて、感
荷電粒子線層が照射部と非照射部とで現像液に対
し十分大きな溶解速度比をもつまで(以下適正照
射時間と呼ぶ)、荷電粒子線を各照射域に順次照
射することが行われている。即ち、まず第1照射
域1を適正照射時間まで照射し、次に第2照射域
2の照射に移ることを矢印3のように続けて図形
を描画することが通常行われている。
The figure is divided into irradiation regions of several tens of nanometers to several tens of micrometers in size as shown in Figure 1a, and charged particle beams with the same cross-sectional dimensions are used to create a charged particle beam layer in each irradiation region. Each irradiation area is sequentially irradiated with a charged particle beam until the irradiated area and the non-irradiated area have a sufficiently large dissolution rate ratio with respect to the developer (hereinafter referred to as appropriate irradiation time). That is, the first irradiation area 1 is first irradiated for an appropriate irradiation time, and then the second irradiation area 2 is irradiated, as shown by the arrow 3, to draw a figure.

(発明が解決しようとする課題) しかし数10ミクロンと大きな断面形寸法をもつ
ために電流量の大きな荷電粒子線でパターンを形
成しようとした場合、0.5ミクロン程度の小さな
断面形寸法をもつ荷電粒子線を用いていた時では
問題とならなかつた照射粒子線のもつエネルギー
によつて、パターン形成に芳しくない結果をもた
らすようになつた。基板中に照射した荷電粒子線
により基板は局所的に加熱され、該照射域内の基
板表面およびこれと接している感荷電粒子線層の
温度は第1図bのように上昇する。なぜならば、
基板および基板上に形成された感荷電粒子線層に
荷電粒子を入射する場合に、感荷電粒子線層の温
度上昇は入射荷電粒子のもつエネルギーが感荷電
粒子線層および基板中で熱に変わり、感粒子線層
中および基板中を熱拡散するという照射エネルギ
ーと熱拡散のバランスで決まるゆえに、大きな断
面形状で入射した荷電粒子線の場合には、その荷
電粒子線によつて照射された感荷電粒子線層およ
び基板の中央部における温度上昇が、その荷電粒
子線の断面形寸法の大きさに比例して大きくなる
からである。さらに、この温度上昇の幾何学的分
布は、鋭く矩形状に成形された断面形状の照射荷
電粒子パターンを大幅になだらかにしてしまう効
果をもつからである。通常、感荷電粒子線層は高
分子材料からなり、数百度Cで熱分解してしま
う。熱分解に至らない場合でも熱化学反応を起こ
す。通常、感荷電粒子線層を荷電粒子線でパター
ン形成する場合、数keVから数十keVの入射荷電
粒子線が感荷電粒子線層および基板中で非弾性散
乱し、感荷電粒子線層中の数eVのエネルギーが
分布する領域をパターン形成領域として考えてい
る。この数eVのエネルギーが分布する領域の形
状は、照射荷電粒子線の鋭い矩形断面形状をほぼ
忠実に再現するものになり、荷電粒子線リソグラ
フイ技術が微細パターン形成に利用されるゆえん
になつた。ところが上述したように、数百度Cの
ぼやけたパターン分布が数eVの鋭い分布に重畳
し、結果としてぼやけたパターンしか得られなく
なり、感荷電粒子線層の解像度が大幅に劣化する
結果となる。
(Problem to be solved by the invention) However, when trying to form a pattern with a charged particle beam with a large current amount because it has a large cross-sectional size of several tens of microns, charged particles with a small cross-sectional size of about 0.5 microns The energy of the irradiating particle beam, which was not a problem when using a radiation beam, began to produce unfavorable results in pattern formation. The substrate is locally heated by the charged particle beam irradiated into the substrate, and the temperature of the substrate surface within the irradiation area and the charged particle beam layer in contact with the substrate rises as shown in FIG. 1b. because,
When charged particles are incident on a substrate and a charged particle beam layer formed on the substrate, the temperature of the charged particle beam layer increases because the energy of the incident charged particles is converted into heat in the charged particle beam layer and the substrate. Since it is determined by the balance between irradiation energy and thermal diffusion, which is thermal diffusion in the particle beam sensitive layer and substrate, in the case of a charged particle beam incident with a large cross-sectional shape, the sensitivity irradiated by the charged particle beam is This is because the temperature rise in the central portion of the charged particle beam layer and the substrate increases in proportion to the cross-sectional size of the charged particle beam. Furthermore, this geometrical distribution of temperature rise has the effect of significantly smoothing out the irradiated charged particle pattern, which has a sharp rectangular cross-section. Usually, the charged particle beam layer is made of a polymeric material and thermally decomposes at several hundred degrees Celsius. A thermochemical reaction occurs even if it does not result in thermal decomposition. Normally, when patterning a charged particle beam layer with a charged particle beam, an incident charged particle beam of several keV to several tens of keV is inelastically scattered in the charged particle beam layer and the substrate. The region where energy of several eV is distributed is considered as the pattern formation region. The shape of the region where this energy of several eV is distributed almost faithfully reproduces the sharp rectangular cross-sectional shape of the irradiated charged particle beam, which is why charged particle beam lithography technology is used for forming fine patterns. . However, as mentioned above, the blurred pattern distribution of several hundred degrees Celsius is superimposed on the sharp distribution of several eV, resulting in only a blurred pattern being obtained, resulting in a significant deterioration of the resolution of the charged particle beam layer.

説明をより具体的にすると、第2図に示したA
点における温度上昇は以下の式(1)で表わされる。
To make the explanation more concrete, A shown in Figure 2
The temperature rise at a point is expressed by the following equation (1).

T(P,Z1,Z2,R,t1,C,ρ,D) =2P/Cρ∫Z2 Z1R 0t1 02πr・(4πDt)-3/2 ・exp[−(r2+z2)/4Dt]dt・dr・dz
……(1) 但し T(度)は上昇温度。
T(P, Z 1 , Z 2 , R, t 1 , C, ρ, D) = 2P/Cρ∫ Z2 Z1R 0t1 0 2πr・(4πDt) -3/2・exp[−(r 2 +z 2 )/4Dt] dt・dr・dz
...(1) However, T (degrees) is the rising temperature.

P(W/cm3)は単位時間、単位体積当りの発熱
量で発熱領域は基板表面からの深さZ1(cm)から
Z2(cm)までの半径R(cm)の領域。
P (W/cm 3 ) is the amount of heat generated per unit time and unit volume, and the heating area is from the depth Z 1 (cm) from the substrate surface.
Area of radius R (cm) up to Z 2 (cm).

t1(sec)は照射時間。 t 1 (sec) is the irradiation time.

D(cm2/sec)は基板の熱伝導率を比熱C
(Joule/(g・deg))と密度ρ(g/cm3)との積
で除した熱拡散率。
D (cm 2 /sec) is the thermal conductivity of the substrate, which is the specific heat C
Thermal diffusivity divided by the product of (Joule/(g・deg)) and density ρ (g/cm 3 ).

Z1(cm)はPの説明中に記載。 Z 1 (cm) is stated in the explanation of P.

Z2(cm)はPの説明中に記載。 Z 2 (cm) is stated in the explanation of P.

R(cm)はPの説明中に記載。 R (cm) is stated in the explanation of P.

C(Joule/(g・deg))はDの説明中に記載。 C (Joule/(g・deg)) is described in the explanation of D.

ρ(g/cm3)はDの説明中に記載。 ρ (g/cm 3 ) is described in the explanation of D.

適正照射時間における温度上昇により、感荷電
粒子線層の現像処理後の残膜率曲線に於いて残膜
率が50%になる照射荷電粒子線量の感荷電粒子線
層の温度上昇に起因する変動値が15%をこえる
(以下、感荷電粒子線の熱変質と呼ぶ。)ような場
合には、所望の図形形状を精度よく得ることはで
きなかつた。
Changes in the irradiated charged particle dose due to the temperature rise in the charged particle beam layer that result in a residual film rate of 50% in the residual film rate curve after development processing of the charged particle beam layer due to a temperature rise during the appropriate irradiation time. When the value exceeds 15% (hereinafter referred to as thermal alteration of the charged particle beam), it was not possible to obtain the desired shape with high accuracy.

一方、単位時間、単位面積当りの荷電粒子線照
射量を少なくすること、あるいは、荷電粒子線断
面形寸法を小さくすることによつて、この問題を
解決しようとするとパターン描画時間を大幅に短
縮する利点が失われてしまう。
On the other hand, if this problem is solved by reducing the amount of charged particle beam irradiation per unit time or unit area, or by reducing the cross-sectional dimensions of the charged particle beam, the pattern drawing time will be significantly reduced. The advantage will be lost.

ことここに至つては、パターン描画時間を大幅
に短縮するために、荷電粒子線断面形寸法を大き
くした利点は、精度の高い微細パターンを得ると
いう要求を満足しなくなり、逆に障害になるに至
つている。
At this point, the advantage of increasing the cross-sectional dimensions of the charged particle beam in order to significantly shorten the pattern writing time no longer satisfies the requirement to obtain fine patterns with high precision, and may even become an obstacle. It's reached.

説明の内容をより明確にするために、荷電粒子
線として今日広く用いられている電子線を使用し
た場合で説明する。これは説明の便宜であり、本
発明を限定するものではない。
In order to make the content of the explanation more clear, a case will be explained in which an electron beam, which is widely used today, is used as a charged particle beam. This is for illustrative purposes only and is not intended to limit the invention.

単分散ポリスチレン感電子線レジストの場合
に、どの程度のレジストパターン形状とレジスト
感度が電子線照射によつてレジスト温度上昇があ
る場合とない場合でいかに異なつているかの実施
例を以下に示す。第5図aはSi基板上の単分散ポ
リスチレンの現像後のパターン断面写真である。
写真の下部にあるマーカー線の間隔は0.5μmを示
している。第5図bは第5図aのSi基板をSiO2
基板に変えただけである。他の条件、すなわち、
電子線照射条件および現像処理条件などは全て同
一にしてある。第5図aと第5図bは12.5μm×
12.5μmの矩形形状電子線で照射した場合のパタ
ーンである、第5図bの右下の突出した膜は断面
写真を得るために基板およびレジストを切断した
際に生じたもので、本説明とは関係のないもので
ある。本説明に関係のある部分は第5図aおよび
b中央部にある、電子線照射および現像処理によ
つて生じたレジストのくぼんだ部分である。
SiO2基板の方は、基板の熱拡散率がSi基板と比
較し2桁も小さいために、照射電子線のもつ加速
エネルギーが急速に熱拡散できず、単分散ポリス
チレン層が加熱され、感度が高感度側に変化し、
パターン断面形状が悪くなつた。Si基板とSiO2
基板とで、どれほど単分散ポリスチレン層の電子
線に対する感度が異なるかを示したのが第6図で
ある。単分散ポリスチレンはネガ型レジストであ
る。すなわち電子線照射量が多いほど現像後の規
格化残膜率が増大する。規格化残膜率とは、電子
線照射前の膜厚で現像処理後の膜厚を割つたもの
である。第6図に於いて、曲線20はSiO2基板
上に設けた単分散ポリスチレンの感度曲線であ
り、曲線21はSi基板上に設けた単分散ポリスチ
レンの感度曲線である。SiO2基板上の感度がSi
基板上のそれと比べて15パーセント低照電子線量
側に変化している。第6図における電子線照射条
件および現像条件は、第5図を得た条件と同一で
ある。第5図および第6図のように、基板材質に
よつてパターン形状および感度が異なることは、
10μm以上の大きな電子線断面形寸法をもつため
に電流量の大きな条件で電子線パターン描画をす
るようになつて顕在化してきたことであり、従来
の1μm以下の電子線断面形寸法の場合では通常の
電子線パターン描画装置を用いるかぎり問題はな
かつたことである。
In the case of a monodisperse polystyrene electron beam sensitive resist, an example of how the resist pattern shape and resist sensitivity differ depending on whether or not the resist temperature is increased by electron beam irradiation will be shown below. FIG. 5a is a cross-sectional photograph of a pattern of monodisperse polystyrene on a Si substrate after development.
The interval between the marker lines at the bottom of the photo is 0.5 μm. Figure 5b shows the Si substrate in Figure 5a using SiO 2
I just changed it to a board. Other conditions, i.e.
The electron beam irradiation conditions, development processing conditions, etc. are all the same. Figures 5a and 5b are 12.5μm×
The protruding film in the lower right corner of Figure 5b, which is the pattern obtained when irradiated with a 12.5 μm rectangular electron beam, was generated when the substrate and resist were cut to obtain a cross-sectional photograph, and is not consistent with this explanation. is irrelevant. The portion relevant to this explanation is the depressed portion of the resist caused by electron beam irradiation and development processing, which is located in the center of FIGS. 5a and 5b.
For the SiO 2 substrate, the thermal diffusivity of the substrate is two orders of magnitude lower than that of the Si substrate, so the acceleration energy of the irradiated electron beam cannot be rapidly thermally diffused, and the monodisperse polystyrene layer is heated, resulting in a decrease in sensitivity. Changes to high sensitivity side,
The cross-sectional shape of the pattern has deteriorated. Si substrate and SiO2
FIG. 6 shows how much the sensitivity of the monodisperse polystyrene layer to the electron beam differs depending on the substrate. Monodisperse polystyrene is a negative resist. That is, the larger the amount of electron beam irradiation, the higher the normalized residual film rate after development. The normalized residual film ratio is the film thickness after development divided by the film thickness before electron beam irradiation. In FIG. 6, curve 20 is a sensitivity curve of monodisperse polystyrene provided on a SiO 2 substrate, and curve 21 is a sensitivity curve of monodisperse polystyrene provided on a Si substrate. The sensitivity on SiO2 substrate is
Compared to that on the substrate, the electron beam dose has changed to 15% lower. The electron beam irradiation conditions and development conditions in FIG. 6 are the same as those for obtaining FIG. 5. As shown in Figures 5 and 6, the pattern shape and sensitivity differ depending on the substrate material.
This has become apparent as electron beam patterns have been drawn under conditions of large current due to the large electron beam cross-sectional dimensions of 10 μm or more, and in the case of conventional electron beam cross-sectional dimensions of 1 μm or less There were no problems as long as a normal electron beam pattern drawing device was used.

さて第5図のbでは第5図のaに比べてレジス
トパターン間にすじ状のレジストが多く残り、レ
ジストパターンをマスクにして基板をエツチング
することは不可能である。第6図の説明で述べた
ように、そのことは残膜率が50パーセントの照射
電子線量が15%変化したならば第5図のbのよう
にレジストパターン形成が不可能になることを示
している。第5図に示したレジストパターンすな
わち、レジスト層とレジスト層の間隔の設計寸法
は1.5μmの場合である。2μmないし3μmのパター
ン形成をも含む場合を考慮しても、50パーセント
残膜率の照射電子線量が20%変化すると第5図の
bと同様にパターン形成が不可能になると考えら
れる。
Now, in FIG. 5b, more striped resist remains between the resist patterns than in FIG. 5a, and it is impossible to etch the substrate using the resist pattern as a mask. As mentioned in the explanation of Figure 6, this means that if the irradiation electron beam dose with a residual film rate of 50% changes by 15%, it will become impossible to form a resist pattern as shown in Figure 5b. ing. The resist pattern shown in FIG. 5, that is, the design dimension of the distance between the resist layers is 1.5 μm. Even considering the case where pattern formation of 2 μm to 3 μm is included, if the irradiation electron beam dose changes by 20% at a 50% residual film rate, it is considered that pattern formation becomes impossible, as in Fig. 5b.

第5図と第6図でSi基板とSiO2基板の場合を
比較したが、これは基板の材質の差を比較したの
ではなく、温度によるレジストパターン形成の程
度を調べたものである。即ち熱拡散の良いSi基板
で良好なパターン形成ができるとき、熱拡散の悪
いSiO2基板で、どれくらいの温度上昇でレジス
トパターン形成に不良がおこるかを実験したもの
である。更にその温度上昇の値を具体的に調べる
ためのシミユレーシヨンについて次に述べる。
Although the cases of Si substrate and SiO 2 substrate are compared in FIG. 5 and FIG. 6, this is not a comparison of the difference in the material of the substrate, but an investigation of the degree of resist pattern formation due to temperature. In other words, when a good pattern can be formed on a Si substrate with good thermal diffusion, we conducted an experiment to see how much temperature rise would cause defects in resist pattern formation on a SiO 2 substrate with poor thermal diffusion. Furthermore, a simulation for specifically examining the value of the temperature rise will be described next.

次に第5図および第6図で述べたSi基板と
SiO2基板とで、どの程度のレジスト層の温度変
化があつたのかを考察する。照射電子線がレジス
ト層およびその下の基板に入射した場合の分布は
テイー・イー・エバハート(T.E.Everhart)氏
などにより解明されている。(T.E.Everhart and
P.H.Hoff,J.Appl.Phys.42,5837(1971))それ
により、レジスト層および基板中における発熱分
布がわかるので熱拡散方程式を解くことにより、
上昇温度分布を解析的、又は計算機シミユレーシ
ヨンで求めることができる。
Next, the Si substrate described in Figures 5 and 6
Let's consider how much temperature change occurred in the resist layer compared to the SiO 2 substrate. The distribution of the electron beam incident on the resist layer and the underlying substrate has been elucidated by TEE Everhart and others. (TE Everhart and
PHHoff, J. Appl. Phys. 42, 5837 (1971)) By solving the heat diffusion equation, the heat distribution in the resist layer and substrate can be determined.
The temperature increase distribution can be determined analytically or by computer simulation.

説明をより具体的にすると、第2図に示したA
点における温度上昇は式(1)で表わされる。
To make the explanation more concrete, A shown in Figure 2
The temperature rise at a point is expressed by equation (1).

照射電子線によつて感電子線層の温度がどの程
度上昇するかこの計算式に従い、シミユレートし
てみる。通常、シリコンとかガラス等の基板の上
に1ミクロン程度の厚さをもつ感電子線層を設
け、20keV程度の加速エネルギーおよび0.4A/
cm2程度の電流密度をもつた電子線が照射するよう
な場合が典型的である。(例えば、日本電子株式
会社製JBX−6型可変矩形電子線描画装置)計
算の便宜上幅14μm直径の円形成形電子ビームを
20keV,0.4A/cm2の条件で照射した場合の例を
第7図に示した。照射電子線の加速エネルギーが
20keVの場合には、照射電子線の大部分が高分子
からなる感電子線層を通過して基板中で熱となる
ので、感電子線層と基板との接触面である基板表
面上の上昇温度を示した。また上昇温度が最高に
なる成形電子線の中央部における上昇温度であ
る。比較のため、熱拡散率が8.7×10-1cm2/secの
シリコンが基板である場合23と、8.1×10-3
cm2/secのガラスが基板である場合22を示した。
500μsecの連続電子線照射によりガラス基板表面
は約300度の温度上昇値を示す。光学転写用マス
クが基板の場合には、ガラスの上に約800Åの金
属クロム層が設けてあるが、膜厚が薄すぎて数パ
ーセントの温度上昇低下にしか金属クロム層の影
響はない。ゆえに通常の光学転写マスクを電子線
でパターン形成する場合は第7図のガラス基板の
場合22が対応している。
Let's simulate how much the temperature of the electron beam sensitive layer increases due to the irradiation electron beam according to this calculation formula. Usually, an electron beam-sensitive layer with a thickness of about 1 micron is provided on a substrate such as silicon or glass, and an acceleration energy of about 20 keV and 0.4 A /
A typical case is irradiation with an electron beam with a current density of about cm 2 . (For example, JBX-6 variable rectangular electron beam lithography system manufactured by JEOL Ltd.) For convenience of calculation, a circularly shaped electron beam with a width of 14 μm in diameter was used.
Figure 7 shows an example of irradiation under the conditions of 20 keV and 0.4 A/cm 2 . The acceleration energy of the irradiated electron beam is
In the case of 20keV, most of the irradiated electron beam passes through the electron beam-sensitive layer made of polymer and becomes heat in the substrate, so that the electron beam rises above the substrate surface, which is the contact surface between the electron beam-sensitive layer and the substrate. It showed the temperature. It is also the temperature rise at the center of the shaping electron beam where the temperature rise is highest. For comparison, when the substrate is silicon with a thermal diffusivity of 8.7×10 -1 cm 2 /sec23 and 8.1×10 -3
22 was shown when the substrate was glass with cm 2 /sec.
The surface of the glass substrate shows a temperature increase of about 300 degrees by continuous electron beam irradiation for 500 μsec. When the optical transfer mask is a substrate, a metal chromium layer of about 800 Å is provided on the glass, but the film is so thin that the metal chromium layer only has an effect on reducing the temperature rise by a few percent. Therefore, when patterning a normal optical transfer mask using an electron beam, the case 22 of the glass substrate shown in FIG. 7 corresponds.

次に、許容上昇温度を200度とした場合の、照
射電流密度、矩形幅、照射時間の組み合せの制限
条件を第8図に示す。0.4A/cm2の場合24およ
び4A/cm2の場合25の照射電流密度をパラメー
タに横軸を照射領域の半径、縦軸を照射時間とし
た。第8図に示した曲線25,26の意味は、そ
の曲線25,26よりも右上側が200度以上の温
度上昇領域であるということである。すなわち
0.4A/cm2の照射電流密度の場合には、10μmの電
子線矩形幅では150μsec以下の電子線照射時間で
ないと、200度以上の基板表面上昇温度になるこ
とを示している。第8図はガラス基板の場合であ
り、シリコン基板の場合は第7図に示したように
上昇温度はガラス基板と比較し一桁低いので、
200度の制限曲線は全体に右上に移行する。第8
図は電子線を用いる場合の本発明の方法が必要と
なることを明示した実施例である。
Next, FIG. 8 shows the limiting conditions for combinations of irradiation current density, rectangular width, and irradiation time when the allowable temperature increase is 200 degrees. The horizontal axis is the radius of the irradiation area and the vertical axis is the irradiation time using the irradiation current density of 24 in the case of 0.4 A/cm 2 and 25 in the case of 4 A/cm 2 as parameters. The meaning of the curves 25 and 26 shown in FIG. 8 is that the upper right side of the curves 25 and 26 is a temperature increase region of 200 degrees or more. i.e.
In the case of an irradiation current density of 0.4 A/cm 2 and an electron beam rectangular width of 10 μm, it is shown that unless the electron beam irradiation time is 150 μsec or less, the substrate surface temperature will rise by 200 degrees or more. Figure 8 shows the case of a glass substrate, and in the case of a silicon substrate, as shown in Figure 7, the temperature rise is one order of magnitude lower than that of a glass substrate.
The 200 degree limit curve generally shifts to the upper right. 8th
The figure shows an example clearly showing that the method of the present invention is required when using an electron beam.

本発明の目的は、前記の従来の欠点を除去しパ
ターン描画時間をほとんど増加させることなく、
かつ、感荷電粒子線層の温度上昇を抑制し、従来
にない荷電粒子線リソグラフイ方法を提供するこ
とである。
It is an object of the present invention to eliminate the above-mentioned conventional drawbacks and to provide a method for writing patterns without increasing pattern drawing time.
Another object of the present invention is to suppress the temperature rise of a charged particle beam layer and provide a charged particle beam lithography method that has never existed before.

(課題を解決するための手段) 本発明では、第3図aのように図形を数十nm
ないし数十μmの短冊状の走査域に分割する。走
査方向に垂直方向の大きさが、上記の短冊幅と等
しく、平行方向の大きさが、走査域の走査方向に
平行方向の大きさの2分の1以下の荷電粒子線照
射部4を第1走査域5内で、熱変質を生じない走
査速度(2R/t0(cm/sec)以上:2R(cm)は荷電
粒子線照射部の走査方向に平行方向の大きさ、t0
(sec)は式2より決まる熱変質を生じない照射時
間)で、矢印6のように走査する。
(Means for solving the problem) In the present invention, as shown in FIG.
Divide into rectangular scanning areas of several tens of micrometers. A charged particle beam irradiation section 4 whose size in the direction perpendicular to the scanning direction is equal to the above-mentioned strip width and whose size in the parallel direction is not more than half the size of the scanning area in the direction parallel to the scanning direction is provided. Within one scanning area 5, the scanning speed (2R/t 0 (cm/sec) or more) that does not cause thermal alteration: 2R (cm) is the size of the charged particle beam irradiation part in the direction parallel to the scanning direction, t 0
(sec) is the irradiation time that does not cause thermal deterioration, which is determined by Equation 2), and scanning is performed as shown by arrow 6.

T(P,Z1,Z2,L1,L2,t0,C,ρ,D) =8P/Cρ∫Z2 Z1L1 0L2 0t0 0(4πDt)-3/2 ・exp[−(l2 1+l2 2+Z2)/4Dt]dt・dl2
dl1・dz ……(2) 但し、 T(度)は感荷電粒子線層の熱変質温度と照射
前の初期温度との差。
T (P, Z 1 , Z 2 , L 1 , L 2 , t 0 , C, ρ, D) = 8P/Cρ∫ Z2 Z1L1 0L2 0t0 0 (4πDt) -3/2・exp [−(l 2 1 + l 2 2 + Z 2 )/4Dt] dt・dl 2
dl 1・dz ...(2) However, T (degrees) is the difference between the thermal alteration temperature of the charged particle beam layer and the initial temperature before irradiation.

P(W/cm3)は単位時間、単位体積当りの発熱
量で、発熱領域は基板表面からの深さZ1(cm)か
らZ2(cm)までの、縦2L1(cm)、横2L2(cm)の領
域。
P (W / cm 3 ) is the amount of heat generated per unit time and unit volume. Area of 2L 2 (cm).

t0(sec)は限界照射時間。 t 0 (sec) is the limit irradiation time.

D(cm2/sec)は基板の熱伝導率を比熱C
(Joule/(g・deg))と密度ρ(g/cm3)との積
で除した熱拡散率。
D (cm 2 /sec) is the thermal conductivity of the substrate, which is the specific heat C
Thermal diffusivity divided by the product of (Joule/(g・deg)) and density ρ (g/cm 3 ).

Z1(cm)はPの説明中に記載。 Z 1 (cm) is stated in the explanation of P.

Z2(cm)はPの説明中に記載。 Z 2 (cm) is stated in the explanation of P.

L1(cm)はPの説明中に記載した大きさで、走
査域の走査方向に平行方向の大きさの2分の1。
L 1 (cm) is the size described in the explanation of P, which is half the size of the scanning area in the direction parallel to the scanning direction.

L2(cm)はPの説明中に記載した大きさで、走
査域の走査方向に垂直方向の大きさの2分の1。
L 2 (cm) is the size described in the explanation of P, which is half the size of the scanning area in the direction perpendicular to the scanning direction.

C(Joule/(g・deg))はDの説明中に記載。 C (Joule/(g・deg)) is described in the explanation of D.

ρ(g/cm3)はDの説明中に記載。 ρ (g/cm 3 ) is described in the explanation of D.

一度の走査で、走査域への照射量が適正照射量
より少ない場合は、適正照射量となるまで走査を
切り返す。次に第2走査域7に移り、第1走査域
5と同様の走査を行なう。
If the irradiation amount to the scanning area is less than the appropriate irradiation amount in one scan, the scanning is repeated until the appropriate irradiation amount is achieved. Next, the process moves to the second scanning area 7, and the same scanning as in the first scanning area 5 is performed.

第4図に以上述べた手順を示す。 FIG. 4 shows the procedure described above.

なお、ここで述べた感荷電粒子線層の熱変質と
は、発明が解決しようとする課題の項で述べた、
感荷電粒子線層の現像処理後の残膜率曲線に於い
て残膜率が50%になる照射荷電粒子線量の感荷電
粒子線層の温度上昇に起因する変動値が15%をこ
えるような場合には、所望の図形形状を精度よく
得ることはできなつたことを指している。
Note that the thermal alteration of the charged particle beam layer described here refers to the thermal alteration of the charged particle beam layer described in the section of the problem to be solved by the invention.
In the residual film rate curve after development processing of the charged particle beam layer, the fluctuation value due to the temperature rise of the charged particle beam layer in the irradiated charged particle dose at which the residual film rate becomes 50% exceeds 15%. In this case, it means that the desired graphic shape could not be obtained with high accuracy.

(作用) この時の各照射域における基板表面及びこれと
接する感荷電粒子線層の温度変化は第3図bのよ
うになる。温度上昇時8において荷電粒子線照射
時間は常にt0秒あるいはt0秒以下であり、基板表
面温度は感荷電粒子線層の熱変質温度を越えず、
感荷電粒子線層の熱変質は生じない。また、温度
下降時9において、基板表面の温度は、照射前の
初期温度との差が式(3)で与えられる値となる。
(Function) At this time, the temperature changes of the substrate surface and the charged particle beam layer in contact with the substrate surface in each irradiation area are as shown in FIG. 3b. During temperature rise 8, the charged particle beam irradiation time is always t 0 seconds or less than t 0 seconds, and the substrate surface temperature does not exceed the thermal alteration temperature of the charged particle beam layer.
No thermal alteration of the charged particle beam layer occurs. Further, at the time of temperature drop 9, the temperature of the substrate surface has a value whose difference from the initial temperature before irradiation is given by equation (3).

T(P,Z1,Z2,L1,L2,R,S,C,ρ,
D) 但し、 T(度)は照射前の初期温度との差。
T(P, Z 1 , Z 2 , L 1 , L 2 , R, S, C, ρ,
D) However, T (degrees) is the difference from the initial temperature before irradiation.

P(W/cm3)は単位時間、単位体積当りの発熱
量で、発熱領域は基板表面からの深さZ1(cm)か
らZ2(cm)までの、縦2L1(cm)、横2L2(cm)の領
域。
P (W / cm 3 ) is the amount of heat generated per unit time and unit volume. Area of 2L 2 (cm).

R(cm)はPの荷電粒子線照射部の走査方向に
平行方向の大きさ。
R (cm) is the size of the charged particle beam irradiation part of P in the direction parallel to the scanning direction.

S(cm/sec)は走査速度。 S (cm/sec) is the scanning speed.

D(cm2/sec)は基板の熱伝導率を比熱C
(Joule/(g・deg))と密度ρ(g/cm3)との積
で除した熱拡散率。
D (cm 2 /sec) is the thermal conductivity of the substrate, which is the specific heat C
Thermal diffusivity divided by the product of (Joule/(g・deg)) and density ρ (g/cm 3 ).

Z1(cm)はPの説明中に記載。 Z 1 (cm) is stated in the explanation of P.

Z2(cm)はPの説明中に記載。 Z 2 (cm) is stated in the explanation of P.

L1(cm)はPの説明中に記載した大きさで、走
査域の走査方向に平行方向の大きさの2分の1。
L 1 (cm) is the size described in the explanation of P, which is half the size of the scanning area in the direction parallel to the scanning direction.

L2(cm)はPの説明中に記載した大きさで、走
査域の走査方向に垂直方向の大きさの2分の1。
L 2 (cm) is the size described in the explanation of P, which is half the size of the scanning area in the direction perpendicular to the scanning direction.

C(Joule/(g・deg))はDの説明中に記載。 C (Joule/(g・deg)) is described in the explanation of D.

ρ(g/cm3)はDの説明中に記載。 ρ (g/cm 3 ) is described in the explanation of D.

走査域の走査方向に平行方向の大きさが荷電粒
子線照射部4の走査方向に平行方向の大きさの2
倍以上であるため、照射時間と同じ時間あるいは
それ以上の時間荷電粒子線は照射されず、基板表
面は元の温度に戻り、次の温度上昇時においても
荷電粒子線照射時間はt0秒あるいはt0秒以下であ
り、基板表面温度は感荷電粒子線層の熱変質温度
をこえることはない。
The size of the scanning area in the direction parallel to the scanning direction is 2 times the size of the charged particle beam irradiation unit 4 in the direction parallel to the scanning direction.
Therefore, the charged particle beam is not irradiated for a time equal to or longer than the irradiation time, and the substrate surface returns to its original temperature, and even at the next temperature increase, the charged particle beam irradiation time will be t 0 seconds or 0 seconds. t is 0 seconds or less, and the substrate surface temperature does not exceed the thermal alteration temperature of the charged particle beam layer.

(実施例) 以下、本発明の実施例を従来の方法と並べて記
載する。
(Example) Hereinafter, an example of the present invention will be described in parallel with a conventional method.

溶融石英基板上にCrを80nm蒸着し、この上に
感電粒子線樹脂PMMAを300nm塗布する。Crお
よびPMMAは薄いため、熱伝導には寄与せず熱
伝導率は溶融石英基板の熱伝導特性(熱拡散率D
=8.1×10-3cm2/sec)によつて決まる。加速電圧
20keV、電流密度400mA/cm2、大きさ10μm□ の
電子線で10μm×50μmの図形を描画した。
80 nm of Cr is vapor-deposited on the fused silica substrate, and 300 nm of electric shock particle beam resin PMMA is applied on top of this. Since Cr and PMMA are thin, they do not contribute to heat conduction, and their thermal conductivity is determined by the thermal conductivity characteristics of the fused silica substrate (thermal diffusivity D).
= 8.1×10 -3 cm 2 /sec). acceleration voltage
A 10 μm x 50 μm figure was drawn with an electron beam of 20 keV, current density of 400 mA/cm 2 , and size of 10 μm□.

第9図bのように10μm□ の電子線を10cm/sec
の走査速度で5度くり返し走査することにより、
描画した結果、熱変質による異常なしに2.5msec
で、描画所要時間を増加指せないで図形を描画す
ることができた。
As shown in Figure 9b, a 10μm□ electron beam is applied at a rate of 10cm/sec.
By scanning 5 times at a scanning speed of
As a result of drawing, it took 2.5msec without any abnormality due to thermal alteration.
With this, I was able to draw shapes without being able to point, increasing the drawing time.

一方、従来の方法で、第9図aのように図形を
10μm□ の照射域5つに分割し、各照射域を
PMMAの適正照射時間500μsecで順番に照射した
場合、各照射域とも照射開始後100μsecで熱変質
を生じ、所望の図形形状を得ることはできなかつ
た。熱変質を避けるため、電流密度を2分の1と
して描画した場合、所望の図形形状を得ることは
できたが、描画所要時間は2倍の5msecを必要と
した。
On the other hand, using the conventional method, the figure as shown in Figure 9a is
Divided into 5 irradiation areas of 10μm□, and each irradiation area
When PMMA was sequentially irradiated with an appropriate irradiation time of 500 μsec, thermal alteration occurred in each irradiation area 100 μsec after the start of irradiation, making it impossible to obtain the desired shape. In order to avoid thermal deterioration, when the current density was reduced to 1/2, it was possible to obtain the desired shape, but the time required for drawing was doubled, 5 msec.

(発明の効果) 従つて、本発明によれば、感荷電粒子線層の熱
変質を避けるための電流密度低下に伴う、描画所
要時間の増加無しに、熱変質による異常のない図
形を描画することができる効果が得られる。
(Effects of the Invention) Therefore, according to the present invention, a figure free from abnormalities due to thermal alteration can be drawn without increasing the drawing time due to a reduction in current density to avoid thermal alteration of the charged particle beam layer. You can get the desired effect.

以上の説明、特に実施例に対する説明において
理解を助けるために、特定の荷電粒子線、感荷電
粒子線層及びその膜厚、特定の基板、特定の露光
条件について説明したが他の荷電粒子線例えば
H,He,Pなどについても、また他の基板、例
えばSi,Al2O3などについても、また露光条件例
えば照射加速電圧、荷電粒子線の電流密度、面積
の異なる場合についても熱変質を生じない照射時
間t0を適正に設定することで、また他の感荷電粒
子線層例えばAZ,P(MMA−MA)などについ
ても適正照射時間を得るための走査くり返し数を
変えることにより、本発明の適用が可能である。
また、同じ走査域を連続して走査せすに、いくつ
かの走査域を走査後、再び元の走査域を走査して
もよい。
In the above description, especially in the description of the examples, specific charged particle beams, charged particle beam layers and their film thicknesses, specific substrates, and specific exposure conditions have been described to facilitate understanding, but other charged particle beams, e.g. Thermal alteration occurs with H, He, P, etc., with other substrates such as Si, Al 2 O 3 , etc., and with different exposure conditions such as irradiation acceleration voltage, charged particle beam current density, and area. The present invention can be achieved by appropriately setting the irradiation time t0 for other charged particle beam layers such as AZ, P (MMA-MA), etc. can be applied.
Furthermore, in order to continuously scan the same scanning area, the original scanning area may be scanned again after scanning several scanning areas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは従来の図形描画方法の一実施例を示
す図。第1図bは従来の図形描画方法における各
照射域の基板表面の上昇温度を示す図。第2図は
式(1)、式(2)、式(3)を説明するための模式図で、説
明をより具体的にするために円筒座標系で近似
し、図中の斜線で示した半径Rで表面からの深さ
Z1およびZ2の範囲内に発熱分布を限定している。
図中の発熱分布の中心上のA点(即ち、照射域の
中心)を代表点としている。第3図aは本発明の
図形描画方法の一実施例を示す図。第3図bは本
発明の図形描画方法における、各照射域の基板表
面の上昇温度を示す図。第4図は本発明の実施手
順を示すフローチヤート。第5図aおよび第5図
bは、本発明の原点である感荷電粒子線層描画部
の生成パターン形状との相関関係を視覚的に説明
するために示した感荷電粒子線層の表面および断
面の走査型電子顕微鏡写真である。第5図aは熱
の作用をあまり受けない場合を示し、第5図bは
熱の作用をより多く受ける場合を示している。第
6図は単分散ポリスチレンの電子線に対する感度
曲線を示す図。第7図は電子線照射による基板表
面の上昇温度を示す図。第8図は電子線照射にお
ける、照射電流密度、照射領域の半径、照射時間
の組み合せ制限条件を示す図。第9図aは従来の
図形描画方法の一実施例を示す図。第9図bは本
発明の図形描画方法の一実施例を示す図。 図において各記号はそれぞれ次のものを示す。
1……第1照射域、2……第2照射域、3……照
射順序、4……荷電粒子線照射部、5……第1走
査域、6……走査方向、7……第2走査域、8…
…荷電粒子線照射時の温度上昇、9……荷電粒子
線非照射時の温度下降、20……ガラス基板上の
単分散ポリスチレンの感度曲線、21……シリコ
ン基板上の単分散ポリスチレンの感度曲線、22
……ガラス基板上に電子線を照射した場合の上昇
温度、23……シリコン基板上に電子線を照射し
た場合の上昇温度、24……照射電流密度
0.4A/cm2の場合に基板表面上昇温度が200度とな
るような、照射時間と照射領域の半径との組み合
せ、25……照射電流密度4A/cm2の場合に基板
表面上昇温度が200度となるような、照射時間と
照射領域の半径との組み合せ、A……発熱分布の
中心の延長線と基板表面との交点、Z1……発熱分
布の基板表面からの距離、Z2……発熱分布の基板
表面からの距離、R……発熱分布の半径。
FIG. 1a is a diagram showing an example of a conventional graphic drawing method. FIG. 1b is a diagram showing the temperature rise on the substrate surface in each irradiation area in the conventional graphic drawing method. Figure 2 is a schematic diagram for explaining equations (1), (2), and (3). In order to make the explanation more concrete, they are approximated using a cylindrical coordinate system and indicated by diagonal lines in the figure. Depth from surface with radius R
The heat distribution is limited to the range of Z 1 and Z 2 .
Point A at the center of the heat generation distribution in the figure (that is, the center of the irradiation area) is taken as a representative point. FIG. 3a is a diagram showing an embodiment of the graphic drawing method of the present invention. FIG. 3b is a diagram showing the temperature rise on the substrate surface in each irradiation area in the graphic drawing method of the present invention. FIG. 4 is a flowchart showing the implementation procedure of the present invention. FIGS. 5a and 5b show the surface of the charged particle beam layer and This is a scanning electron micrograph of a cross section. FIG. 5a shows a case where the device is not affected by heat much, and FIG. 5b shows a case where it is affected by a large amount of heat. FIG. 6 is a diagram showing the sensitivity curve of monodisperse polystyrene to electron beams. FIG. 7 is a diagram showing the temperature rise on the substrate surface due to electron beam irradiation. FIG. 8 is a diagram showing combination limiting conditions of irradiation current density, radius of irradiation area, and irradiation time in electron beam irradiation. FIG. 9a is a diagram showing an example of a conventional graphic drawing method. FIG. 9b is a diagram showing an embodiment of the graphic drawing method of the present invention. In the figure, each symbol indicates the following.
1... First irradiation area, 2... Second irradiation area, 3... Irradiation order, 4... Charged particle beam irradiation section, 5... First scanning area, 6... Scanning direction, 7... Second Scan area, 8...
...Temperature rise when irradiated with charged particle beam, 9...Temperature fall when not irradiated with charged particle beam, 20...Sensitivity curve of monodisperse polystyrene on glass substrate, 21...Sensitivity curve of monodisperse polystyrene on silicon substrate , 22
...Temperature rise when electron beam is irradiated onto glass substrate, 23...Temperature rise when electron beam is irradiated onto silicon substrate, 24...Irradiation current density
A combination of irradiation time and radius of the irradiation area such that the substrate surface temperature rise is 200 degrees when the irradiation current density is 4A/cm 2 . The combination of the irradiation time and the radius of the irradiation area such that the radius of the irradiation area is A...The intersection of the extension line of the center of the heat generation distribution and the substrate surface, Z1 ...The distance from the substrate surface of the heat generation distribution, Z2 ... ...Distance of heat distribution from the substrate surface, R...Radius of heat generation distribution.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上の感荷電粒子線層に荷電粒子線を照射
して図形を描画する荷電粒子線リソグラフイ方法
において、荷電粒子線の照射にともなう感荷電粒
子線層の温度上昇によつて所望の図形形状を精度
良く得られなくなる限界の走査速度を基板材料、
感電荷粒子線材料、照射加速電圧、荷電粒子線の
電流密度、荷電粒子線の面積をパラメータとして
予め求めておき、図形を数十nmないし数十μm幅
の短冊状の走査域に分割し、この短冊の幅と等し
い幅の荷電粒子線で、感荷電粒子線層に前記の走
査速度あるいはそれ以上の走査速度で、照射量が
適正照射量になるまで短冊の長さ方向に走査を繰
り返す事を特徴とする荷電粒子線リソグラフイ方
法。
1 In a charged particle beam lithography method in which a charged particle beam is irradiated onto a charged particle beam layer on a substrate to draw a figure, the desired figure is drawn by the temperature rise of the charged particle beam layer accompanying the irradiation of the charged particle beam. Substrate material,
The charged particle beam material, the irradiation acceleration voltage, the current density of the charged particle beam, and the area of the charged particle beam are determined in advance as parameters, and the figure is divided into strip-shaped scanning areas with a width of several tens of nanometers to several tens of micrometers. Using a charged particle beam with a width equal to the width of this strip, the charged particle beam layer is repeatedly scanned in the length direction of the strip at the above-mentioned scanning speed or faster until the irradiation dose reaches the appropriate dose. A charged particle beam lithography method characterized by:
JP4739781A 1981-03-31 1981-03-31 Charged particle beam lithography method Granted JPS57162427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4739781A JPS57162427A (en) 1981-03-31 1981-03-31 Charged particle beam lithography method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4739781A JPS57162427A (en) 1981-03-31 1981-03-31 Charged particle beam lithography method

Publications (2)

Publication Number Publication Date
JPS57162427A JPS57162427A (en) 1982-10-06
JPH0472377B2 true JPH0472377B2 (en) 1992-11-18

Family

ID=12773976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4739781A Granted JPS57162427A (en) 1981-03-31 1981-03-31 Charged particle beam lithography method

Country Status (1)

Country Link
JP (1) JPS57162427A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482442A (en) * 1987-09-24 1989-03-28 Jeol Ltd Shot time splitting device for depicting data

Also Published As

Publication number Publication date
JPS57162427A (en) 1982-10-06

Similar Documents

Publication Publication Date Title
US6821682B1 (en) Repair of localized defects in multilayer-coated reticle blanks for extreme ultraviolet lithography
JP2003534651A (en) Method for producing template and template produced by the method
JP2000514933A (en) Grayscale mask and depth pattern transfer technology using inorganic chalcogenide glass
Däschner et al. General aspheric refractive micro‐optics fabricated by optical lithography using a high energy beam sensitive glass gray‐level mask
US10074544B2 (en) Developer free positive tone lithography by thermal direct write
JP2008311617A (en) Nano structure, and manufacturing method of nano structure
US7049033B2 (en) EUV lithography reticles fabricated without the use of a patterned absorber
DE2522548C3 (en) Method for generating a surface relief pattern
JPH05205989A (en) Lithography method and manufacture of semiconductor device
JPH0472375B2 (en)
US4287235A (en) X-ray lithography at ˜100 A linewidths using X-ray masks fabricated by shadowing techniques
JPH0472377B2 (en)
JP2753707B2 (en) Etching method
JP6312675B2 (en) High resolution electron lithography substrate and corresponding lithography method
JP2000039702A (en) Transfer and processing method of fine pattern
TWI259330B (en) Stencil mask, production method thereof, exposure apparatus, exposure method and electronic device production method
JPH0472376B2 (en)
JPS57160127A (en) Manufacture of transcribe mask for x-ray exposure
US3837855A (en) Pattern delineation method and product so produced
JP6206632B2 (en) Nanoimprint blanks and method for producing nanoimprint templates
JPS61204933A (en) Manufacture of semiconductor device
JPH11317345A (en) Transfer/working method for minute pattern
Reséndiz et al. Ion-Beam Modification of Colloidal Silica Particle Masks to Tailor the Size of Ordered Arrays of Ag Nanostructures Produced by Nanosphere Lithography
JPS5975254A (en) Manufacture of mask for optical exposure
JPS6235360A (en) Mask blank