JPH0471606B2 - - Google Patents

Info

Publication number
JPH0471606B2
JPH0471606B2 JP60260853A JP26085385A JPH0471606B2 JP H0471606 B2 JPH0471606 B2 JP H0471606B2 JP 60260853 A JP60260853 A JP 60260853A JP 26085385 A JP26085385 A JP 26085385A JP H0471606 B2 JPH0471606 B2 JP H0471606B2
Authority
JP
Japan
Prior art keywords
length
tube
wall thickness
weight
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60260853A
Other languages
Japanese (ja)
Other versions
JPS62124007A (en
Inventor
Kyoshi Okumura
Yutaka Funyu
Norio Konya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60260853A priority Critical patent/JPS62124007A/en
Publication of JPS62124007A publication Critical patent/JPS62124007A/en
Publication of JPH0471606B2 publication Critical patent/JPH0471606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/78Control of tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/14Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、ストレツチレデユーサの伸し長さ制
御方法に係り、特に、シームレスパイプ圧延の絞
り圧延機、ストレツチレデユーサや鍛接管ミルの
出側肉厚制御に利用するのに好適な、ストレツチ
レデユーサで圧延されるチユーブの伸し長さを目
標値に制御するためのストレツチレデユーサの伸
し長さ制御方法の改良に関する。
The present invention relates to a method for controlling the elongation length of a stretch reducer, and is particularly suitable for use in controlling the outlet side wall thickness of a reducing mill for seamless pipe rolling, a stretch reducer, and a forge-welded pipe mill. The present invention relates to an improvement in a stretching length control method of a stretch reducer for controlling the stretching length of a tube rolled by a stretch reducer to a target value.

【従来の技術】[Conventional technology]

熱間シームレスパイプ圧延の最終絞り圧延機と
して用いられるストレツチレデユーサで圧延され
るチユーブの伸し長さを目標値に制御するための
方法は、例えば特公昭51−43469や特開昭60−
21114等で開示されているが、これらの技術は、
何れも、ストレツチレデユーサで圧延されたチユ
ーブ10の肉厚形状が、第4図に示す如く、管端
まで平坦であるとの仮定に立つている。
Methods for controlling the elongation length of a tube rolled by a stretch reducer used as a final reduction rolling mill for hot seamless pipe rolling to a target value are disclosed, for example, in Japanese Patent Publication No. 51-43469 and Japanese Patent Application Laid-Open No. 1983-1999.
21114 etc., these technologies are
In both cases, it is assumed that the thickness of the tube 10 rolled by the stretch reducer is flat up to the tube end, as shown in FIG.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、周知の通り、ストレツチレデユ
ーサで圧延されたチユーブの先端部及び後端部
は、張力がかかり難い部分であり、通常の圧延ス
ケジユールで且つロール回転数で圧延した場合、
あるいは、両管端部にチユーブ中央部よりも余分
に張力をかけるロール回転数制御を実施して圧延
した場合の何れにおいても、第5図に示す如く、
管端増肉部10Aが発生する。 それにも拘わらず従来は、次式により目標伸し
長さlTを算出し、これをそのまま伸し長さ制御に
用いていた。 lT=WBM(1−α) /{πγtT(DT−tT)} ……(1) ここで、WBMはビレツト重量実測値、αは加熱
炉のスケールロス、πは円周率、γはチユーブ圧
延時の密度、tTはチユーブ平均肉厚、DTはチユー
ブ外径である。 しかしながら、マスフロー一定則で考えても明
らかなように、管端増肉部の存在を考慮すること
なく前出(1)式で算出した目標伸し長さlTをそのま
ま用いることは明らかに不合理であり、正確な目
標伸し長さは得られていない。又、正確な目標伸
し長さとの差等をフイードバツクする方法も提案
されていないという問題を有していた。 従つて、ストレツチレデユーサで圧延すると発
生する、特有の管端増肉部分の影響を考慮せずに
目標伸し長さを決定し、圧延すると、チユーブが
目標伸し長さ通りに圧延された場合には、チユー
ブ中央の製品部分の肉厚が目標値より薄くなつて
しまうことになる。 第6図は、熱間肉厚計によつてチユーブ全長の
肉厚を測定し、且つその測定制度を手動測定値と
比較して、上記肉厚薄化の現象を検証した一例を
示すグラフである。この例では、先後端増肉部分
に起因して、製品となる定常部の肉厚が全長の平
均肉厚に対して1%弱薄くなつていることが判
る。
However, as is well known, the tip and rear ends of a tube rolled with a stretch reducer are areas where tension is difficult to be applied, and when rolled at a normal rolling schedule and roll rotation speed,
Alternatively, as shown in FIG. 5, in any case where roll rotation speed control is carried out to apply more tension to both ends of the tube than to the center of the tube, as shown in FIG.
A thickened portion 10A of the tube end is generated. Nevertheless, in the past, the target stretched length l T was calculated using the following formula and used as it was for stretched length control. l T = W BM (1-α) / {πγt T (D T −t T )} ...(1) Here, W BM is the measured billet weight, α is the scale loss of the heating furnace, and π is the circumference γ is the density at the time of tube rolling, t T is the average wall thickness of the tube, and D T is the outer diameter of the tube. However, as is clear when considering the constant mass flow law, it is clearly impossible to use the target elongation length l T calculated by the above equation (1) without considering the presence of the thickened part at the pipe end. Although it is reasonable, an accurate target extension length has not been obtained. Further, there is a problem in that no method has been proposed for providing feedback on the difference between the correct target length and the like. Therefore, if the target elongation length is determined and rolled without taking into account the influence of the peculiar thickened portion at the tube end that occurs when rolling with a stretch reducer, the tube will not be rolled to the target elongation length. In this case, the wall thickness of the product at the center of the tube will be thinner than the target value. FIG. 6 is a graph showing an example in which the wall thickness of the entire length of the tube was measured using a hot wall thickness meter and the measurement accuracy was compared with manual measurement values to verify the phenomenon of wall thickness thinning described above. . In this example, it can be seen that the wall thickness of the stationary part that becomes the product is less than 1% thinner than the average wall thickness of the entire length due to the thickened portion at the front and rear ends.

【発明の目的】[Purpose of the invention]

本発明は、前記従来の問題点を解消するべくな
されたもので、目標伸し長さを計算によつて極め
て精度良く求めることができ、従つて、管端増肉
部分に起因する平均肉厚の不足の発生を回避し、
肉厚寸法精度の良好なチユーブを得ることができ
るストレツチレデユーサの伸し長さ制御方法を提
供することを目的とする。
The present invention has been made in order to solve the above-mentioned conventional problems, and it is possible to determine the target elongation length with extremely high accuracy through calculation. avoid the occurrence of a shortage of
It is an object of the present invention to provide a method for controlling the length of stretch of a stretch reducer that can obtain a tube with good wall thickness dimensional accuracy.

【問題点を解決するための手段】[Means to solve the problem]

本発明は、ストレツチレデユーサで圧延される
チユーブの伸し長さを目標値に制御するためのス
トレツチレデユーサの伸し長さ制御方法におい
て、第1図にその要旨を示す如く、圧延前のビレ
ツト重量から、管端増肉部分の予測重量を差し引
いた重量より、チユーブの目標伸し長さを求め、
該目標伸し長さを目標に圧延を行い、ストレツチ
レデユーサで圧延されたチユーブの肉厚と長さを
熱間で測定し、測定した肉厚から求めた長さ方向
の肉厚プロフイールより管端増肉部分の実測重量
を算出すると共に、測定した長さより目標伸し長
さが得られたか否か確認し、前記管端増肉部分の
実測重量と前記予測重量との差に応じて、次に圧
延するチユーブの管端増肉部分の予測重量を修正
することにより、前記目的を達成したものであ
る。
The present invention relates to a stretching length control method of a stretch reducer for controlling the stretching length of a tube rolled by a stretch reducer to a target value. Determine the target elongation length of the tube by subtracting the predicted weight of the thickened portion at the end of the tube from the previous billet weight.
Rolling is performed with the target elongation length as the target, and the wall thickness and length of the rolled tube are measured hot with a stretch reducer, and the wall thickness profile in the longitudinal direction is determined from the measured wall thickness. Calculate the actual measured weight of the thickened portion at the tube end, check whether the target elongation length has been obtained from the measured length, and calculate the difference between the measured weight of the thickened portion at the tube end and the predicted weight. The above object is achieved by correcting the predicted weight of the thickened portion at the end of the tube to be rolled next.

【作用】[Effect]

本発明においては、ストレツチレデユーサで圧
延されるチユーブの伸し長さを目標値に制御する
際に、圧延開始1ピース目は、例えば経験に基づ
く両管端プロフイールモデルにより管端増肉部分
の予測重量を求め、圧延前のビレツト重量から該
予測重量を差し引いた重量より、チユーブの目標
伸し長さを求めるようにしている。又、ストレツ
チレデユーサで圧延されたチユーブの肉厚と長さ
を、例えば熱間肉厚計及び熱間長さ計を用いて熱
間で測定し、測定した肉厚から求めた長さ方向の
肉厚プロフイールより管端増肉部分の実測重量を
算出すると共に、測定した長さより目標伸し長さ
が得られたか否かを確認している。更に、算出し
た1ピース目の管端増肉部分の実測重量と同じく
1ピース目の前記予測重量の差に応じて、2ピー
ス目以降の管端増肉部分の予測重量を修正するよ
うにしている。 従つて、目標伸し長さを極めて精度良く求める
ことができ、これを目標値として圧延することに
より、前記第6図に示したような管端増肉部分に
起因する定常部平均肉厚の不足の発生を回避でき
るので、肉厚寸法精度の良好なチユーブを得るこ
とができる。 更に詳細に説明すると、圧延ロツトの1ピース
目は、ビレツト重量WBMを測定すると共に、圧延
先端肉厚プロフイールモデルtTOP(i)及び圧延
後端肉厚プロフイールモデルtBOT(i)から、管
端増肉部分の重量WTOP(先端重量)+WBOT(後端重
量)を求める。ここで、肉厚プロフイールモデル
tTOP(i)及びtBOT(i)は、圧延条件により異な
ることが経験的にわかつているので、独立したモ
デルを過去の圧延実績からの実測データによつて
求めておく。これらのモデルは、例えば次式で表
わすことができる。 tTOP(i)=a(P・i)3 +b(P・i)2+c(P・i)+d ……(2) tBOT(i)=a′(P・i)3 +b′(P・i)2+c′(P・i)+d′ ……(3) ここで、iはサンプリング番号、Pは量子化長
さあるいはピツチ、a、a′、b、b′、c、c′、d、
d′は係数である。 上記サンプリング番号i及び量子化長さ(ピツ
チ)Pを具体的に説明する。 図2は、1本のパイプの長手方向における肉厚
プロフイールを示した線図であり、上記量子化長
さあるいはピツチPは、上記パイプの全長をN等
分した場合の長さに相当し、サンプリング即ち図
中黒点で示した肉厚測定を行う際の測定ピツチで
ある。従つて、全長に亘つてサンプリングを行う
場合はサンプリング(測定)番号iが1,2…N
であり、又、先端部のサンプリングを行う場合は
iが1,2…nで、後端部のサンプリングを行う
場合はiが1,2…n′である。 なお、前記(2),(3)式のモデルは、チユーブ管端
から目標肉厚tTに達するまで適用する。上記図2
で、目標肉厚tTの位置は、先端部ではサンプリン
グ番号がnの位置であり、後端部ではサンプリン
グ番号が1の位置に対応している。 前記のようなモデルを用いると、管端部重量、
即ち先端重量WTOP及び後端重量WBOTは、それぞ
れ次式で表わされる。 WTOPoi=1 πγtTOP(i)×(DT−tTOP(i))×P−oi=1 πγtT(DT−tT)×P ……(4) WTOPo′ 〓i=1 πγtBOP(i)×(DT−tBOP(i))×P−o′ 〓i=1 πγtT(DT−tT)×P ……(5) 従つて、実際に圧延されるチユーブ伸し長さlT
に寄与する重量WBM′は、次式に示す如く、ビレ
ツト重量実測値WBMから前記先端重量WTOP及び
後端重量WBOTを引くことによつて求めることが
できる。 WBM′=WBM−WTOP−WBOT ……(6) よつて、ストレツチレデユーサでの正確な伸し
長さlTは、結局、次式で表わされる。 lT=WBM′(1−α) /{πγtT(DT−tT)} ……(7) 次に、この1ピースがストレツチレデユーサで
圧延された後の肉厚と長さを、例えは熱間肉厚計
及び熱間長さ計で測定する。 熱間肉厚計で測定された肉厚は、量子化された
長さ単位Pで測定されるので、圧延されたチユー
ブの重量WTは、次式で表わされる。 WTNi=1 πγtT(i)(DT−tT(i))×P×i ……(8) ここで、Nは、チユーブ全長に亘つて測定した
肉厚の全サンプル数である。 通常、量子化された長さPは100mmピツチであ
るから、この量子化誤差を吸収するため、次式に
示す如く、熱間長さ計による実測伸し長さlTM
N×Pの比をとり、前出(8)式で算出されたチユー
ブ重量WTを補正して、実測チユーブ重量WTM
する。 WTM=WT×{lTM/(N×P)} ……(9) 次いで、次式に示す如く、この(9)式で算出した
実測チユーブ重量WTMと、加熱炉によるスケール
ロスを除いたビレツト重量の差ΔWを求める。 ΔW=WTM−WBM(1−α) ……(10) この(10)式で求められる差ΔWをモデルの誤差と
して、以後例えば次式の形で使用することによつ
て、次のチユーブの管端増肉部分の予測重量を修
正する。 WTOP(j+1)+WBOT(j+1) =(1−λ)ΔW(j) +λ(WTOP(j)+WBOT(j)) ……(11) ここで、jは圧延ピース番号、λは重み係数で
ある。 以下、以上の手順を繰返すことによつて、精度
を高めていくことができる。
In the present invention, when controlling the elongation length of the tube rolled by the stretch reducer to a target value, the first piece at the start of rolling is determined based on, for example, a double-end profile model based on experience. The predicted weight of the billet is calculated, and the target elongation length of the tube is calculated from the weight obtained by subtracting the predicted weight from the weight of the billet before rolling. In addition, the wall thickness and length of the tube rolled by the stretch reducer are measured hot using, for example, a hot wall thickness meter and a hot length meter, and the length direction is determined from the measured wall thickness. The actual weight of the thickened portion at the end of the pipe is calculated from the wall thickness profile, and it is confirmed whether the target elongated length has been obtained from the measured length. Further, the predicted weight of the thickened portion of the tube end of the second and subsequent pieces is corrected according to the difference between the calculated actual weight of the thickened portion of the tube end of the first piece and the predicted weight of the first piece. There is. Therefore, the target elongation length can be determined with extremely high accuracy, and by rolling with this as the target value, the average wall thickness of the steady section due to the increased wall thickness at the pipe end as shown in Fig. 6 can be reduced. Since the occurrence of shortages can be avoided, a tube with good wall thickness dimensional accuracy can be obtained. To explain in more detail, for the first piece of the rolling lot, the billet weight W BM is measured, and the pipe is determined from the rolling tip wall thickness profile model t TOP (i) and the rolling end wall thickness profile model t BOT (i). Find the weight of the thickened end portion W TOP (tip weight) + W BOT (back end weight). Here, the thick profile model
Since it has been empirically known that t TOP (i) and t BOT (i) differ depending on the rolling conditions, an independent model is determined using actual measurement data from past rolling results. These models can be expressed, for example, by the following equations. t TOP (i)=a(P・i) 3 +b(P・i) 2 +c(P・i)+d ……(2) t BOT (i)=a′(P・i) 3 +b′(P・i) 2 +c′(P・i)+d′...(3) Here, i is the sampling number, P is the quantization length or pitch, a, a′, b, b′, c, c′, d,
d' is a coefficient. The sampling number i and the quantization length (pitch) P will be specifically explained. FIG. 2 is a diagram showing the wall thickness profile of one pipe in the longitudinal direction, and the quantization length or pitch P corresponds to the length when the total length of the pipe is divided into N equal parts. This is the measurement pitch when performing sampling, that is, wall thickness measurement shown by the black dots in the figure. Therefore, when sampling is performed over the entire length, the sampling (measurement) number i is 1, 2...N
When sampling the leading end, i is 1, 2...n, and when sampling the trailing end, i is 1, 2...n'. Note that the models of equations (2) and (3) above are applied from the end of the tube until the target wall thickness t T is reached. Figure 2 above
The position of the target thickness t T corresponds to the position where the sampling number is n at the leading end, and corresponds to the position where the sampling number is 1 at the rear end. Using the above model, the tube end weight,
That is, the leading end weight W TOP and the trailing end weight W BOT are each expressed by the following equations. W TOP = oi=1 πγt TOP (i)×(D T −t TOP (i))×P− oi=1 πγt T (D T −t T )×P ……(4) W TOP = o ′ 〓 i=1 πγt BOP (i)×(D T −t BOP (i))×P− o ′ 〓 i=1 πγt T (D T −t T )×P ……(5) Therefore , the actual rolled tube elongation length l T
The weight W BM ' that contributes to can be determined by subtracting the tip weight W TOP and the rear end weight W BOT from the measured billet weight W BM as shown in the following equation. W BM ′=W BM −W TOP −W BOT (6) Therefore, the accurate stretch length l T in the stretch reducer is finally expressed by the following equation. l T = W BM ′ (1-α) / {πγt T (D T −t T )} ...(7) Next, the wall thickness and length after this one piece is rolled with a stretch reducer. For example, measure with a hot wall thickness gauge and a hot length gauge. Since the wall thickness measured with a hot wall thickness meter is measured in quantized length units P, the weight W T of the rolled tube is expressed by the following equation. W T = Ni=1 πγt T (i) (D T −t T (i)) × P × i ... (8) Here, N is the total sample wall thickness measured over the entire length of the tube. It is a number. Normally, the quantized length P has a pitch of 100 mm, so in order to absorb this quantization error, the ratio of the actual elongated length l TM and N×P by the hot length meter is calculated as shown in the following equation. and correct the tube weight W T calculated by equation (8) above to obtain the measured tube weight W TM . W TM = W T × {l TM / (N × P)} ...(9) Next, as shown in the following formula, the actual tube weight W TM calculated by this formula (9) and the scale loss due to the heating furnace are calculated. Find the difference ΔW in the weight of the removed billet. Δ W = W TMW BM (1−α) ...(10) By using the difference Δ W obtained by this equation (10) as the model error, for example, in the form of the following equation, the following can be obtained. Correct the predicted weight of the thickened portion at the end of the tube. W TOP (j+1) + W BOT (j+1) = (1-λ)Δ W (j) +λ (W TOP (j) + W BOT (j)) ... (11) Here, j is the rolling piece number, and λ is It is a weighting factor. Thereafter, by repeating the above steps, the accuracy can be improved.

【実施例】【Example】

以下、図面を参照して、本発明が採用されたス
トレツチレデユーサの伸し長さ制御装置の実施例
を詳細に説明する。 本実施例は、第3図に示す如く、圧延前に鋼片
20の重量を測定するための秤量機22と、熱間
シームレスパイプ圧延の最終絞り圧延機として用
いられるストレツチレデユーサ24と、該ストレ
ツチレデユーサ24のロールを駆動しているモー
タを制御するためのモータ制御装置26と、前記
ストレツチレデユーサ24の出側でチユーブの肉
厚を熱間で測定するための熱間肉厚計28と、同
じく前記ストレツチレデユーサ24の出側でチユ
ーブの長さを熱間で測定するための熱間長さ計3
0と、前記秤量機22、熱間肉厚計28、熱間長
さ計30の出力に基づいて前記モータ制御装置2
6を制御する制御用コンピユータ32とから構成
されている。 前記熱間肉厚計28としては、例えば、本出願
人等が既に特開昭58−158510や特開昭60−133310
で提案した放射線透過式肉厚測定装置を用いるこ
とができる。この場合には、肉厚をオンラインで
精度良く測定することができ、効果的である。 以下、実施例の作用を説明する。 まず、第3図に示す如く、シームレスチユーブ
の素材である鋼片20の重量WBMをピース毎に測
定し、制御用コンピユータ32に伝送して記憶さ
せておく。制御用コンピユータ32は、前出(2)式
〜(7)式の演算を行い、当該ピースがストレツチレ
デユーサ24へ搬送された時、例えば特願昭60−
21114で出願人が提案した方法で、モータ制御装
置26にロール回転数を設定する。 ストレツチレデユーサ24で圧延されたチユー
ブ10は、その肉厚及び長さが熱間肉厚計28及
び熱間長さ計30で測定され、特に熱間肉厚計2
8において、チユーブ10の肉厚プロフイールを
測定し、この結果を制御用コンピユータ32へ伝
送して記憶させる。制御用コンピユータ32は、
この測定結果に基づき、前出(8)式〜(11)式の計
算を行い、次ピースの管端増肉部分の重量を予測
して、次ピースの目標伸し長さlTを正確に計算す
る。 以下、以上の計算を繰返す。 以上詳述した本実施例によれば、例えば前記図
6に示したように、従来は製品となる定常部の平
均肉厚が先後管端部の増肉に起因して全長の平均
肉厚に対して1%弱薄くなつていたのに対し、定
常部の平均肉厚が平均肉厚に対してどの程度薄く
なるかを予測することができ、この予測に基づい
て伸し長さを制御することが可能となることか
ら、定常部の平均肉厚が目標値となるように圧延
することが可能となる。 従つて、従来は両管端部の増肉を考慮していな
かつたため、その増肉量が大きいほど、製品部分
の平均肉厚が薄く圧延され、肉厚公差を外れて不
良品となることが多かつたが、本実施例により不
良品発生率を大幅に低減することが可能となつ
た。 その結果、従来、内厚公差外れによる不良品
が、約0.2%であつたものが、本発明により約0.1
%に減少した。 又、本実施例においては、出願人等が既に特開
昭58−158510や特開昭60−13310で提案した放射
線透過式肉厚測定装置を用いているので、肉厚を
オンラインで精度良く測定することができる。な
お、熱間肉厚計の種類はこれに限定されない。 又、本実施例においては、前記制御用コンピユ
ータ32で前記モータ制御装置26を制御するに
際して、出願人が既に特願昭60−21114で提案し
た方法を採用しているので、ロール回転数を的確
に設定することができる。なお、ロール回転数を
設定する方法はこれに限定されない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a stretching length control device for a stretch reducer to which the present invention is adopted will be described in detail with reference to the drawings. As shown in FIG. 3, this embodiment includes a weighing machine 22 for measuring the weight of a steel billet 20 before rolling, a stretch reducer 24 used as a final reduction rolling machine for hot seamless pipe rolling, A motor control device 26 for controlling the motor driving the rolls of the stretch reducer 24, and a hot-rolling device for hot measuring the wall thickness of the tube at the exit side of the stretch reducer 24. A thickness gauge 28 and a hot length gauge 3 for hot measuring the length of the tube at the exit side of the stretch reducer 24.
0, the motor control device 2 based on the outputs of the weighing machine 22, the hot wall thickness gauge 28, and the hot length gauge 30.
6, and a control computer 32 that controls the 6. As the hot wall thickness gauge 28, for example, the present applicant and others have already disclosed Japanese Patent Application Laid-open No. 58-158510 and Japanese Patent Application Laid-open No. 60-133310.
It is possible to use the radiographic thickness measuring device proposed in . In this case, the wall thickness can be measured online with high precision, which is effective. The effects of the embodiment will be explained below. First, as shown in FIG. 3, the weight WBM of the steel piece 20, which is the material of the seamless tube, is measured for each piece and transmitted to the control computer 32 and stored. The control computer 32 calculates the above-mentioned equations (2) to (7), and when the piece is conveyed to the stretch reducer 24, for example,
21114, the roll rotation speed is set in the motor control device 26 by the method proposed by the applicant. The wall thickness and length of the tube 10 rolled by the stretch reducer 24 are measured by a hot wall thickness gauge 28 and a hot length gauge 30.
8, the wall thickness profile of the tube 10 is measured, and the results are transmitted to and stored in the control computer 32. The control computer 32 is
Based on this measurement result, calculate the equations (8) to (11) above to predict the weight of the thickened part of the pipe end of the next piece and accurately determine the target elongation length l T of the next piece. calculate. From now on, repeat the above calculation. According to the present embodiment described in detail above, as shown in FIG. 6, conventionally, the average wall thickness of the stationary part of the product becomes smaller than the average wall thickness of the entire length due to the thickening of the front and rear tube ends. However, it is possible to predict how thin the average wall thickness of the stationary part will be compared to the average wall thickness, and control the elongation length based on this prediction. Since this becomes possible, it becomes possible to perform rolling so that the average wall thickness of the steady portion becomes the target value. Therefore, in the past, the increase in thickness at both ends of the pipe was not taken into consideration, so the greater the amount of increase in thickness, the thinner the average wall thickness of the product would be, making it more likely that the product would fall outside of the wall thickness tolerance and become a defective product. However, this embodiment made it possible to significantly reduce the incidence of defective products. As a result, the number of defective products due to deviation from inner thickness tolerance was approximately 0.2% in the past, but with the present invention, the number of defective products was approximately 0.1%.
%. In addition, in this embodiment, since the applicant and others have already used the radiographic thickness measuring device proposed in JP-A-58-158510 and JP-A-60-13310, the wall thickness can be measured online with high precision. can do. Note that the type of hot wall thickness gauge is not limited to this. Furthermore, in this embodiment, when controlling the motor control device 26 with the control computer 32, the method already proposed by the applicant in Japanese Patent Application No. 1983-21114 is adopted, so the roll rotation speed can be accurately controlled. Can be set to . Note that the method for setting the roll rotation speed is not limited to this.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、目標伸し
長さを極めて精度良く求めることができ、従つ
て、管端増肉部分に起因する平均肉厚の不足の発
生を回避し、肉厚寸法精度の良好なチユーブを得
ることができるという優れた効果を有する。
As explained above, according to the present invention, it is possible to determine the target elongation length with extremely high accuracy, thereby avoiding the occurrence of a shortage in the average wall thickness due to the thickened portion at the pipe end, and This has an excellent effect in that a tube with good accuracy can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るストレツチレデユーサ
の伸し長さ制御方法の要旨を示す流れ図、第2図
は、本発明の原理説明に使用する式に関する定義
を説明するための線図、第3図は、本発明が採用
されたストレツチレデユーサの伸し長さ制御装置
の実施例の構成を示すブロツク線図、第4図は、
従来の伸し長さ制御方法で想定されているチユー
ブの断面形状を示す断面図、第5図は、実際のチ
ユーブの断面形状の例を示す断面図、第6図は、
従来の問題点を示すグラフである。 10……チユーブ、10A……管端増肉部、lT
……目標伸し長さ、WBM……ビレツト重量実測
値、tTOP(i),tBOT(i)……肉厚プロフイールモ
デル、WTOP……先端重量、WBOT……後端重量、
lTM……実測伸し長さ、WTM……実測チユーブ重
量、ΔW……差、20……鋼片、22……秤量機、
24……ストレツチレデユーサ、28……熱間肉
厚計、30……熱間長さ計、32……制御用コン
ピユータ。
FIG. 1 is a flowchart illustrating the gist of the stretching length control method of a stretch reducer according to the present invention, and FIG. 2 is a diagram illustrating definitions of formulas used to explain the principle of the present invention. FIG. 3 is a block diagram showing the configuration of an embodiment of a stretch reducer stretching length control device to which the present invention is adopted, and FIG.
FIG. 5 is a cross-sectional view showing an example of the cross-sectional shape of the tube assumed in the conventional extension length control method. FIG. 6 is a cross-sectional view showing an example of the actual cross-sectional shape of the tube.
It is a graph showing the problems of the conventional method. 10...Tube, 10A...Tube end thickening part, l T
...Target extension length, W BM ...Actual billet weight, t TOP (i), t BOT (i) ...Thick profile model, W TOP ...Tip weight, W BOT ...Bear end weight,
l TM ...actually measured elongation length, W TM ...actually measured tube weight, ΔW ...difference, 20...steel billet, 22...weighing machine,
24...Stretch reducer, 28...Hot thickness gauge, 30...Hot length gauge, 32...Control computer.

【特許請求の範囲】[Claims]

1 圧延材料を圧延機に通して圧延荷重をかけ、
圧延材料を目標板厚に制御する自動板厚制御装置
において、 圧延機の上下ロール間ギヤツプ設定値及び圧延
荷重に基づいてゲージメータ板厚を演算するゲー
ジメータ板厚演算手段と、 圧延材料が圧延機にかみ込まれた時の、前記ゲ
ージメータ板厚演算手段によつて演算されたゲー
ジメータ板厚をロツクオンするロツクオン手段
と、圧延荷重が予め設定された上限値に達した時
に荷重上限信号の発信を開始し、前記圧延荷重が
前記上限値よりも一定値だけ小さな所定値以下と
なるまで前記荷重上限信号の発信を継続する荷重
上限信号発信手段と、 前記荷重上限信号の発信が継続する間、前記荷
重上限信号の発信の開始時からの経過時間に比例
する目標板厚修正量を出力する目標板厚修正量出
力手段と、 この目標板厚修正量と前記ロツクオンされたゲ
ージメータ板厚との和を、前記ゲージメータ板厚
演算手段によつて演算されたゲージメータ板厚か
ら減算してゲージメータ板厚偏差を演算するゲー
ジメータ板厚偏差演算手段と、 前記ゲージメータ板厚偏差に基づいて上下ロー
ル間ギヤツプの修正量を演算するローギヤツプ修
1 Pass the rolled material through a rolling mill and apply a rolling load,
An automatic plate thickness control device for controlling rolled material to a target plate thickness, comprising: a gauge meter plate thickness calculation means for calculating a gauge meter plate thickness based on a set value of a gap between upper and lower rolls of a rolling mill and a rolling load; lock-on means for locking on the gauge meter plate thickness calculated by the gauge meter plate thickness calculating means when the rolling load is rolled into the machine; Load upper limit signal transmitting means that starts transmitting the load upper limit signal and continues transmitting the load upper limit signal until the rolling load becomes equal to or less than a predetermined value smaller than the upper limit value by a certain value; and while the load upper limit signal continues to be transmitted. , target plate thickness correction amount output means for outputting a target plate thickness correction amount that is proportional to the elapsed time from the start of transmission of the load upper limit signal; and the target plate thickness correction amount and the locked-on gauge meter plate thickness. a gauge meter plate thickness deviation calculating means for calculating a gauge meter plate thickness deviation by subtracting the sum of the sum of the sum of the sum of the sum of the gage meter plate thickness and the gage meter plate thickness from the gage meter plate thickness calculated by the gage meter plate thickness calculating means; Low gap correction that calculates the correction amount of the gap between the upper and lower rolls.

JP60260853A 1985-11-20 1985-11-20 Stretching length control method for stretch reducer Granted JPS62124007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60260853A JPS62124007A (en) 1985-11-20 1985-11-20 Stretching length control method for stretch reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60260853A JPS62124007A (en) 1985-11-20 1985-11-20 Stretching length control method for stretch reducer

Publications (2)

Publication Number Publication Date
JPS62124007A JPS62124007A (en) 1987-06-05
JPH0471606B2 true JPH0471606B2 (en) 1992-11-16

Family

ID=17353660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60260853A Granted JPS62124007A (en) 1985-11-20 1985-11-20 Stretching length control method for stretch reducer

Country Status (1)

Country Link
JP (1) JPS62124007A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4003463B2 (en) * 2002-01-28 2007-11-07 住友金属工業株式会社 Seamless steel pipe manufacturing method
DE102017220750A1 (en) * 2017-11-21 2019-05-23 Sms Group Gmbh Device for controlling a draft-reducing mill

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143469A (en) * 1974-10-04 1976-04-14 Tsnii Kuropuchatobu Mazunoi Pu Hajokaikoshotsukino yokoirekyaryaaannaisochi
JPS5428305A (en) * 1977-08-05 1979-03-02 Meito Sangyo Kk Decomposition of fats and oils
JPS58119416A (en) * 1982-01-11 1983-07-15 Kawasaki Steel Corp Method for controlling wall thickness of seamless pipe
JPS58128209A (en) * 1982-01-26 1983-07-30 Kawasaki Steel Corp Controlling method of roll rotating speed of hot stretch reducer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143469A (en) * 1974-10-04 1976-04-14 Tsnii Kuropuchatobu Mazunoi Pu Hajokaikoshotsukino yokoirekyaryaaannaisochi
JPS5428305A (en) * 1977-08-05 1979-03-02 Meito Sangyo Kk Decomposition of fats and oils
JPS58119416A (en) * 1982-01-11 1983-07-15 Kawasaki Steel Corp Method for controlling wall thickness of seamless pipe
JPS58128209A (en) * 1982-01-26 1983-07-30 Kawasaki Steel Corp Controlling method of roll rotating speed of hot stretch reducer

Also Published As

Publication number Publication date
JPS62124007A (en) 1987-06-05

Similar Documents

Publication Publication Date Title
US20060207305A1 (en) Method of setting/controlling wedge in plate material rolling
JPH0471606B2 (en)
JP3583835B2 (en) Setup method in hot finish rolling
JPH05208204A (en) Method for controlling shape in strip rolling
JP3610338B2 (en) Method and apparatus for temper rolling of metal strip
JP3062017B2 (en) Thickness control method in hot rolling
JP2829065B2 (en) Method of measuring thickness of rolled strip
JP2650575B2 (en) Thick plate width control rolling method
JP3283431B2 (en) Head thickness control method for hot finishing tandem rolling mill
JP5565214B2 (en) Thickness control method of rolling mill
JP2959426B2 (en) Elongation rate calculation method
JP3205175B2 (en) Strip width control method in hot rolling
JPH07246414A (en) Method for controlling wall thickness in tube end part with stretch reducer
JPH0857512A (en) Manufacture of tapered steel sheet
JP2950182B2 (en) Manufacturing method of tapered steel plate
JPH08187504A (en) Manufacture of tapered steel sheet
JP4351598B2 (en) Steel sheet elongation rate measuring apparatus and elongation rate measuring method
JPH02211907A (en) Sheet thickness control method for continuous hot rolling mill
JP2698884B2 (en) Pipe thickness control method with stretch reducer
JPH05124B2 (en)
JPH0732019A (en) Sheet width controlling method in hot rolling
JPH06312208A (en) Method and device for rolling thick plate
JP2005186085A (en) Thickness change controller for travelling plate in continuous cold rolling machine
JP2002178014A (en) Plate thickness control method in rolling mill
JPS6335327B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees