JPH047098A - Batchwise activated sludge treatment method - Google Patents

Batchwise activated sludge treatment method

Info

Publication number
JPH047098A
JPH047098A JP2108186A JP10818690A JPH047098A JP H047098 A JPH047098 A JP H047098A JP 2108186 A JP2108186 A JP 2108186A JP 10818690 A JP10818690 A JP 10818690A JP H047098 A JPH047098 A JP H047098A
Authority
JP
Japan
Prior art keywords
activated sludge
orp
phosphorus
water
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2108186A
Other languages
Japanese (ja)
Other versions
JP2750773B2 (en
Inventor
Masahiro Fujii
正博 藤井
Osamu Miki
理 三木
Yoshinori Takezaki
義則 竹崎
Yasushi Kamori
裕史 嘉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10818690A priority Critical patent/JP2750773B2/en
Publication of JPH047098A publication Critical patent/JPH047098A/en
Application granted granted Critical
Publication of JP2750773B2 publication Critical patent/JP2750773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To keep the concn. of the phosphorus compound in treated water low by transferring to a process discharging supernatant water when the ORP measured value of a sedimentation sludge tank in a still standing process separating waste water into settled sludge and supernatant water becomes -150mV or less. CONSTITUTION:The first anaerobic process injecting waste water in a reactor having activated sludge present therein under mechanical stirring and discharging a phosphorus compound from activated sludge and the first aerobic process performing aeration to control ORP to +100 to +120mV or more to carry out the oxidative decomposition of BOD and the oxidation of an ammonia compound and allowing activated sludge to excessively take in a phosphorous compound are carried out. Next, the second anaerobic process distributing a part of waste water using a hydrogen donor to stirr the same mechanically or to aerate the same under mechanical stirring to control ORP to -50 to -150mV and reducing nitrogen oxide to nitrogen gas is applied.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、廃水より生物化学的酸素要求量によって標
示される汚濁物質(BOD)、アンモニア化合物、リン
化合物など海域、河川、湖沼の富栄養化原因となってい
る物質を回分式活性汚泥処理により除去する方法に関す
るものである。
Detailed Description of the Invention (Industrial Application Field) This invention is a method for removing eutrophic substances such as pollutants (BOD), ammonia compounds, and phosphorus compounds from wastewater, which are indicated by biochemical oxygen demand, in sea areas, rivers, and lakes. The present invention relates to a method for removing substances that cause oxidation by batch activated sludge treatment.

(従来の技術) 従来、活性汚泥処理により、RIi述の富栄養化物質を
除去する方法として、バーブフッ才−(F3ard e
 n l+II OJ法−(、J 、 L 、 B a
rnard、 W ater W ast、esEng
g、、33 (1974))、あるいは特開昭54−2
4774号公報記載のA10法、A 2 / O法があ
る。
(Prior Art) Conventionally, activated sludge treatment has been used as a method for removing eutrophic substances mentioned in RIi.
n l+II OJ method-(, J, L, Ba
rnard, W ater W ast, esEng
g, 33 (1974)) or JP-A-54-2
There are the A10 method and the A2/O method described in 4774.

さらに、特公昭61−17558号公報記載のA210
法の変法として、硝化槽の生物を固定化するため回転円
板を組込んだ方法などが知られている。
Furthermore, A210 described in Japanese Patent Publication No. 61-17558
As a modification of this method, a method that incorporates a rotating disk to immobilize organisms in the nitrification tank is known.

これらの方法において、BODは主に好気性酸化分解に
より、窒素化合物は硝化脱窒法により、またリン化合物
は嫌気的環境において活性汚泥がらリンを放出させ、好
気的環境において活性汚泥にリンを過剰摂取させること
により除去されている。
In these methods, BOD is mainly processed by aerobic oxidative decomposition, nitrogen compounds are released by nitrification-denitrification method, phosphorus compounds are released from activated sludge in an anaerobic environment, and excess phosphorus is released into activated sludge in an aerobic environment. It is removed by ingestion.

また、特開昭62−42796号公報は5段階よりなる
回分式活性汚泥処理でBOD、アンモニア化合物、リン
化合物を除去する方法を開示している。すなわち、第1
段階は活性汚泥が存在する生物化学的反応槽(リアクタ
ー)にWiw的撹拌を甘いながら廃水を注入し、o f
< Pを−200〜3 Tl Om Vの嫌気状態にし
て活性汚泥からリン化合物を放出させ、第2段階は曝気
を行いORPを+ 10 (1〜+120晴\1以上の
好気状態にしてBOD、リン化合物の除去、およびアン
モニア化合物の酸化を)〒い、第3段階は水素供与体を
注入しなからORPを−5()〜−150mVの嫌気状
態にして窒素酸化物を窒素ガスに還元し、f:tS4段
階は曝気を行いORPを+50〜+150請■の好気状
態にして過剰の水素供与体を酸化分解し、第5段階では
曝気および撹拌を停止し、活性汚泥を沈WQさせ、上澄
水を放流する回分式活性汚泥処理方法である。
Further, JP-A No. 62-42796 discloses a method for removing BOD, ammonia compounds, and phosphorus compounds by a batch activated sludge treatment consisting of five stages. That is, the first
In the step, wastewater is injected into a biochemical reactor containing activated sludge with gentle agitation.
<P is brought to an anaerobic state of -200 to 3 Tl Om V to release phosphorus compounds from the activated sludge, and in the second stage, aeration is performed to increase ORP to +10 (1 to +120 clear\1 or more and aerobic state to BOD , removal of phosphorus compounds, and oxidation of ammonia compounds), and the third step is to reduce nitrogen oxides to nitrogen gas by reducing ORP to -5() to -150 mV anaerobic state without injecting a hydrogen donor. In the f:tS4 stage, aeration is carried out to bring the ORP to an aerobic state of +50 to +150 degrees to oxidize and decompose excess hydrogen donor, and in the fifth stage, aeration and stirring are stopped to allow the activated sludge to settle and WQ. This is a batch activated sludge treatment method in which supernatant water is discharged.

(発明が解決しようとする課題) ところが、この第5段階において沈降後堆積した汚泥の
嫌気度が増し、このため汚泥からリン化合物の放出が起
こり、上澄水のリン化合物濃度が上昇するという問題が
あった。すなわち、汚泥沈降上程においては汚泥を沈降
分離するため機械撹拌や曝気を行うことができず、時間
の経過とともに沈降汚泥層の嫌気度が増加してしまうの
であった。そして、たとえば所定時間が経過したら汚泥
の沈降が完了したものとして上澄水を放流するというよ
うな汚泥の沈降のみを考慮した処理では、嫌気度が増し
てリン化合物が放出され、放流される処理水のリン化合
物濃度が商(なってしまうのを有効に防止することがで
きず、厳しいリン化合物濃度基準に対処することがで訃
ない。
(Problem to be Solved by the Invention) However, in this fifth stage, the anaerobic degree of the sludge that has been deposited after settling increases, and as a result, phosphorus compounds are released from the sludge, resulting in an increase in the concentration of phosphorus compounds in the supernatant water. there were. That is, in the upper stages of sludge settling, mechanical stirring and aeration cannot be performed to separate the sludge by settling, and the anaerobic degree of the settled sludge layer increases over time. For example, in a process that only considers sludge sedimentation, in which the supernatant water is discharged after a predetermined period of time has passed, the anaerobic degree increases and phosphorus compounds are released, causing the treated water to be discharged. It is not possible to effectively prevent the phosphorus compound concentration from becoming quotient, and it is difficult to meet the strict phosphorus compound concentration standards.

本発明は、廃水を回分式で活性汚泥処理する方法の汚泥
沈降工程における処理を改善して、処理水のリン化合物
の濃度を低く維持できる方法を提供する。
The present invention provides a method that can maintain a low concentration of phosphorus compounds in treated water by improving the treatment in the sludge settling step of a method for batchwise activated sludge treatment of wastewater.

(課題を解決するための手段) 本発明は、少なくともB OL)、アンモニア化合物、
リン化合物を富栄養化物質として含む廃水の回分式活性
汚泥処理方法であって、活性汚泥が存在するリアクター
に機械的撹拌を行いながら廃水を注入し、活性汚泥より
リン化合物を放出させる嫌気11程と、曝気を行いOR
Pを+100〜+120mV以上(銀−塩化銀電極基準
)の範囲に制御してBO])の酸化分解とアンモニア化
合物の酸化とを行うとともにリン化合物を活性汚泥に過
剰摂取させる好気1土程と、廃水の一部を水素供与体に
用いてこれを分注しながら機械的撹拌または機械的撹拌
に加えて曝気によりORPを一50〜15+1m’i/
(銀−塩化銀電極基準)の範囲に制御して窒素酸化物を
窒素ガスに′a元させる嫌気2」1程と、曝気を行いQ
RPを+50−+150mV1.、:維持し、過剰の水
素供与体の801)の酸化分解を行うとともに窒素ガス
を気泡にして除去する好気2工程と、活性汚泥混合液が
ら汚泥を沈降させ、沈降汚泥と上澄液とに分離する静置
工程と、上澄水を処理水として放流する放流工程とから
なる回分式活性汚泥処理方法において、静置工程におけ
る沈降汚泥層のORPを測定し、測定値が一150II
Iv以下(銀−塩化銀電極基準)になったら上澄水を放
流する放流上程に移行することを特徴とする回分式活性
汚泥処理方法である。無1flP、活性汚泥固定化担体
として高炉水砕、ゼオライト、珪砂またはクリストバラ
イトをす7クターに添加すること、好気2上程において
、リン化合物と反応して不溶性のリン−金属化合物を形
成する水溶性金属化合物を添加すること、好気2工程に
おいてORPを+100〜+150mVに制御すること
は好ましい。
(Means for Solving the Problems) The present invention provides at least BOL), an ammonia compound,
This is a batch activated sludge treatment method for wastewater containing phosphorus compounds as eutrophic substances, in which wastewater is injected into a reactor containing activated sludge with mechanical stirring, and phosphorus compounds are released from the activated sludge. Then, perform aeration and OR
P is controlled within the range of +100 to +120 mV or higher (based on silver-silver chloride electrodes) to perform oxidative decomposition of BO) and oxidation of ammonia compounds, as well as an aerobic one-hour cycle in which phosphorus compounds are excessively ingested into activated sludge. , using a part of the wastewater as a hydrogen donor and dispensing it with mechanical stirring or mechanical stirring and aeration to increase the ORP from -50 to 15+1 m'i/
(Silver-silver chloride electrode standard) Anaerobic and aeration are performed to convert nitrogen oxides into nitrogen gas.
RP +50-+150mV1. ,: two aerobic steps in which the excess hydrogen donor 801) is oxidized and decomposed and nitrogen gas is bubbled and removed, and the sludge is settled from the activated sludge mixture, and the settled sludge and supernatant liquid are separated. In the batch activated sludge treatment method, which consists of a standing step in which the supernatant water is separated into two, and a discharge step in which the supernatant water is discharged as treated water, the ORP of the settled sludge layer in the standing step was measured, and the measured value was 1150 II.
This is a batch-type activated sludge treatment method characterized by shifting to the discharge stage in which supernatant water is discharged when it becomes below Iv (according to silver-silver chloride electrode standards). No flP, addition of granulated blast furnace, zeolite, silica sand or cristobalite as an activated sludge immobilization carrier to the 7 ctor, water-soluble reacts with phosphorus compounds to form insoluble phosphorus-metal compounds in the aerobic 2nd stage. It is preferable to add a metal compound and to control ORP to +100 to +150 mV in the two aerobic steps.

(作用) 本発明においては、活性汚泥は嫌気工程では撹拌機、水
中撹拌機等の8!械的撹拌により、また好気工程では空
気の曝気によりそれぞれ混合撹拌する。また、各工程の
嫌気度、好気度はリアクターに浸漬したORPセンサー
により測定し、各工程のORPが所定のORP値より低
下したならば、嫌気1工程を除いて、空気の曝気や曝気
量の増加1こより(、) RPを上昇させ、所定値に回
復したら空買の曝気の中止や曝気量の低減を行う。リア
クターに浸漬するORPセンサーは、金または金合金と
塩化銀/銀よりなる複合1tWiを用いるのが最も良い
(Function) In the present invention, the activated sludge is used in the anaerobic process using an agitator, an underwater agitator, etc. Mixing and stirring are carried out by mechanical stirring and, in the aerobic process, by aeration of air. In addition, the anaerobic degree and aerobic degree of each process are measured with an ORP sensor immersed in the reactor, and if the ORP of each process decreases below the predetermined ORP value, the aeration rate of the air and the aeration amount are measured, except for the anaerobic 1 process. Increase by 1 (,) RP is increased, and when it recovers to the predetermined value, short-buy aeration is stopped or the aeration amount is reduced. The ORP sensor immersed in the reactor is best made of a composite 1tWi of gold or gold alloy and silver chloride/silver.

まず、嫌気1工程では、活性汚泥が存在するリアクター
に機械的撹拌を行いながら廃水を注入するにうするとO
RPは徐々に低]ζし、最終的にはORPが 200−
−300mV(以下、銀−塩化銀電極基準)まで低ドし
、者しく嫌気状態になる。この状態で所定時間維持する
と活性汚泥中のリン化合物が廃水中に放出される。リン
化合物は、嫌気状態において活性汚泥からリンを放出さ
せ、しかる後に好気状態におくと活性汚泥がリンを過剰
に摂取し、リンを過剰摂取した活性汚泥を余剰汚泥とし
て抜き取ることにより処理水のリン濃度を低減すること
ができるので、この嫌気1工程における嫌気状態と次の
好気1工程における好気状態との組合せによって除去す
るのである。
First, in the anaerobic first step, wastewater is injected into a reactor containing activated sludge while being mechanically stirred.
RP gradually decreases]ζ, and finally ORP becomes 200-
The voltage drops to -300 mV (hereinafter referred to as a silver-silver chloride electrode standard), and it becomes clearly anaerobic. If this state is maintained for a predetermined period of time, the phosphorus compounds in the activated sludge will be released into the wastewater. Phosphorus compounds release phosphorus from activated sludge under anaerobic conditions, and then when placed in aerobic conditions, activated sludge takes in excess phosphorus, and the activated sludge that has taken in too much phosphorus is removed as surplus sludge, which improves the quality of treated water. Since the phosphorus concentration can be reduced, it is removed by a combination of the anaerobic conditions in this first anaerobic step and the aerobic conditions in the next aerobic step.

次の好気1上程においてはBODが分解される。In the next aerobic step 1, BOD is decomposed.

発明者等の研究によると下水のBODはリアクターのO
RPが0〜100mVで95%以上分解されることが明
らかになっており、したがって好気1土程のORPをO
mV以上に維持してこの工程を1〜2時間維持すれば、
はぼ完全に分解する。
According to the inventors' research, the BOD of sewage is the O of the reactor.
It has been shown that 95% or more of RP is decomposed at 0 to 100 mV.
If this step is maintained above mV for 1 to 2 hours,
It disintegrates completely.

次に、アンモニア性窒素化合物、有機性窒素化合物は硝
化・脱窒法により除去する。この場合、アンモニア性窒
素化合物、有機性窒素化合物等は生物学的に酸化して、
硝酸性および亜硝酸性窒素化合物(以下、NOx  N
と略記)に変換する必要がある。この硝化反応は、発明
者らの研究によるとド水の場合、ORPが80〜100
mV以上で起こることが明らかになっており、したがっ
て好気1工程で硝化反応を行うのが最良であり、このた
め好気1上程のORPを+100−+120TIIV以
上に!+!!!、制御すれば、アンモニア性窒素化合物
、有機性窒素化合物の硝化反応とともにBODの分解反
応も起こる。
Next, ammonia nitrogen compounds and organic nitrogen compounds are removed by a nitrification/denitrification method. In this case, ammonia nitrogen compounds, organic nitrogen compounds, etc. are biologically oxidized,
Nitrate and nitrite nitrogen compounds (hereinafter referred to as NOx N
(abbreviated as ). According to research by the inventors, this nitrification reaction has an ORP of 80 to 100 in the case of dehydrated water.
It has been shown that the nitrification reaction occurs at mV or more, so it is best to perform the nitrification reaction in one aerobic step. Therefore, the ORP for aerobic one should be +100-+120 TIIV! +! ! ! If controlled, the nitrification reaction of ammonia nitrogen compounds and organic nitrogen compounds as well as the decomposition reaction of BOD will occur.

好気1工程で生成したN Ox −Nは、犬に嫌気2上
程で廃水の有機物を水素供与体に用いて脱窒反応を行い
、窒素ガスに還元する7水素供与体としては、嫌気11
程で注入する廃水4部に対し1〜3部の割合で廃水を供
給すればよい。この時、嫌気2工程(n ORP カ1
50 m V以Fl:ナル、!−活性汚泥からのリンの
放出が起こり、処理水のリン濃度が高くなるので、嫌気
2工程のORPが−15(1mV以下になったら底部か
らの曝気を行い、0[くPの低[を防止する。このよう
に、ド水のアンモニア性および有機性窒素化合物は、硝
化、脱窒法により容易に除去する二とができる。
The NOx -N generated in the aerobic 1st step is reduced to nitrogen gas through a denitrification reaction using wastewater organic matter as a hydrogen donor in the anaerobic 2nd step.7 As a hydrogen donor, the anaerobic 11
What is necessary is just to supply wastewater at the ratio of 1-3 parts to 4 parts of wastewater injected in step. At this time, anaerobic 2nd process (n ORP Ka1
50 m V to Fl: Naru! - Phosphorus is released from the activated sludge and the phosphorus concentration in the treated water increases, so when the ORP of the second anaerobic step becomes -15 (1 mV or less, aeration is performed from the bottom and a low In this way, ammonia and organic nitrogen compounds in the water can be easily removed by nitrification and denitrification methods.

好気2工程では曝気を行い、ORPを+50〜+150
mVに維持し、嫌気2上程で用いた過剰の水素供与体の
801)の酸1し分解を行う。また活性汚泥に付着して
いる窒素ガスも曝気により除去するう lW画工程では曝気も撹拌も行わず、静置して活性汚泥
を沈降させ、活性汚泥と上澄水とに分離する。そして、
最後の放流工程において、上澄水を処理水として放流す
る。
In the aerobic 2nd step, aeration is performed to increase ORP by +50 to +150.
mV, and the excess hydrogen donor used in the anaerobic step 2 is decomposed with acid 1). In addition, in the water purification process in which nitrogen gas adhering to the activated sludge is also removed by aeration, neither aeration nor stirring is performed, the activated sludge is allowed to settle, and the activated sludge is separated into activated sludge and supernatant water. and,
In the final discharge step, the supernatant water is discharged as treated water.

回分式活性汚泥処理法においてリン化合物を効率良く除
去するための重要な課題の一つは、静置工程における活
性汚泥からのリンの再放出の抑制、あるいは前工程から
の残存リン化合物の除去である。
One of the important issues to efficiently remove phosphorus compounds in the batch activated sludge treatment method is to suppress the re-release of phosphorus from activated sludge during the standing process, or to remove residual phosphorus compounds from the previous process. be.

本発明においては、まず第1に静置工程において活性汚
泥のORPを測定し、測定値が一150mV以下になっ
たら上澄水を放流する放流工程に移行する。
In the present invention, first, the ORP of the activated sludge is measured in the standing step, and when the measured value becomes 1150 mV or less, the process moves to the discharge step in which supernatant water is discharged.

前述のように、静置工程においては曝気も撹拌ら行わな
いので、時間の経過とともに沈降汚泥層の嫌気度が増し
、ついにはリン化合物の放出が起こるが、汚泥の嫌気度
を評価する指標としてはORPを用いるのが最適である
。すなわち、tIS1図に示すように、?rp置装程に
おける沈降汚泥層のORPと処理水のリン濃度との関係
から、沈降汚泥層のORPが一160mV以下になると
、ORPが低くなる程処理水のリン濃度が高くなる傾向
があり、したがって静置工程における処理水は沈降汚泥
層のORPが一160mVになる以前に放流する必要が
あり、これによI)処理水のリン化合物を1■/1以下
(リンとして)に除去することができる。
As mentioned above, in the standing process, neither aeration nor stirring is performed, so the anaerobic degree of the settled sludge layer increases over time, and eventually phosphorus compounds are released. It is best to use ORP. That is, as shown in the tIS1 diagram, ? From the relationship between the ORP of the settled sludge layer and the phosphorus concentration of the treated water in the RP equipment process, when the ORP of the settled sludge layer becomes 1160 mV or less, the lower the ORP, the higher the phosphorus concentration of the treated water tends to be. Therefore, the treated water in the standing process needs to be discharged before the ORP of the settled sludge layer reaches -1160 mV, thereby: (1) removing the phosphorus compounds in the treated water to 1/1 or less (as phosphorus); I can do it.

そこで、静置工程における沈降汚泥層のORPを測定し
、これが−150mVになったら上澄水を放流すること
とした。このようにORPを測定することにより、活性
汚泥からリン化合物が放出されないうちに上澄水を放流
することが可能となり、処理水のリン化合物濃度を低く
維持することができる。
Therefore, the ORP of the settled sludge layer in the standing process was measured, and when the ORP reached -150 mV, the supernatant water was discharged. By measuring ORP in this manner, it becomes possible to discharge supernatant water before phosphorus compounds are released from activated sludge, and it is possible to maintain a low phosphorus compound concentration in treated water.

第2に、活性汚泥の沈降を促進し、また活性汚泥を面濃
度に維持して処理効率を向上させるため、流動層型リア
クター用の無機系固定化担体として商炉水砕、ゼオライ
1、珪砂まrこはクリストバライトをリアクターに添加
する。これら担体の表面には活性汚泥を固定化すること
ができ、活性汚泥の濃度を高くすることが可能になるの
で、BODの分解、アンモニア化合物の酸化反応等の効
率を高くすることができる。また、活性汚泥を担体に固
定化すれば静置工程における活性汚泥の沈降も促進され
、汚泥のORPが一150mV以下にならないうちに十
分沈降し、活性汚泥との分離がより完全な上澄水を放流
することが可能になる。
Second, in order to promote sedimentation of activated sludge and maintain activated sludge at a surface concentration to improve treatment efficiency, commercial furnace granulated water, zeolite 1, and silica sand are used as inorganic immobilization carriers for fluidized bed reactors. Mako adds cristobalite to the reactor. Activated sludge can be immobilized on the surface of these carriers, and the concentration of activated sludge can be increased, so that the efficiency of BOD decomposition, ammonia compound oxidation reaction, etc. can be increased. In addition, if activated sludge is immobilized on a carrier, the settling of activated sludge during the standing process will be promoted, and the sludge will settle sufficiently before the ORP of the sludge becomes -1150 mV or less, and the supernatant water will be separated from the activated sludge more completely. It becomes possible to release water.

なお、本発明に用いる無l?!系活性汚泥固定化担体は
粒度が10〜200μ階、添加量はリアクターの容量に
対して0.5〜3%程度が良い。これは、回分式活性汚
泥処理の場合、粒度が2()0μm超になるとリアクタ
ー内を均一に流動するのが困難であり、また10μ−未
満だと十分に沈降せずに処理水の放流とともに流出し、
処理水質を低Fさせる原因になるからである。また、添
加量は、沈降促進効果、活性汚泥の面濃度化が0.5%
以上で認められ、3%′t′頭打ちになるので0.5〜
3%の範囲が適正である。
In addition, the material used in the present invention? ! The activated sludge immobilization carrier has a particle size of 10 to 200 μm, and the amount added is preferably about 0.5 to 3% based on the capacity of the reactor. In the case of batch-type activated sludge treatment, if the particle size exceeds 2()0 μm, it is difficult to flow uniformly in the reactor, and if the particle size is less than 10 μm, it will not settle sufficiently and the particles will not settle as the treated water is discharged. leaked out,
This is because it causes the treated water quality to become low in F. In addition, the amount added has a sedimentation promotion effect and surface concentration of activated sludge of 0.5%.
The above is recognized, and it reaches a plateau of 3%'t', so 0.5~
A range of 3% is appropriate.

生物学的処理法によりリン化合物を除去する場合、多く
の要因によってリン化合物が十分に除去できず、そのた
め処理水のリン濃度が商(なることがある。その原因は
次の通りである。
When removing phosphorus compounds using biological treatment methods, the phosphorus compounds may not be removed sufficiently due to many factors, resulting in the phosphorus concentration of the treated water becoming quotient.The causes are as follows.

■嫌気1工程のORPが十分に低下しないため、活性汚
泥からのリンの放出が十分に起こらず、このため次の好
気l工程における活性汚泥によるリンの摂取が十分に起
こらない。
■Since the ORP in the anaerobic 1st step does not decrease sufficiently, phosphorus is not sufficiently released from the activated sludge, and therefore phosphorus is not sufficiently taken up by the activated sludge in the next aerobic 1st step.

■嫌気2工程における脱窒反応が不十分であるとN0x
−Nが残存し、これが次のサイクルの嫌気1上程におけ
るリンの放出を抑制する。
■If the denitrification reaction in the anaerobic 2nd process is insufficient, NOx
-N remains, which suppresses the release of phosphorus during the anaerobic first stage of the next cycle.

(■静置工程で沈降汚泥が嫌気性、具体的にはORPが
−1(i0mV以「になって活性汚泥からリンの再放出
が起る。
(■ In the standing process, the settled sludge becomes anaerobic, specifically, when the ORP becomes -1 (i0 mV or more), phosphorus is re-released from the activated sludge.

((Dについては、先に述べrこ方法により対策を採る
ことができるが、■および■は、その原因が降雨等によ
る水質変動に基づくものである。具体的には、降雨が続
き汚濁物濃度が低い[水が流入すると嫌気1工程のOR
Pが十分に低下しなかったり、あるいは嫌気2工程で水
素供り体として用いている下水の有m5fA度が低いた
め十分に脱窒反応が起らず、N0x−Nが残イtする。
((For D, countermeasures can be taken using the methods mentioned above, but for ■ and ■, the cause is water quality fluctuations due to rainfall, etc.) Specifically, if the rain continues and pollutants The concentration is low [When water flows in, the OR of the anaerobic 1st step
If P is not sufficiently lowered or the m5fA degree of the sewage water used as a hydrogen donor in the anaerobic second step is low, denitrification reaction does not occur sufficiently and NOx-N remains.

このため、リンが十分に除去されず、処理水のリン濃度
を高める原因になる。リン化合物を生物学的方法のみで
除去する場合には、流入ド水の水質変動によるリン除去
性の低ト″を避けることができない。
For this reason, phosphorus is not removed sufficiently, causing an increase in the phosphorus concentration of the treated water. When phosphorus compounds are removed only by biological methods, it is impossible to avoid a decrease in phosphorus removal performance due to fluctuations in the quality of the influent water.

したがって、このような流入r水の水質変動によるリン
除去性低下を防ぐために、好気2工程において無Wl 
l)ン酸化合物と反応して不溶性のリン金属化合物を生
成する水溶性金属化合物を添加する。
Therefore, in order to prevent a decrease in phosphorus removal performance due to changes in the water quality of the inflow water, in the aerobic 2nd step, Wl-free
l) Adding a water-soluble metal compound that reacts with the phosphoric acid compound to form an insoluble phosphorus metal compound.

ド水等のリン化合物を、水溶性の金属化合物、すなわち
塩化鉄、ポリ塩化アルミ (PAC)、硫酸パン土等を
添加して除去する方法は既に知られている。しかし、こ
の化学的リン除去方法はコストが高いとか、余剰汚泥の
発生量が多いとか、あるいは[水のリン化合物の20〜
50%も含まれている有機性リン化合物の除去が困難で
ある等の問題点がある。本発明では、生物学的り法と化
学的方法との組み合せによりこれらの問題点を解決する
。すなわち、回分式活性汚泥処理の場合、好%1上程は
BODの酸化分解、硝化反応、リンの過剰摂取の他に、
有機リン化合物を酸化分解して無機性リン酸化合物に変
換するW1能がある。このため、好気2工程のリン化合
物は大部分が無機性リン酸化合物であり、その大部分が
生物学的に除去されており、残存しているリン化合物は
高々2mH,/l(リンとして)以下である。したがっ
て、リンの排出規制がImg/l以下の場合は1醜g/
1以上を、また0、5mg/l以下の場合は1 、5 
mFI/1以上のリンを除去すれば良い。この残存した
リン化合物を除去するために、好気2工程に無機性リン
化合物と反応して容易に不溶性リン化合物を形成する塩
化!lS2鉄、ポリ塩化アルミ、硫酸パン士等の水溶性
金属化合物を、無機性リン化合物を1〜1 、5 mg
/(リンとして)除去するのに必要な量だけ添加すれば
良い。したがって、生物学的方法と化学的方法とを組み
合せたリン除去法は、化学的除去法に比べて水溶性金属
化合物の使用量が著しく少なくて済むので低コストであ
I)、また汚泥の発生の増加がほとんど無く、生物学的
方法に比べてリンが安定してしかも高効率で除去できる
Methods for removing phosphorus compounds from water such as carbon dioxide by adding water-soluble metal compounds, such as iron chloride, polyaluminum chloride (PAC), and sulfuric acid clay, are already known. However, this chemical phosphorus removal method is expensive, generates a large amount of surplus sludge, or
There are problems such as difficulty in removing organic phosphorus compounds, which contain as much as 50%. The present invention solves these problems by combining biological and chemical methods. In other words, in the case of batch activated sludge treatment, the upper %1 is due to oxidative decomposition of BOD, nitrification reaction, excessive intake of phosphorus,
It has the W1 ability to oxidatively decompose organic phosphorus compounds and convert them into inorganic phosphoric acid compounds. For this reason, most of the phosphorus compounds in the aerobic two-step process are inorganic phosphate compounds, most of which are removed biologically, and the remaining phosphorus compounds are at most 2 mH,/l (as phosphorus). ) is below. Therefore, if the phosphorus emission regulation is below Img/l, 1ug/l
1 or more, or 1, 5 if it is 0, 5 mg/l or less
It is sufficient to remove phosphorus of mFI/1 or more. To remove this residual phosphorus compound, aerobic two-step chlorination reaction with inorganic phosphorus compounds to easily form insoluble phosphorus compounds! 1 to 1.5 mg of water-soluble metal compounds such as iron, polyaluminum chloride, and sulfuric acid, and 1 to 1.5 mg of inorganic phosphorus compounds.
/ Just add the amount necessary to remove (as phosphorus). Therefore, the phosphorus removal method, which combines biological and chemical methods, requires significantly less water-soluble metal compounds than chemical removal methods, resulting in lower costs (I) and the generation of sludge. There is almost no increase in phosphorus, and compared to biological methods, phosphorus can be removed more stably and with higher efficiency.

なお、好気2土程で前述の水溶性金属化合物を用いると
、リンを除去する作用の他に静置工程において活性汚泥
の沈降を促進する作用があるので、沈降汚泥層の嫌気化
が進まない内に上澄水を放流できる利点もある6 また、静置工程において沈降汚泥層の嫌気化を防止する
ため、好気2上程のORPを商めに、具体的には+10
0〜+150mVに維持することも好ましい。
In addition, when the water-soluble metal compound mentioned above is used in the aerobic 2-soil process, in addition to the action of removing phosphorus, it also has the action of promoting the settling of activated sludge in the standing process, so that the anaerobic state of the settled sludge layer progresses. There is also the advantage that the supernatant water can be discharged while the water is still in use.6 Also, in order to prevent the settled sludge layer from becoming anaerobic during the standing process, the ORP of the upper aerobic level is +10.
It is also preferable to maintain it between 0 and +150 mV.

次に、本発明の実施例について説明する。Next, examples of the present invention will be described.

(実施例) 実施例1 リアクターの内容積が’、) !l ml、ORP制御
装置、嫌気」1程、好気工程の切り替え用のシーケンサ
−緩速撹拌機等を備え付けた回分式活性汚泥処理パイロ
ットプラントを用いて、1日3サイクルで下水からB 
OD、窒素化合物、リン化合物を同時に除去する実験を
行った6なお、嫌気工程と好気工程の組み合せ順序およ
び処理時間は次の通りである。
(Example) Example 1 The internal volume of the reactor is ',)! Using a batch type activated sludge treatment pilot plant equipped with an ORP control device, a sequencer for switching between anaerobic and aerobic processes, a slow stirrer, etc., B is extracted from sewage in three cycles a day.
An experiment was conducted to remove OD, nitrogen compounds, and phosphorus compounds at the same time6.The order in which the anaerobic and aerobic steps were combined and the processing time were as follows.

下水の注入十嫌気1工程(60分1ift)→好気1工
程(2,5時flit)→嫌気2工程(3時間)→好気
2工程(30分間)→静置工程(45分間)−放流上程
(15分間) 各工程のORP fltll Illの設定値は、好気
1工程が+120mV、嫌気2工程が一150mV、好
気2工程が+150mVで、IW直上程はO[< Pが
一150mVになったら上層水 (25m’)  を処
理水として放流しrこ。なお、嫌気上程では常時緩速撹
拌を行い、ORPが設定値より低下したらリアクターの
底部より曝気を行い、設定値に回復したら曝気を停止す
ることに上りORP制御を行った。また、好〉(工程で
はルーツブロアーにより常時撹拌を行い、ORPが低ド
したらルーツブロアーの回転数を上げて曝気−を増加し
、設定値に回復したら回転数をFげて曝電量を減らすこ
とによりORP制御を行った。この方法rORP制御を
行った結果、静置工程のORPは、静置30分後でも約
−100mVであり、リンの再放出は起こらながっrこ
。この条件における処理性能を第1表に示す。なお、下
水の分注比は、tLXl土程4工程して嫌気2工程が1
とした。
Injection of sewage - Anaerobic 1st step (60 minutes 1ift) → Aerobic 1st step (2.5 o'clock flit) → Anaerobic 2nd step (3 hours) → Aerobic 2nd step (30 minutes) → Standing step (45 minutes) - Upper stage of discharge (15 minutes) The set values of ORP fltll Ill for each process are +120 mV for aerobic 1st process, 1150 mV for anaerobic 2nd process, +150mV for aerobic 2nd process, and the value just above IW is O When the temperature reaches 25 m, the upper layer water (25 m') is discharged as treated water. In the anaerobic upper stage, slow stirring was always performed, and when ORP fell below the set value, aeration was performed from the bottom of the reactor, and when it recovered to the set value, aeration was stopped and ORP control was performed. In addition, (in the process, stir constantly with a roots blower, and when the ORP is low, increase the rotation speed of the roots blower to increase aeration, and when it recovers to the set value, increase the rotation speed to reduce the amount of electricity exposed. As a result of this method of ORP control, the ORP in the standing step was approximately -100 mV even after 30 minutes of standing, and no re-release of phosphorus occurred. Under these conditions. The treatment performance is shown in Table 1.The sewage dispensing ratio is 4 steps for tLXl soil and 1 step for 2 steps of anaerobic water.
And so.

第1表 供給r水と処理水の水質 化第2鉄水溶液を100m1(F水1階3当り4mlに
相当)添加し、実施例2と同様に嫌気2工程3.5時間
、静置工程15分間で丁水の処理を行った。
Table 1 Water quality of supply r water and treated water 100 ml of ferric aqueous solution (equivalent to 4 ml per 1st floor 3 of F water) was added, followed by anaerobic 2 steps for 3.5 hours in the same manner as in Example 2, and standing step 15. Ding water was processed in minutes.

その結果を第2表に示す6 第2表 供給F水と処理水の水質 実施例2 実施例1と同じ条件で、10〜100μ晴の高炉水砕を
リアクターに0 、5 kg(1%に相当)添加して実
験を行った。その結果、静置1程の汚泥沈降が15分間
で完了することが明らかになったので、嫌気2工程を3
.5時間、静置工程を15分間にしてド水の処理を行っ
た。その結果、処理水のT−Pは0.12〜0.48哨
g/l、K−Nが1.2〜4.5−g/1.NO*  
Nが0.01〜3.7 mg/lとな1)、脱窒反応が
促進された。
The results are shown in Table 2 6 Table 2 Water quality of supply F water and treated water Example 2 Under the same conditions as Example 1, 0.5 kg (1% (equivalent) was added to conduct the experiment. As a result, it became clear that the sludge settling for about 1 time after standing still was completed in 15 minutes, so the anaerobic 2 steps were changed to 3 times.
.. The water was treated for 5 hours and the standing step was for 15 minutes. As a result, the T-P of the treated water was 0.12 to 0.48 g/l, and the K-N was 1.2 to 4.5 g/l. NO*
When N was 0.01 to 3.7 mg/l1), the denitrification reaction was promoted.

実施例3 実施例1と同じ条件で、好気2工程で30%塩(発明の
効果) 本発明により、従来何の対策もなかった回分式活性汚泥
処理方法のf#石工程における活性汚泥からのリン化合
物の放出、および生物学的または化学的脱リン法の問題
点に的確に対処でき、最終処理水のリン化合物濃度を安
定して低く維持することが可能となる。
Example 3 Under the same conditions as Example 1, 30% salt was obtained in two aerobic steps (effects of the invention) By the present invention, the activated sludge in the f# stone step of the batch activated sludge treatment method, for which no measures had been taken in the past, was The problem of phosphorus compound release and biological or chemical dephosphorization methods can be accurately addressed, and the phosphorus compound concentration of the final treated water can be stably maintained at a low level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、静置工程における沈降汚泥層のORPと沈降
汚泥層の濾過により汚泥を除いた処理水のT−P  (
全リン)1%度との関係を示す図である。 第1図
Figure 1 shows the ORP of the settled sludge layer in the standing process and the T-P (
It is a figure showing the relationship with total phosphorus) 1% degree. Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)少なくともBOD、アンモニア化合物、リン化合
物を富栄養化物質として含む廃水の回分式活性汚泥処理
方法であって、活性汚泥が存在するリアクターに機械的
撹拌を行いながら廃水を注入し、活性汚泥よりリン化合
物を放出させる嫌気1工程と、曝気を行いORPを+1
00〜+120mV以上(銀−塩化銀電極基準)の範囲
に制御してBODの酸化分解とアンモニア化合物の酸化
とを行うとともにリン化合物を活性汚泥に過剰摂取させ
る好気1工程と、廃水の一部を水素供与体に用いてこれ
を分注しながら機械的撹拌または機械的撹拌に加えて曝
気によりORPを−50〜−150mV(銀−塩化銀電
極基準)の範囲に制御して窒素酸化物を窒素ガスに還元
させる嫌気2工程と、曝気を行いORPを+50〜+1
50mVに維持し、過剰の水素供与体のBODの酸化分
解を行うとともに窒素ガスを気泡にして除去する好気2
工程と、活性汚泥混合液から汚泥を沈降させ、沈降汚泥
と上澄液とに分離する静置工程と、上澄水を処理水とし
て放流する放流工程とからなる回分式活性汚泥処理方法
において、 静置工程における沈降汚泥層のORPを測定し、測定値
が−150mV以下(銀−塩化銀電極基準)になったら
上澄水を放流する放流工程に移行することを特徴とする
回分式活性汚泥処理方法。
(1) A batch activated sludge treatment method for wastewater containing at least BOD, ammonia compounds, and phosphorus compounds as eutrophic substances, in which wastewater is injected into a reactor in which activated sludge is present while mechanical stirring is performed, and the activated sludge is Anaerobic step to release more phosphorus compounds and aeration to increase ORP by 1
An aerobic step in which BOD is oxidized and decomposed and ammonia compounds are oxidized while being controlled within the range of 00 to +120 mV or more (according to silver-silver chloride electrodes), and phosphorus compounds are ingested excessively into activated sludge, and a portion of the wastewater is was used as a hydrogen donor, and while dispensing it, the ORP was controlled in the range of -50 to -150 mV (based on silver-silver chloride electrode) by mechanical stirring or aeration in addition to mechanical stirring, and nitrogen oxides were removed. Two anaerobic steps to reduce to nitrogen gas and aeration to increase ORP +50 to +1
Aerobic 2 which maintains the voltage at 50 mV and oxidizes and decomposes the excess hydrogen donor BOD and removes nitrogen gas by forming bubbles.
In the batch activated sludge treatment method, which consists of a process, a standing process in which sludge is settled from an activated sludge mixture and separated into settled sludge and a supernatant liquid, and a discharge process in which the supernatant water is discharged as treated water. A batch activated sludge treatment method characterized by measuring the ORP of the settled sludge layer in the loading step, and moving to the discharge step in which supernatant water is discharged when the measured value is −150 mV or less (based on silver-silver chloride electrodes). .
(2)無機系活性汚泥固定化担体として高炉水砕、ゼオ
ライト、珪砂またはクリストバライトをリアクターに添
加する請求項1記載の回分式活性汚泥処理方法。
(2) The batch activated sludge treatment method according to claim 1, wherein granulated blast furnace, zeolite, silica sand, or cristobalite is added to the reactor as an inorganic activated sludge immobilization carrier.
(3)好気2工程において、リン化合物と反応して不溶
性のリン−金属化合物を形成する水溶性金属化合物を添
加する請求項1記載の回分式活性汚泥処理方法。
(3) The batch activated sludge treatment method according to claim 1, wherein in the two aerobic steps, a water-soluble metal compound that reacts with the phosphorus compound to form an insoluble phosphorus-metal compound is added.
(4)好気2工程においてORPを+100〜+150
mVに制御する請求項1〜3のいずれか記載の回号式活
性汚泥処理方法。
(4) ORP +100 to +150 in aerobic 2 steps
The circular activated sludge treatment method according to any one of claims 1 to 3, wherein the activated sludge treatment method is controlled to mV.
JP10818690A 1990-04-24 1990-04-24 Batch activated sludge treatment method Expired - Fee Related JP2750773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10818690A JP2750773B2 (en) 1990-04-24 1990-04-24 Batch activated sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10818690A JP2750773B2 (en) 1990-04-24 1990-04-24 Batch activated sludge treatment method

Publications (2)

Publication Number Publication Date
JPH047098A true JPH047098A (en) 1992-01-10
JP2750773B2 JP2750773B2 (en) 1998-05-13

Family

ID=14478184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10818690A Expired - Fee Related JP2750773B2 (en) 1990-04-24 1990-04-24 Batch activated sludge treatment method

Country Status (1)

Country Link
JP (1) JP2750773B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300583A (en) * 2000-04-25 2001-10-30 Nisshinbo Ind Inc Nitrification and denitrification method for organic waste water
JP2007326030A (en) * 2006-06-07 2007-12-20 Maezawa Ind Inc Operation method of oxidation ditch

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126599A (en) * 1986-11-17 1988-05-30 Nippon Steel Corp Biochemical treatment of waste water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126599A (en) * 1986-11-17 1988-05-30 Nippon Steel Corp Biochemical treatment of waste water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300583A (en) * 2000-04-25 2001-10-30 Nisshinbo Ind Inc Nitrification and denitrification method for organic waste water
JP2007326030A (en) * 2006-06-07 2007-12-20 Maezawa Ind Inc Operation method of oxidation ditch

Also Published As

Publication number Publication date
JP2750773B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
CN107265639A (en) A kind of integral split-phase combined type denitrogenation of waste water device and a kind of method of denitrogenation of waste water
CN111018132B (en) Water treatment device for nitrogen and phosphorus removal and treatment method thereof
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP2008155085A (en) Waste water treatment method and apparatus
JPS60206494A (en) Simultaneous removal of nitrogen and phosphorus in waste water by sulfur replenishing aerobic-anaerobic activated sludge method
JP2002086190A (en) Waste water treating device
JPH047098A (en) Batchwise activated sludge treatment method
JPS6317513B2 (en)
JPH047095A (en) Uniformly mixing method of aeration tank in activated sludge treatment
JPS63126599A (en) Biochemical treatment of waste water
JPH0975992A (en) Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
JP2003024982A (en) Biological denitrification method and biological denitrification apparatus
JP2720096B2 (en) Method for simultaneous removal of BOD, nitrogen compounds and phosphorus compounds in wastewater
JPS60139396A (en) Removal of phosphorous and nitrogen from bod- containing water
JPH05192687A (en) Batch type sewage treatment
JPS63158194A (en) Biological treatment of organic sewage
CN111498926B (en) Sewage treatment system and treatment process
JP2947684B2 (en) Nitrogen removal equipment
JPS6342796A (en) Continuous activated sludge treatment of sewerage by using blast furnace granulated slag as carrier for immobilizing activated sludge
JP3639679B2 (en) Nitrogen removal method of wastewater by modified activated sludge circulation method
JPS60129194A (en) Treatment of sewage
JPH06182377A (en) Method for treating sewage
JPH03278896A (en) Simultaneous removal of bod, nitrogen compound and phosphorus compound in waste water
JPH03207496A (en) Method for simultaneously removing bod, nitrogen compound and phosphorus compound in waste water
JPH02139094A (en) Method and equipment for removing nitrogen from sewage

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees