JPH0470788B2 - - Google Patents

Info

Publication number
JPH0470788B2
JPH0470788B2 JP58032901A JP3290183A JPH0470788B2 JP H0470788 B2 JPH0470788 B2 JP H0470788B2 JP 58032901 A JP58032901 A JP 58032901A JP 3290183 A JP3290183 A JP 3290183A JP H0470788 B2 JPH0470788 B2 JP H0470788B2
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
solar cell
coarse
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58032901A
Other languages
Japanese (ja)
Other versions
JPS59159574A (en
Inventor
Atsushi Tachika
Seijiro Sano
Tsuneo Myake
Osamu Kuboi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Komatsu Ltd
Original Assignee
Komatsu Ltd
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd, Komatsu Electronic Metals Co Ltd filed Critical Komatsu Ltd
Priority to JP58032901A priority Critical patent/JPS59159574A/en
Publication of JPS59159574A publication Critical patent/JPS59159574A/en
Publication of JPH0470788B2 publication Critical patent/JPH0470788B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は透明導電膜の表面を粗粒面にして光
の吸収効率を増加させたアモルフアス太陽電池に
関する。 従来アモルフアス太陽電池の透明電極には導電
性が優れていることから、イソジウウムスズ酸化
物(ITO)が使用されてきた。しかしアモルフア
ス太陽電池の積層は低真空中のプラズマCVD法
によつてモノシラン(SiH4)などのガスを分解
させて実施するため、ITOがプラズマにより劣化
する。このため現在ではITOより導電性は低い
が、プラズマに対して安定なSnO2をITOの表面
にコーテイングして特性を改善したものを使用し
ている。また上記SnO2をコーテイングした透明
電極については電気伝導度、プラズマに対する安
定性及び透明度が良否判定の基準となつているこ
とから、従来では透明電極の表面を平滑にする程
良いと考えられていた。しかし透明導電膜の表面
形状を変えて実験したところ、平滑面にするより
粗粒面にする方が光の吸収効率が増加することが
解つた。この発明はかかる点に着目してなされた
もので、透明電極に形成する透明導電膜を粗粒面
として光の吸収効率を増大させることにより特性
を向上させたアモルフアス太陽電池を提供しよう
とするものである。 以下この発明の一実施例を図面を参照して詳述
する。 第1図は、SiCを使用したPin型のアモルフア
ス太陽電池を示すもので、ガラス上に透明導電膜
5を蒸着し、その上にP−アモルフアスSi4、i
−アモルフアスSi3、n−アモルフアスSi2を順次
積層し、更にその上に金属電極1を付けたもので
ある。光はガラス側より入光するようになつてい
る。 上記構成されたアモルフアス太陽電池の透明電
極5の透明導電膜は、ガラス6の表面にITOや
ITO+SnO2を電子ビーム蒸着法により蒸着する
ことによつて形成されているが、従来では透明導
電膜の表面は平滑な程良いと考えられていたこと
もあつて、その表面は第6図イに示すような平滑
面に仕上げられており、その出力特性は第2図d
に示すものであつた。なお特性値については後述
する。 次に透明導電膜の表面粗さを第3図から第5図
に示すように変えて、上記従来のものと同様な方
法で出力特性を測定したところ、第2図aないし
cに示す結果が得られた。 第3図イにおける透明導電膜は電子ビーム蒸着
法により形成したもので、その表面をさらに拡大
すると第3図ロに示すように立方体状の結晶が高
さ方向に立体的に成長して粗粒面を形成してお
り、出力特性測定結果では、この粒子構造の粗粒
面がもつとも効率がよいことが確認できた。 また第4図イに示す透明導電膜も上記第3図に
示すものと同様な方法で製造されており、その表
面をさらに拡大すると第4図ロに示すように立方
体状ではないが、多数の結晶粒子が高さ方向に成
長して粗粒面を形成しており、出力特性は第2図
bに示す通りである。 さらに第5図イに示す透明導電膜も上記第3図
及び第4図に示すものと同様な方法で製造され、
その表面をさらに拡大すると、第4図ロに示すほ
どではないが、多数の結晶粒子が高さ方向に成長
されており、その出力特性は第2図cと、何れの
場合でも、従来の表面を平滑としたものに比べて
出力特性が優れていることが確認できた。 なお第3図イ,ロないし第6図イ,ロは何れも
電子顕微鏡写真であつて、図下の数字は倍率を示
す。すなわち50.4KXは50.4×103倍を示すもので
ある。 また第3図イ,ロないし第6図イ,ロの顕微鏡
写真の下部に示される横線と数値は、横線の長さ
を数値で表わしたもので、例えば第3図イの横線
の長さは198nm、第3図ロの横線の長さは100nm
を示す。 これら横線及び数値をもとに粗粒面を形成する
結晶粒の高さを算出すると、500Å〜2000Åであ
る。 また結晶粒の密度は30〜90ケ/μm2である。 結晶粒の高さを500Å以上にすると太陽電池の
曲線因子が大幅に向上し、変換効率が改善され、
2000Å以上では太陽電池の性能の歩留まりが悪く
なり実用的ではない。 なお第7図に結晶粒の高さと変換効率の関係を
示す。 一方結晶粒の密度を30ケ/μm2以上にすると、
太陽電池の短絡電流が1〜2mA/cm2増加し、変
換効率が改善されるが90ケ/μm2以上ではその効
果がなくなる。 なお第8図に結晶粒の密度と短絡電流の関係を
示す。 さらに上記各太陽電池の特性は開放電圧Voc、
短絡電流Isc、曲線因子FF、効率ηとした場合次
の通りである。
The present invention relates to an amorphous solar cell in which the surface of a transparent conductive film is made coarse to increase light absorption efficiency. Conventionally, isodium tin oxide (ITO) has been used for transparent electrodes in amorphous solar cells because of its excellent conductivity. However, since the stacking of amorphous solar cells is carried out by decomposing gases such as monosilane (SiH 4 ) using the plasma CVD method in a low vacuum, ITO deteriorates due to the plasma. For this reason, currently ITO is coated with SnO 2 , which has lower conductivity than ITO but is stable against plasma, to improve its properties. Furthermore, for the transparent electrode coated with SnO 2 mentioned above, electrical conductivity, stability against plasma, and transparency are the criteria for determining pass/fail, so it was previously thought that the smoother the surface of the transparent electrode, the better. . However, when we experimented with changing the surface shape of the transparent conductive film, we found that a rough-grained surface increases the light absorption efficiency more than a smooth surface. This invention has been made with attention to this point, and aims to provide an amorphous solar cell with improved characteristics by increasing the light absorption efficiency by making the transparent conductive film formed on the transparent electrode a coarse-grained surface. It is. An embodiment of the present invention will be described in detail below with reference to the drawings. Figure 1 shows a pin-type amorphous solar cell using SiC. A transparent conductive film 5 is deposited on glass, and P-amorphous Si4, i
-Amorphous Si3 and n-amorphous Si2 are sequentially laminated, and a metal electrode 1 is further attached thereon. Light enters from the glass side. The transparent conductive film of the transparent electrode 5 of the amorphous solar cell configured as described above is coated with ITO or other materials on the surface of the glass 6.
It is formed by depositing ITO + SnO 2 by electron beam evaporation, and it was previously thought that the smoother the surface of the transparent conductive film, the better; It is finished with a smooth surface as shown, and its output characteristics are shown in Figure 2 d.
It was as shown below. Note that the characteristic values will be described later. Next, the surface roughness of the transparent conductive film was changed as shown in FIGS. 3 to 5, and the output characteristics were measured in the same manner as the conventional method described above, and the results shown in FIGS. 2 a to c were obtained. Obtained. The transparent conductive film in Figure 3A was formed by electron beam evaporation, and when its surface is further enlarged, as shown in Figure 3B, cubic crystals grow three-dimensionally in the height direction, resulting in coarse grains. The output characteristic measurement results confirmed that the coarse grained surface of this particle structure is highly efficient. The transparent conductive film shown in Fig. 4A is also produced in the same manner as shown in Fig. 3 above, and when its surface is further enlarged, as shown in Fig. 4B, it is not cubic, but has a large number of The crystal grains grow in the height direction to form a coarse grain surface, and the output characteristics are as shown in FIG. 2b. Furthermore, the transparent conductive film shown in FIG. 5A is also manufactured by the same method as shown in FIGS. 3 and 4 above,
When the surface is further enlarged, a large number of crystal grains have grown in the height direction, although it is not as large as shown in Figure 4 (b), and its output characteristics are as shown in Figure 2 (c), which are similar to those of the conventional surface. It was confirmed that the output characteristics are superior to those with smoothed surfaces. Note that Figures 3A and 3B to 6A and 6B are all electron micrographs, and the numbers at the bottom of the figures indicate the magnification. In other words, 50.4KX indicates 50.4×10 3 times. In addition, the horizontal lines and numbers shown at the bottom of the micrographs in Figure 3 A, B to Figure 6 A, B are numerical representations of the length of the horizontal line. For example, the length of the horizontal line in Figure 3 A is 198nm, the length of the horizontal line in Figure 3 B is 100nm
shows. The height of the crystal grains forming the coarse grain surface is calculated from 500 Å to 2000 Å based on these horizontal lines and numerical values. Moreover, the density of crystal grains is 30 to 90 grains/μm 2 . Increasing the grain height to more than 500 Å significantly increases the fill factor of the solar cell and improves the conversion efficiency.
If it is more than 2000 Å, the yield of solar cell performance will be poor and it is not practical. Note that FIG. 7 shows the relationship between crystal grain height and conversion efficiency. On the other hand, if the density of crystal grains is set to 30 particles/μm2 or more,
The short circuit current of the solar cell increases by 1 to 2 mA/cm 2 and the conversion efficiency is improved, but the effect disappears when it exceeds 90 mA/μm 2 . Incidentally, FIG. 8 shows the relationship between crystal grain density and short circuit current. Furthermore, the characteristics of each solar cell above are the open circuit voltage Voc,
When short circuit current Isc, fill factor FF, and efficiency η are as follows.

【表】 この発明は以上詳述したように、透明導電膜の
表面を多数の結晶粒を高さ方向に立体的に成長さ
せることにより形成した粗粒面としたことによ
り、変換効率が大幅に改善されると共に、太陽電
池性能の歩留りも向上する。 この粗粒面を持つた透明導電膜は、SUS等の
金属基板を用い、この上に順次複数のアモルフア
スSi層を積層し、この後透明導電膜を着け、さら
に金属電極を着けた、いわゆる金属基板を用いた
アモルフアス太陽電池にも同様に応用することが
でき、その場合の効果も同様であつた。
[Table] As detailed above, in this invention, the conversion efficiency is significantly increased by making the surface of the transparent conductive film a coarse-grained surface formed by growing a large number of crystal grains three-dimensionally in the height direction. Along with this improvement, the yield of solar cell performance also increases. This transparent conductive film with a coarse-grained surface is made by using a metal substrate such as SUS, stacking multiple amorphous silicon layers on top of this, then applying a transparent conductive film, and then applying a metal electrode. It can be similarly applied to an amorphous solar cell using a substrate, and the effects in that case were also similar.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を示し、第1図はア
モルフアス太陽電池の構造を示す概略図、第2図
は出力特性を示す線図、第3図イ,ロ、第4図
イ,ロ、第5図イ、第6図イ,ロは夫々透明導電
膜の表面組織を示す顕微鏡写真、第7図は結晶粒
の高さと変換効率の関係を示す線図、第8図は結
晶粒の密度と短絡電流の関係を示す線図である。 1は金属電極、5は透明電極、6はガラス層。
The drawings show an embodiment of the present invention; FIG. 1 is a schematic diagram showing the structure of an amorphous solar cell, FIG. 2 is a diagram showing output characteristics, FIG. 3 A, B, FIG. 4 A, B, Figure 5 A, Figure 6 A, and B are micrographs showing the surface structure of the transparent conductive film, Figure 7 is a diagram showing the relationship between crystal grain height and conversion efficiency, and Figure 8 is crystal grain density. FIG. 3 is a diagram showing the relationship between short circuit current and short circuit current. 1 is a metal electrode, 5 is a transparent electrode, and 6 is a glass layer.

Claims (1)

【特許請求の範囲】[Claims] 1 透明導電膜の表面を、多数の立方体状結晶粒
を高さ方向に成長させることにより形成した粗粒
面となすと共に、上記結晶粒の高さを500〜2000
Åに、また結晶粒の密度を30〜90個/μm2とした
ことを特徴とするアモルフアス太陽電池。
1 The surface of the transparent conductive film is made into a coarse-grained surface formed by growing a large number of cubic crystal grains in the height direction, and the height of the crystal grains is set to 500 to 2000.
An amorphous solar cell characterized by having a crystal grain density of 30 to 90 particles/μm 2 .
JP58032901A 1983-03-02 1983-03-02 Amorphous solar battery Granted JPS59159574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58032901A JPS59159574A (en) 1983-03-02 1983-03-02 Amorphous solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58032901A JPS59159574A (en) 1983-03-02 1983-03-02 Amorphous solar battery

Publications (2)

Publication Number Publication Date
JPS59159574A JPS59159574A (en) 1984-09-10
JPH0470788B2 true JPH0470788B2 (en) 1992-11-11

Family

ID=12371794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58032901A Granted JPS59159574A (en) 1983-03-02 1983-03-02 Amorphous solar battery

Country Status (1)

Country Link
JP (1) JPS59159574A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784651B2 (en) * 1986-06-20 1995-09-13 ティーディーケイ株式会社 Transparent conductive film and method for manufacturing the same
JP3431776B2 (en) * 1995-11-13 2003-07-28 シャープ株式会社 Manufacturing method of solar cell substrate and solar cell substrate processing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857756A (en) * 1981-10-01 1983-04-06 Agency Of Ind Science & Technol Amorphous silicon solar battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857756A (en) * 1981-10-01 1983-04-06 Agency Of Ind Science & Technol Amorphous silicon solar battery

Also Published As

Publication number Publication date
JPS59159574A (en) 1984-09-10

Similar Documents

Publication Publication Date Title
US4694116A (en) Thin-film solar cell
US7893348B2 (en) Nanowires in thin-film silicon solar cells
WO1999010933A1 (en) Thin film photoelectric transducer
JPH0577192B2 (en)
US4338482A (en) Photovoltaic cell
EP0137291B1 (en) Amorphous silicon solar cells
JPS6233479A (en) Solar cell
JP2001217440A (en) Hybrid thin film photoelectric conversion device and translucent laminate used for the same
CN103238218A (en) Multiple-junction photoelectric device and its production process
JPH0470788B2 (en)
JPH0473305B2 (en)
CN105845768A (en) Solar battery, and preparation method and device of solar battery
JPH09307130A (en) Thin film photoelectric material and thin film type photoelectric converter containing the same
JP4488550B2 (en) Thin film solar cell and manufacturing method thereof
JP2003101052A (en) Conductive light-reflecting film, forming method therefor and solar battery
JPH04218977A (en) Photovoltaic device and fabrication thereof
JPH0438147B2 (en)
JPH0122991B2 (en)
JP2001015787A (en) Substrate with transparent conductive film, manufacturing method therefor, and solar battery
JPS6024078A (en) Photovoltaic device
JPS61120480A (en) Photoelectric converter
EP2351091B1 (en) Multiple-junction photoelectric device and its production process
JPH05275725A (en) Photovoltaic device and its manufacture
JPS6152992B2 (en)
JP2000312014A (en) Thin-film photoelectric conversion device