JPH0469759B2 - - Google Patents

Info

Publication number
JPH0469759B2
JPH0469759B2 JP60183677A JP18367785A JPH0469759B2 JP H0469759 B2 JPH0469759 B2 JP H0469759B2 JP 60183677 A JP60183677 A JP 60183677A JP 18367785 A JP18367785 A JP 18367785A JP H0469759 B2 JPH0469759 B2 JP H0469759B2
Authority
JP
Japan
Prior art keywords
criticality
plot
dilution water
time
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60183677A
Other languages
Japanese (ja)
Other versions
JPS6243596A (en
Inventor
Hiroshi Tochihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP60183677A priority Critical patent/JPS6243596A/en
Publication of JPS6243596A publication Critical patent/JPS6243596A/en
Publication of JPH0469759B2 publication Critical patent/JPH0469759B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 (イ) 発明の目的 [産業上の利用分野] この発明は加圧水型原子炉のように希釈水を添
加し1次冷却材中のほう素濃度を変化させ原子炉
の臨界を達成する原子炉の臨界接近監視方法に関
するものである。
[Detailed Description of the Invention] (a) Purpose of the Invention [Field of Industrial Application] This invention is a nuclear reactor that changes the boron concentration in the primary coolant by adding dilution water like in a pressurized water reactor. This invention relates to a method for monitoring the approach of a nuclear reactor to achieve criticality.

[従来の技術] 原子炉を臨界状態に維持するには、中性子の発
生と吸収をバランスさせ、核分裂反応を一定状態
に保持させる必要があり、一般の原子炉では反応
度制御手段として設備している制御棒の操作、す
なわち、制御棒の炉心から引抜き、及び、1次冷
却材中のほう素濃度を変化させる(希釈水の添加
により1次冷却材中ほう素濃度を低くする)こと
によつて臨界状態を達成する。
[Prior art] In order to maintain a nuclear reactor in a critical state, it is necessary to balance the generation and absorption of neutrons and maintain the nuclear fission reaction in a constant state. In other words, by withdrawing the control rod from the core and changing the boron concentration in the primary coolant (lowering the boron concentration in the primary coolant by adding dilution water). A critical state is achieved.

加圧水型原子炉においては、1次冷却材中のほ
う素濃度を原子炉停止時のほう素濃度から、希釈
水の添加により次第に希釈して減少させ原子炉を
臨界状態に接近させる方法が採用されている。こ
の場合、原子炉が臨界状態への接近の各時点にお
いて、どの程度の未臨界状態にあり、また、希釈
水をどの程度添加すれば臨界になるかを把握する
ために、線源領域中性子検出器による核計測(中
性子の検出)が行われる。この線源領域中性子検
出器による中性子の検出は、例えば、第3図に符
号1で示される線源領域中性子検出器(NE−3
1及びNE−32)によつて計測され、この検出
器からの信号により臨界接近を監視している。
In pressurized water reactors, a method is adopted in which the boron concentration in the primary coolant is gradually diluted and reduced from the boron concentration at reactor shutdown by adding dilution water, bringing the reactor closer to a critical state. ing. In this case, in order to understand to what extent the reactor is in a subcritical state at each point in time when it approaches a critical state, and how much dilution water must be added to make it critical, neutron detection in the source area is used. Nuclear measurements (detection of neutrons) are carried out using instruments. The detection of neutrons by this source area neutron detector is carried out, for example, by the source area neutron detector (NE-3) shown with reference numeral 1 in FIG.
1 and NE-32), and the approach of criticality is monitored by the signal from this detector.

すなわち、第3図の符号2に示される中性子線
源によつて発生する中性子総数は中性子線源強度
をS0(n/sec)とすると S0/(1−Keff) ……(1)式 となることが知られている。
That is, the total number of neutrons generated by the neutron source indicated by reference numeral 2 in Fig. 3 is S 0 /(1-K eff )...(1) where the neutron source intensity is S 0 (n/sec). It is known that the formula is

ここで、Keffは原子炉の実効増倍率であり、臨
界状態ではKeff=0.1であり、未臨界ではKeff<1.0
である。
Here, K eff is the effective multiplication factor of the reactor, in the critical state K eff = 0.1, and in the subcritical state K eff <1.0
It is.

また、線源領域中性子検出器1で測定される中
性子数は前記(1)式に比例するので1−Keffに反比
例することになる。そして、一般的に、臨界接近
時には次に示す(1/M)なるデータ処理をして
臨界を監視している。
Further, the number of neutrons measured by the source area neutron detector 1 is proportional to the above equation (1), and therefore is inversely proportional to 1- Keff . Generally, when approaching criticality, the following data processing (1/M) is performed to monitor criticality.

すなわち、 (1/M)=(基準状態での線源領域中性子検出値)/
(測定時点での線源領域中性子検出値)……(2)式 ただし、基準状態での線源領域中性子検出値と
は臨界接近開始前の安定した状態で線源領域中性
子検出器により計測した中性子数をいい、この値
は、(1/M)プロツト継続中同一数値が用いら
れる。
That is, (1/M)=(source area neutron detection value in reference state)/
(Source area neutron detection value at the time of measurement)...Equation (2) However, the source area neutron detection value in the reference state is the value measured by the source area neutron detector in a stable state before the start of critical approach. This refers to the number of neutrons, and the same value is used throughout the (1/M) plot.

このように、(1/M)データを経時的に計測
するこにより1−Keffの値を監視し、従つて、
(1/M)データが零に接近することを監視する
ことによつて原子炉の臨界を監視している。
In this way, the value of 1-K eff is monitored by measuring (1/M) data over time, and therefore,
The criticality of the reactor is monitored by monitoring that the (1/M) data approaches zero.

しかるに、1−Keffは実際上は希釈水量に比例
するので、(1/M)は希釈水量に対し減少する
関係にある。
However, since 1- Keff is actually proportional to the amount of dilution water, (1/M) is in a decreasing relationship with the amount of dilution water.

前述したように、本来の手法(計算式)では
(1/M)プロツトは1−Keff或は希釈水量に対
し単調減少の直線となるはずであるが、実際には
そうならない。この原因は、中性子線源2の位置
が第3図に示されるように炉心3の外境界近くに
あり、炉心内側深くに配置されていないため、原
子炉圧力容器5外の検出器1で計測される中性子
は必ずしも炉心3の核分裂による中性子のみでな
く中性子線源2から直線入るものも含まれている
からである。従つて、(1/M)プロツトの形は
中性子線源位置及び炉心構成によつて異なつたも
のとなり、これら位置関係から必ずしも直線の関
係にならない。
As mentioned above, in the original method (calculation formula), the (1/M) plot is supposed to be a straight line that monotonically decreases with respect to 1-K eff or the amount of dilution water, but this is not actually the case. The reason for this is that the neutron source 2 is located near the outer boundary of the reactor core 3, as shown in Figure 3, and is not located deep inside the reactor core. This is because the neutrons that are generated include not only neutrons generated by nuclear fission in the reactor core 3 but also neutrons that enter straight from the neutron source 2. Therefore, the shape of the (1/M) plot varies depending on the neutron source position and core configuration, and these positional relationships do not necessarily result in a linear relationship.

その一例を実際の加圧水原子炉について第4図
に示す。第4図は(1/M)プロツトによる臨界
近接記録図(対希釈水量)を示したものである
が、同図中符号6に示される曲線は検出器NE−
31による(1/M)プロツト、符号7に示され
る曲線は検出器NE−32による(1/M)プロ
ツトである。このように、1−Keffに比例する希
釈水量に対し(1/M)は単純な直線とならない
ことがわかる。特に、臨界に接近したところでは
図中符号9で示した直線(一点鎖線)からずれて
いることがわかる。
An example of this is shown in FIG. 4 for an actual pressurized water reactor. Fig. 4 shows a critical proximity record diagram (vs. dilution water volume) based on the (1/M) plot, and the curve indicated by numeral 6 in the figure is based on the detector NE-
The curve shown at 7 is the (1/M) plot of detector NE-32. In this way, it can be seen that (1/M) does not form a simple straight line for the amount of dilution water that is proportional to 1- Keff . In particular, it can be seen that at the point approaching the criticality, there is a deviation from the straight line (dotted chain line) indicated by reference numeral 9 in the figure.

実際の臨界管理の目的から、臨界接近時にあと
どの程度の希釈水量で臨界に達するかを予測する
ことが重要であり、従つて、第4図に示されるよ
うな従来の方法においては(1/M)プロツトの
直線からのずれは臨界の予測という点で正確に欠
ける問題があつた。
For the purpose of actual criticality control, it is important to predict how much dilution water remains to reach criticality when approaching criticality. Therefore, in the conventional method shown in Figure 4, (1/ M) There was a problem that the deviation of the plot from the straight line was not accurate in predicting the criticality.

[発明が解決しようとする問題点] この発明は上記の如き事情に鑑みてなされたも
のであつて、従来の臨界近接時の臨界管理に使用
している(1/M)プロツトにおいて(1/M)
1−Keffに対し直線にならないために生じた最終
の臨界時点の予測の困難性を克服し、臨界時点を
制度良く予測しうる原子炉の臨界接近監視方法を
提供することを目的とするものである。
[Problems to be solved by the invention] This invention has been made in view of the above-mentioned circumstances. M)
1-The objective is to overcome the difficulty of predicting the final critical point due to the non-linear relationship with K eff and to provide a method for monitoring the approach of criticality of a nuclear reactor that can accurately predict the critical point. It is.

(ロ) 発明の構成 [問題を解決するための手段] この目的に対応して、この発明の原子炉の臨界
接近監視方法は、制御棒操作及び1次冷却材中の
ほう素濃度を変化させ(基準状態での線源領域中
性子検出値)/(測定時点での線源領域中性子検
出値)で定義される(1/M)プロツトを用いて
臨界接近時の臨界管理を行う方法において、前記
(1/M)プロツトを少なくとも3回経時的に求
め、各時点の(1/M)に対し ((1/M))=K1T−+K2(VT−v) +K3(VT−v)2 ただし VT…臨界となる時点までの必要な希釈水量 v……当該測定時点までの希釈水量 K1、K2、K3…(1/M)プロツトを再現する定
数 の式を与え、更に、初期条件としてv=0で
(1/M)=1.0を仮定とする前記複数の連立式か
ら導かれるVTにより原子炉の臨界接近を予測す
ることを特徴としている。
(b) Structure of the invention [Means for solving the problem] In response to this objective, the method for monitoring criticality approach of a nuclear reactor of the present invention changes the control rod operation and the boron concentration in the primary coolant. In the method for managing criticality at the time of criticality approach using the (1/M) plot defined by (source area neutron detection value in the reference state)/(source area neutron detection value at the time of measurement), Obtain the (1/M) plot at least three times over time, and for (1/M) at each time point, ((1/M)) = K 1T −+K 2 (V T −v) +K 3 (V T - v) 2However , V T ...Amount of dilution water required up to the critical point v...Amount of dilution water up to the relevant measurement point K1 , K2 , K3 ...(1/M) Constant formula to reproduce the plot The present invention is characterized in that it further predicts the approach of a nuclear reactor to criticality using V T derived from the plurality of simultaneous equations assuming v = 0 and (1/M) = 1.0 as initial conditions.

以下、この発明の詳細を一実施例を示す図面に
ついて説明する。
Hereinafter, details of the present invention will be explained with reference to the drawings showing one embodiment.

第1図は1次元拡散計算コードにて(1/M)
プロツトを予測計算した例((1/M)プロツト
の1−Keffによる変化例)を示している。
Figure 1 is a one-dimensional diffusion calculation code (1/M)
An example of predictive calculation of the plot (an example of a change in the (1/M) plot due to 1-K eff ) is shown.

図中符号12で示される直線は1−Keffに対
し、比例関係となる例であり、符号11で示され
る一点鎖線は炉心外境界より約35cm内側に線源が
ある例であり、符号10で示される点線は炉心外
境界より約20cm内側に線源のある例である。第1
図において符号10,11で示される曲線は前述
した第4図の曲線6,7と同様な形となつてお
り、線源位置により(1/M)プロツトの形が変
ることを示している。これら計算結果及び実際の
(1/M)プロツトから、次の計算式により
(1/M)プロツトを再現することが本発明の特
徴とするところである。
The straight line indicated by numeral 12 in the figure is an example in which there is a proportional relationship to 1-K eff , and the dashed line indicated by numeral 11 is an example in which the radiation source is approximately 35 cm inside the core outer boundary, and the line indicated by numeral 10 The dotted line shown is an example where the source is approximately 20 cm inside the outer core boundary. 1st
The curves indicated by reference numerals 10 and 11 in the figure have shapes similar to the curves 6 and 7 in FIG. 4 described above, indicating that the shape of the (1/M) plot changes depending on the position of the radiation source. A feature of the present invention is to reproduce the (1/M) plot using the following calculation formula from these calculation results and the actual (1/M) plot.

すなわち、 (1/M)=K1T−+K2(VT−v) +K3(VT−v)2 ただし VT…臨界(Keff=1.0)となる時点までの必要な
希釈水量 v……当該測定時点までの希釈水量 K1、K2、K3…(1/M)プロツトを再現する定
数 前記計算式を希釈水を添加し原子炉の臨界接近
過程における少なくとも3回の経時的な(1/
M)、すなわち(2)式に与えて、これら複数のセツ
ト(連立式)より臨界となる時点までの必要な希
釈水量VTを求める。こうして、VTが求められれ
ば当該測定時点(経時的に3回測定した場合はそ
の最終回の測定時点)までの希釈水量(v)は既に計
測された既知の数値であるから、前記VTからv
を差引けば当該測定時点より臨界までに必要とす
る希釈水量を知ることができ、従つて、臨界の接
近を精度良く予測することができる。
In other words, (1/M)=K 1T −+K 2 (V T −v) +K 3 (V T −v) 2However , V T ...The amount of dilution water required until the point of criticality (K eff = 1.0) v... Amount of dilution water up to the relevant measurement point K 1 , K 2 , K 3 ... (1/M) Constant to reproduce the plot The above calculation formula is applied to the reactor at least three times during the criticality approach process by adding dilution water. (1/
M), that is, equation (2), and calculate the required dilution water volume V T up to the critical point from these multiple sets (simultaneous equations). In this way, once V T is determined, the amount of dilution water (v) up to the measurement point (in the case of three measurements over time, the last measurement point) is a known value that has already been measured, so the V T from v
By subtracting , the amount of dilution water required to reach criticality can be known from the measurement point in time, and therefore, the approach of criticality can be predicted with high accuracy.

前述した、本発明の手法により(3)式の形で
(1/M)プロツトを再現できることを第4図の
×点で示している。一般的に、(1/M)プロツ
トが(3)式で再現できるので、実際に臨界接近を行
う場合に(1/M)の測定データを(3)式に入れて
各定数K1,K2,K3を決めてやり、VTの値(希釈
水量)を算出することができる。また、(1/M)
測定データの経時的変化を自動的に(3)式に代入し
てVTを推定する装置も簡単に構成することがで
きる。また、VTが算出されれば基準状態でのKeff
を予め与えておくことにより当該測定時点での
Keffを次式で計算できる。
The fact that the (1/M) plot in the form of equation (3) can be reproduced by the above-mentioned method of the present invention is indicated by the x point in FIG. In general, the (1/M) plot can be reproduced by equation (3), so when actually approaching criticality, the measured data of (1/M) is put into equation (3) and each constant K 1 , K By determining 2 and K3 , the value of VT (the amount of dilution water) can be calculated. Also, (1/M)
It is also possible to easily configure a device that automatically substitutes changes in measured data over time into equation (3) to estimate V T . Also, once V T is calculated, K eff in the reference state
By giving in advance the value at the time of measurement,
K eff can be calculated using the following formula.

Keff=1−(v/VT)×(1−Keff0)……(4)式 すなわち、当該測定時点での未臨界度がどのく
らいかを予測することができる。
K eff = 1-(v/V T )×(1-K eff0 ) (4) In other words, it is possible to predict the degree of subcriticality at the time of measurement.

例えば、第2図は本発明の方法を実施するため
の臨界近接監視装置の構成を示すブロツク図であ
り、線源領域中性子検出器1により測定された中
性子検出値は符号8で示す(1/M)演算器に入
力され、指定された時間間隔で(1/M)の計算
が実行される。符号9で示される(1/M)プロ
ツト予測装置は前記(1/M)演算器8により出
力される(1/M)データ、及び、既に添加され
た希釈水量(v)、更に基準のKeffを入力し(3)式の形
になるよう各定数K1,K2,K3を演算し、すなわ
ち、(3)式にはK1,K2,K3及びVTの4つの未知数
があるため、(1/M)及びvのデータは、例え
ば、経時的に複数の時点で与え、当該測定時点ま
での(1/M)、vデータセツトの中により少な
くとも3セツトを与えることにより、更に初期条
件としてv=0で(1/M)=1.0を仮定すると4
つの未知数に対し4つの連立方程式があるので未
知数が求められ、各定数K1,K2,K3が算出され
る。これにより、臨界までの希釈水量VT、(4)式
によるKeff及び従来の(1/M)プロツト予測を
出力するものである。
For example, FIG. 2 is a block diagram showing the configuration of a critical proximity monitoring device for implementing the method of the present invention, in which the neutron detection value measured by the source region neutron detector 1 is indicated by the symbol 8 (1/ M) It is input to the arithmetic unit and the calculation of (1/M) is executed at specified time intervals. The (1/M) plot prediction device indicated by reference numeral 9 uses the (1/M) data output from the (1/M) calculator 8, the amount of dilution water (v) already added, and the standard K. eff is input and each constant K 1 , K 2 , K 3 is calculated so that it becomes the form of equation (3). In other words, equation (3) includes four unknowns K 1 , K 2 , K 3 and V T Therefore, the (1/M) and v data can be given at multiple time points over time, and at least three sets of (1/M) and v data sets up to the measurement time point are given. , further assuming that v=0 and (1/M)=1.0 as initial conditions, 4
Since there are four simultaneous equations for two unknowns, the unknowns are determined and the constants K 1 , K 2 , and K 3 are calculated. As a result, the dilution water volume V T up to criticality, K eff based on equation (4), and the conventional (1/M) plot prediction are output.

なお、第2図には将来の(1/M)プロツト予
測、当該測定時点のKeff、及び、必要希釈水量が
出力されることが示されているが、これらは線源
領域中性子検出器毎に求められるので、それぞれ
2つの値(例えば第4図の符号6,7の曲線のよ
うに)が求められる。
Furthermore, Figure 2 shows that the future (1/M) plot prediction, K eff at the relevant measurement point, and the required amount of dilution water are output, but these are determined for each neutron detector in the source region. Therefore, two values are obtained for each (for example, like the curves 6 and 7 in FIG. 4).

(ハ) 発明の効果 この発明によれば(1/M)プロツトより当該
測定時点でのKeff及び臨界時点までの希釈水量を
求めることができ、したがつて、臨界予測精度の
向上した臨界管理を行いうる原子炉の臨界接近監
視方法を提供することができる。更に、自動処理
装置により(1/M)プロツトによる臨界管理の
人手によらない自動化を達成することが可能とな
る。
(c) Effects of the invention According to this invention, K eff at the relevant measurement point and the amount of dilution water up to the critical point can be determined from the (1/M) plot, and therefore criticality control with improved criticality prediction accuracy It is possible to provide a method for monitoring the approach to criticality of a nuclear reactor. Furthermore, the automatic processing device makes it possible to automate the criticality control using the (1/M) plot without manual intervention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(1/M)プロツトの1−Keffによる
変化の計算例を示す図、第2図は本発明の方法を
実施するための臨界接近監視装置の構成を示すブ
ロツク図、第3図は中性子線源及び線源領域中性
子検出器と原子炉の位置関係を示す図、及び第4
図は加圧水型原子炉おける(1/M)プロツトに
よる臨界接近記録の例図である。 1……線源領域中性子検出器、2……中性子線
源、3……炉心、6……検出器NE31による
(1/M)プロツト、7……検出NE−32によ
る(1/M)プロツト、8……(1/M)演算
器、9……(1/M)プロツト予測装置、×……
本発明の方法により再現した(1/M)プロツ
ト。
FIG. 1 is a diagram showing an example of calculating the change due to 1-K eff in the (1/M) plot, FIG. 2 is a block diagram showing the configuration of a critical approach monitoring device for implementing the method of the present invention, and FIG. The figure shows the positional relationship between the neutron source, the source area neutron detector, and the reactor, and the fourth
The figure is an example of criticality approach recording using a (1/M) plot in a pressurized water reactor. 1... Source region neutron detector, 2... Neutron source, 3... Reactor core, 6... (1/M) plot by detector NE31, 7... (1/M) plot by detection NE-32 , 8...(1/M) arithmetic unit, 9...(1/M) plot prediction device, ×...
(1/M) plot reproduced by the method of the present invention.

Claims (1)

【特許請求の範囲】 1 制御棒操作及び1次冷却材中のほう素濃度を
変化させ(基準状態での線源領域中性子検出
値)/(測定時点での線源領域中性子検出値)で
定義される(1/M)プロツトを用いて臨界接近
時の臨界管理を行う方法において、前記(1/
M)プロツトを少なくとも3回経時的に求め、各
時点の(1/M)に対し (1/M)=K1T−+K2(VT−v) +K3(VT−v)2 ただし VT…臨界となる時点までの必要な希釈水量 v……当該測定時点までの希釈水量 K1、K2、K3…(1/M)プロツトを再現する定
数 の式を与え、更に、初期条件としてv=0で
(1/M)=1.0を仮定とする前記複数の連立式か
ら導かれるVTにより原子炉の臨界接近を予測す
ることを特徴とする原子炉の臨界接近監視方法。
[Scope of Claims] 1 Defined by (source area neutron detection value in the reference state)/(source area neutron detection value at the time of measurement) by changing the control rod operation and the boron concentration in the primary coolant In the method of controlling criticality at the time of criticality approach using the (1/M) plot described above,
M) Obtain the plot at least three times over time, and for (1/M) at each time point, (1/M)=K 1T −+K 2 (V T −v) +K 3 (V T −v) 2 However, V T ...The amount of dilution water required up to the critical point v... The amount of dilution water up to the relevant measurement point K 1 , K 2 , K 3 ... (1/M) Give a constant equation that reproduces the plot, and further, A method for monitoring near-criticality of a nuclear reactor, comprising predicting near-criticality of a nuclear reactor using V T derived from the plurality of simultaneous equations assuming v=0 and (1/M)=1.0 as initial conditions.
JP60183677A 1985-08-21 1985-08-21 Method of monitoring critical access of nuclear reactor Granted JPS6243596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60183677A JPS6243596A (en) 1985-08-21 1985-08-21 Method of monitoring critical access of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60183677A JPS6243596A (en) 1985-08-21 1985-08-21 Method of monitoring critical access of nuclear reactor

Publications (2)

Publication Number Publication Date
JPS6243596A JPS6243596A (en) 1987-02-25
JPH0469759B2 true JPH0469759B2 (en) 1992-11-09

Family

ID=16139991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60183677A Granted JPS6243596A (en) 1985-08-21 1985-08-21 Method of monitoring critical access of nuclear reactor

Country Status (1)

Country Link
JP (1) JPS6243596A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132521B2 (en) * 2012-11-27 2017-05-24 三菱重工業株式会社 Subcriticality measuring method and apparatus

Also Published As

Publication number Publication date
JPS6243596A (en) 1987-02-25

Similar Documents

Publication Publication Date Title
EP0238299B1 (en) Calibration of a nuclear reactor core parameter predictor
JPH02302695A (en) Updating of parameter of core model and updating of parameter of analytic model
JP5762840B2 (en) Subcriticality measuring method and apparatus
JP4918345B2 (en) Subcriticality measuring method, subcriticality measuring program, and subcriticality measuring apparatus
JPH0469759B2 (en)
JPS6122278B2 (en)
JP4621493B2 (en) Neutron multiplication factor evaluation method and critical proximity method of fuel assembly housing system
JP3137569B2 (en) Method for evaluating neutron source intensity and gamma ray intensity of reactor
CN111312417A (en) Method for measuring reactivity
JPH11337677A (en) Performance calculator for reactor core
JPS5910891A (en) Method of measuring neutron multiplication factor in fuel assembly
JP2622281B2 (en) How to check the upper limit value of the zero power reactor physical test of the reactor
JPH0226754B2 (en)
JP3579024B2 (en) Reactor power monitoring device
JPH04115193A (en) Measuring apparatus for average burnup of nuclear fuel assembly
RU2647126C1 (en) Method of controlling linear density of fuel distribution along length of fuel column of uranium-filled and uranium-fuelled heat-producing elements
RU2093908C1 (en) Method for relative measurement of total composition of fissionable uranium and plutonium isotopes of in core of heterogeneous water-moderated reactor with multiple-loop heat transfer scheme
JPH04265899A (en) Nuclear furnace simulator
Demazière et al. On-Line Determination of the MTC (Moderator Temperature Coefficient) by Neutron Noise and Gamma-Thermometer Signals
JPS6291881A (en) Determining method for detection efficiency of radiation measuring system
JPS5832678B2 (en) Abnormality detection device for neutron flux measuring instruments for nuclear reactors
JPH0444708B2 (en)
JPH05297184A (en) Mixer-settler, method for measuring its neutron multiplication factor and calibrating method of neutron detecting device
JPS6138433B2 (en)
Dawson et al. Measurement of thermal power density distributions by fuel pin gamma scanning