JPS6243596A - Method of monitoring critical access of nuclear reactor - Google Patents

Method of monitoring critical access of nuclear reactor

Info

Publication number
JPS6243596A
JPS6243596A JP60183677A JP18367785A JPS6243596A JP S6243596 A JPS6243596 A JP S6243596A JP 60183677 A JP60183677 A JP 60183677A JP 18367785 A JP18367785 A JP 18367785A JP S6243596 A JPS6243596 A JP S6243596A
Authority
JP
Japan
Prior art keywords
criticality
plot
dilution water
nuclear reactor
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60183677A
Other languages
Japanese (ja)
Other versions
JPH0469759B2 (en
Inventor
栃原 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP60183677A priority Critical patent/JPS6243596A/en
Publication of JPS6243596A publication Critical patent/JPS6243596A/en
Publication of JPH0469759B2 publication Critical patent/JPH0469759B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)発明の目的 [産業上の利用分野] この発明は加圧水型原子炉のように希釈水を添加し1次
冷却材中のほう素濃度を変化させ原子炉の臨界を達成す
る原子炉の臨界接近監視方法に関するものである。
Detailed Description of the Invention (a) Purpose of the Invention [Field of Industrial Application] This invention is a nuclear reactor that changes the boron concentration in the primary coolant by adding dilution water like a pressurized water reactor. This invention relates to a method for monitoring the approach of a nuclear reactor to achieve criticality.

[従来の技術] 原子炉を臨界状態に維持するには、中性子の発生と吸収
をバランスさせ、核分裂反応を一定状態に保持させる必
要があり、一般の原子炉では反応度制御手段として設備
している制御棒の操作、すなわち、制御棒の炉心からの
引抜さ、及び、1次冷却材中のほう素濃度を変化させる
(希釈ホの添加により1次冷却材中はう素濃度を低くす
る)ことによって臨界状態を達成する。
[Prior art] In order to maintain a nuclear reactor in a critical state, it is necessary to balance the generation and absorption of neutrons and maintain the nuclear fission reaction in a constant state. In other words, the control rods are withdrawn from the core, and the boron concentration in the primary coolant is changed (lowering the boron concentration in the primary coolant by adding diluent). Achieve a critical state by

加圧水型原子炉においては、1次冷UItJ中のほう免
濃度を原子炉停止時のほう素i11度から、希釈水の添
加により次第に希釈して減少さけ原子炉を臨界状態に接
近さける方法が採用されている。この場合、原子炉が臨
界状態への接近の各15点において、どの程度の未臨界
状態にあり、また、希釈水をどの程度添加すれば臨界に
なるかを把握するために、線源i!I域中域中検子検出
よる核t1測(中性子の検出)が行われる。この線源領
域中性子検出器による中性子の検出は、例えば、第3図
に符号1で示される線源領域中性子検出器(NE−31
及びN[−32)によって31測され、この検出器から
の信号により臨界接近を監視している。
In pressurized water reactors, a method is adopted in which the concentration of boron in the primary cooling UItJ is gradually diluted from 11 degrees when the reactor is shut down by adding dilution water to avoid the reactor approaching a critical state. has been done. In this case, in order to understand to what extent the reactor is in a subcritical state at each of the 15 points approaching the critical state, and how much dilution water must be added to make it critical, the radiation source i! Nuclear t1 measurement (detection of neutrons) is performed by detecting neutrons in the I region. The detection of neutrons by this source area neutron detector is carried out, for example, by the source area neutron detector (NE-31
and N[-32), and the approach of criticality is monitored by the signal from this detector.

すなわち、第3図の符号2に示される中性子線源によっ
て発生Jる中性子総数は中性子FIl源強度をS  (
n/5ec)とすると S、/<1−K  )    ・・・(1)式%式% となることが知られている。
That is, the total number of neutrons generated by the neutron source indicated by reference numeral 2 in FIG.
n/5ec), it is known that S, /<1-K)...(1) formula % formula %.

ここで、KeHは原子炉の実効増倍率であり、臨界状態
でK。、f=i、oであり、未臨界ではKo、、<1.
0である。
Here, KeH is the effective multiplication factor of the reactor, which is K in the critical state. , f=i, o, and in the subcritical state Ko, , <1.
It is 0.

また、線源領域中性子検出器1で測定きれる中性子数は
前記(1)式に比例するので1−Kerrに反比例する
ことになる。そして、一般的に、臨界接近時には次に示
す(1/M)なるデータ処理をして臨界を監視している
Furthermore, the number of neutrons that can be measured by the source region neutron detector 1 is proportional to the equation (1), and therefore inversely proportional to 1-Kerr. Generally, when approaching criticality, the following data processing (1/M) is performed to monitor criticality.

寸なわら、 (1/M)=(基準状態での線源領域中性子検出値)/
(測定時点でのI!Il源領域中領域中性子検出値  
・・・(2)式 ただし、基準状態での線8r!領域中性子検出値とは臨
界接近開始前の安定した状態で線源領域中性子検出器に
より81測した中性子数をいい、この値は、(1/M)
プロンl−1続中同−数値が用いられる。
However, (1/M) = (detection value of neutrons in the source area under standard conditions) /
(I! Il source region middle region neutron detection value at the time of measurement
...Formula (2) However, line 8r in the standard state! The regional neutron detection value refers to the number of 81 neutrons measured by the source region neutron detector in a stable state before the start of critical approach, and this value is (1/M)
The same numerical value is used in the pron l-1 continuation.

このように、(1/M)データを紅時的に計測すること
により’−Keftの値を監視し、従って、(1/M)
データが零に接近することを監視することによって原子
炉の臨界を監視している。
In this way, by measuring the (1/M) data over time, we monitor the value of '-Keft, and therefore, (1/M)
The criticality of the reactor is monitored by monitoring the data as it approaches zero.

しかるに、1=Kor、tt実際上は希釈水けに比例づ
るので、(1/M)は希釈水量に対し減少する関係にあ
る。
However, since 1=Kor, tt is actually proportional to the amount of dilution water, (1/M) has a decreasing relationship with the amount of dilution water.

前述したように、本来の手法(計算式)では(1,’M
)プロットは1−Ke[或は希釈水mに対し申請減少の
直線となるはずであるが、実際にはそうならない。この
原因は、中性子線源2の位置が第3図に示されるように
炉心3の外境界近くにあり、炉心内側深くに配置されて
いないため、原子炉圧力容器5外の検出器1で計測され
る中性子は必ずしも炉心3の核分裂による中性子のみで
なく中性子線ll12から直接入るものも含まれている
からである。従って、(1/M)プロットの形は中性子
I!2源位同位置炉心構成によって異なったしのとなり
、これら<Q、 を関係から必ずしも直線の関係になら
ない。
As mentioned above, in the original method (calculation formula), (1,'M
) The plot should be a straight line of decrease in application versus 1-Ke [or dilution water m, but this is not actually the case. The reason for this is that the neutron source 2 is located near the outer boundary of the reactor core 3, as shown in Figure 3, and is not located deep inside the reactor core. This is because the neutrons that are generated include not only neutrons generated by nuclear fission in the reactor core 3, but also neutrons that enter directly from the neutron beam 112. Therefore, the shape of the (1/M) plot is neutron I! The relationship differs depending on the two-source co-located core configuration, and the relationship <Q, does not necessarily result in a linear relationship.

その−例を実際の加圧水原子炉について第4図に示す。An example of this is shown in FIG. 4 for an actual pressurized water reactor.

第4因は(1/M)プロットによる臨界近接記録図(対
希釈水Q)を示し1=ものであるが、同図中符号6に示
される曲線は検出器NE−31による( 1 /M )
プロット、符号7に示される曲線は検出器NE−32に
よる(1/M)プロットである。このように、1−Ke
rrに比例する希釈水量に対しく 1 /M )は単純
な直線とならないことがわかる。特に、臨界に接近した
ところでは図中符号9で示した直線(一点鎖線)からず
れていることがわかる。
The fourth factor shows the critical proximity record diagram (vs. dilution water Q) based on the (1/M) plot, and is 1=, but the curve indicated by the reference numeral 6 in the same figure is based on the detector NE-31 (1/M). )
The curve shown at plot 7 is a (1/M) plot with detector NE-32. In this way, 1-Ke
It can be seen that 1/M) for the amount of dilution water proportional to rr does not form a simple straight line. In particular, it can be seen that at the point approaching the criticality, there is a deviation from the straight line (dotted chain line) indicated by reference numeral 9 in the figure.

実際の臨界管理の目的から、臨界接近時にあどどの程度
の希釈水品で臨界に達するかを予測4ろことが重要であ
り、従って、第4図に示されるような従来の方法におい
ては(1/M)プロットの直線からのずれは臨界の予測
という点で正確に欠ける問題があった。
For the purpose of actual criticality control, it is important to predict how much diluted water will reach criticality when approaching criticality. Therefore, in the conventional method shown in Figure 4, (1 /M) Deviation from the straight line of the plot caused a problem in that accuracy was lacking in terms of criticality prediction.

[発明が解決しようとする問題点] この発明は上記の如き事情に巴みてイ1されたものであ
って、従来の臨界接近時の臨界管理に使用している(1
/M)プロットにおいて(1/M)が1−Korrに対
し直線にならないために生じた最終の臨界時点の予測の
困難性を克服し、臨界時点を精度良く予測しうる原子炉
の臨界接近監視方法を提供することを目的とするもので
ある。
[Problems to be solved by the invention] This invention was developed in light of the above-mentioned circumstances, and is used for conventional criticality control when approaching criticality (1).
/M) Criticality approach monitoring of nuclear reactors that can overcome the difficulty of predicting the final critical point caused by the fact that (1/M) is not a straight line with respect to 1-Korr in the plot, and can accurately predict the critical point. The purpose is to provide a method.

(0)発明の構成 [問題を解決するための手段] この目的に対応して、この発明の原子炉の臨界接近監視
方法は、制御棒操作及び1次冷却材中のほう素濃度を変
化させ(1/M )プロットを用いて臨界接近時の臨界
管叩を行う方法において、前記(1/M)プロットを少
なくとも3回経時的に求め、各時点の(1/M)に対し +−K  (V、−V) ただし Vl・・・臨界となる時点までの必要な希釈水出V・・
・・・・当該測定時点までの希釈水出に1.に、、、に
3・・・(1/M)ブロワi−を再現する定数 の式を与え、IYi記複数の連立式から導かれるvlに
より原子炉の臨界接近を予測することを特徴としている
(0) Structure of the Invention [Means for Solving the Problem] In response to this objective, the method for monitoring criticality approach of a nuclear reactor of the present invention changes control rod operation and boron concentration in the primary coolant. In the method of performing critical tube beating at the time of criticality approach using the (1/M) plot, the (1/M) plot is obtained at least three times over time, and +-K for (1/M) at each time point. (V, -V) However, Vl... Necessary dilution water output V up to the critical point...
・・・・・・1 for diluted water up to the relevant measurement point. It is characterized by giving a constant formula to reproduce the (1/M) blower i-, and predicting the approach of a nuclear reactor to criticality by vl derived from multiple simultaneous equations written in IYi. .

以下、この発明の詳細を一実施例を承り図面について説
明する。
Hereinafter, the details of this invention will be explained with reference to one embodiment and the drawings.

第1図は1次元拡散計算コードにて(1/M)ブロワ1
−を予測計粋した例11/M)プロットの’  ”c(
fによる変化VII )を示している。
Figure 1 shows (1/M) blower 1 using the one-dimensional diffusion calculation code.
Example 11/M) plot of ' ``c(
The change VII) due to f is shown.

図中符812で示される直線は1−Kaffに対し、比
例関係となる例であり、符号11でホされる一点鎖線は
炉心外境界J、り約35cII内側に線J≦;がある例
であり、符号10で示されろ点線は炉心外境界より約2
0 ctn内側にrQ源のある例である。第1図にa3
いて符′;″J10.11で示される曲線は前)ホした
第4図の曲P26.7と同様な形となっており、線源位
置により<1/M)プロットの形が変ることを示してい
る。これら訂0結宋及び実際の(1/M)ブし】ットか
ら、次の訓c″5式にJ、す(1/M)プロットを再現
することが本発明の特徴とづるところである。
The straight line indicated by numeral 812 in the figure is an example in which there is a proportional relationship with respect to 1-Kaff, and the dashed line indicated by numeral 11 is an example in which there is a line J≦; inside the core outer boundary J, about 35cII. Yes, the dotted line indicated by 10 is about 2 points from the core outer boundary.
This is an example in which the rQ source is inside the 0 ctn. A3 in Figure 1
The curve indicated by the symbol J10.11 has the same shape as the curve P26.7 in Figure 4 mentioned above, and it can be seen that the shape of the plot changes depending on the source position. The feature of the present invention is to reproduce the (1/M) plot from these revised Song Dynasty and actual (1/M) plots into the following precept c''5 equation. That's what I'm saying.

すなわら、 <1/M)=に1F7丁1)(2(V、−v)+に3 
(V、−V) ただし ■ ・・・臨界(K8.「’=1.0)となる時点まで
■ の必要な希釈水早 ■・・・・・・当該測定時点までの希へ水jK、に2.
に3・・・(1/M)ブロワ1−を再現する定数 前記計笥式を希釈水を添加し原子炉の臨界接近過程にお
ける少なくとも3回の経時的な(1/M)、・Jむわら
(2)式に与えて、これら複数のセット(連立式)より
It!!!Mとなる時点までの必要な希釈水mV  を
求める。こうして、■■が求められれ■ ぽ当該測定時点(杼口)的に3回測定した場合はその最
終回の測定時点)までの希釈水In(V)は既に計測さ
れた既知のFJIt直であるから、前記VlからVを差
引けば当該測定時点より臨界までに必要とする希釈水出
を知ることができ、従って、臨界の接近を精度良く予測
することができる。
In other words, <1/M) = 1F7 1) (2(V, -v) + 3
(V, -V) However,■...The required dilution water rate until the point where it becomes critical (K8.'=1.0)■......The dilution water jK until the relevant measurement point, 2.
3...(1/M) blower 1- Add dilution water to the constant equation to reproduce the blower 1-, and add dilution water at least three times over time during the critical approach process of the reactor (1/M). Given to the equation (2), from these multiple sets (simultaneous equations), It! ! ! Find the mV of dilution water required to reach M. In this way, ■■ is obtained, and the dilution water In(V) up to the last measurement point (if the measurement is carried out three times at the relevant measurement point (shut)) is the already measured known FJIt direct. By subtracting V from the Vl, it is possible to know the dilution water required from the measurement point to criticality, and therefore it is possible to accurately predict the approach of criticality.

前述した、本発明の手法により〈3)式の形で(1/M
)プロットを再現できることを第4図のX点で示してい
る。一般的に、(1/M)プロットが(3)式で再現で
きるので、実際に臨界接近を行う場合に(1/M)の測
定データを(3)式に入れて各定数に、に2.に3を決
めてやり、Vlの値(希釈水出)を口出すること°がで
きる。
By the method of the present invention described above, (1/M
) The fact that the plot can be reproduced is shown by point X in Figure 4. In general, the (1/M) plot can be reproduced using equation (3), so when actually performing critical approach, put the measured data of (1/M) into equation (3) and set each constant to 2. .. You can set the value to 3 and tell the value of Vl (diluted water).

また、(1/M)測定データの軽ロー的変化を自動的ニ
(3)式に一代入り、TV、ヲllt定すル装”Vl 
′t)l!!1単に構成寸ろことがでさる。また、Vl
が口出されれば基準状態でのK。7.を予め与えておく
ことにより当該測定時点でのK。7.を次式で計樟でさ
る。
In addition, the light low change in the (1/M) measurement data is automatically entered into the equation (3), and the TV and
't)l! ! 1 It just depends on the configuration size. Also, Vl
If uttered, K in the standard state. 7. By giving K in advance, K at the time of measurement. 7. Calculate using the following equation.

Ko「、−1−(v/V、) X(1−K  )   ・・・(4)式すなわち、当該
測定時点での来臨1がとのくらいかを予測りることがで
きる。
Ko', -1-(v/V,)

例えば、第2図は本発明の方法を実施するための臨界接
近監視装置の構成を示すブ1コック図であり、線源領域
中性子検出器1により測定された中性子検出値は符88
で示寸(1/M)演Ω器に入力され、指定された時[j
+J間隔で(1/M)の泪ワが実行される。符号9で示
される(1/M)プロット予測装置は前記(1/M )
演算器8より出力される<1/M)データ、及び、既に
添加された希釈水m(V)、更に基準のK。7.を入力
しく3)式の形になるよう各定yilK  、に2.に
3をaQ Oし、すなわら、(3)式にはに1.に2.
に3及びVlの4つの未知数があるため、(1/M)及
びVのデータは、例えば、経時的に複数の時点で与え、
当該測定時点までの(1/M)、Vy”−タ廿ツー・の
中により少なくとも3セツトを与えることにより各定数
に1.に2.に3が口出される。
For example, FIG. 2 is a block diagram showing the configuration of a critical approach monitoring device for carrying out the method of the present invention, and the neutron detection value measured by the source region neutron detector 1 is marked 88.
When the indicated size (1/M) is input to the Ω operator and specified [j
(1/M) tears are performed at +J intervals. The (1/M) plot prediction device indicated by the symbol 9 is the (1/M) plot prediction device described above.
<1/M) data output from the calculator 8, the already added dilution water m(V), and the reference K. 7. 3) Input each constant yilK so that it is in the form of the equation 2. 3 to aQ O, that is, equation (3) has 1. 2.
Since there are four unknowns, 3 and Vl, the data for (1/M) and V are given at multiple points in time, for example,
By giving at least three sets of (1/M) Vy''-tameters up to the point of measurement, 1, 2, and 3 are assigned to each constant.

これにより、臨界までの希釈水aV  、(4)式によ
るK。「[及び従来の(1/M)プロット予測を出力す
るものである。
As a result, the dilution water aV up to criticality, K according to equation (4). "[and outputs the conventional (1/M) plot prediction.

なJ3 、第2図には将来の(1/M)プロット予測、
当該測定時点のK。t「、及び、必要希釈水呈が出力さ
れることが示されているが、これらは線源領域中性子検
出器毎に求められるので、それぞれ2つの舶(例えば第
4図の符号6.7の曲線のJ、うに)が求められる。
J3, Figure 2 shows the future (1/M) plot prediction,
K at the time of the measurement. t'' and the required dilution water content are output, but since these are determined for each radiation source area neutron detector, two vessels (for example, number 6.7 in Figure 4) are output. J, sea urchin) of the curve is determined.

(ハ)発明の効果 この発明によれば<1/M)プロットより当該測定時点
でのK。4.及び臨界時点までの希釈水mを求めること
ができ、したがって、臨界予測精度の向上した臨界管理
を行いつる原子炉の臨界接近監視方法を提供することが
できる。更に、自動処Lu1l装首により(1/M)プ
ロットによる臨界管理の人手によらζiい自動化を達成
することが可能どなる。
(c) Effect of the invention According to the invention, K at the relevant measurement time point is determined from the plot <1/M). 4. It is possible to determine the dilution water m up to the critical point, and therefore it is possible to perform criticality management with improved criticality prediction accuracy and provide a method for monitoring the approach of criticality of a Tsuru nuclear reactor. Furthermore, automatic processing Lu1l head attachment makes it possible to achieve greater automation than manual criticality control based on (1/M) plots.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は(1/M)プロットの” effによる変化の
計律例を示す図、第2図は本発明の方法を実施1Jるた
めの臨界接近監視方法の構成を示すブロック図、第3図
は中性子?!1laQ及び線源領域中性子検出器と原子
炉の位首関係を承り図、及び第4図は加圧水型原子炉お
ける(1/M)プロットによる臨界接近記録の例図であ
る。 1・・・線源領域中性子検出器  2・・・中性子線源
3・・・炉心  6・・・検出器NE31による(1/
M)プロット  7・・・検出NE−32による(1/
M)プロット  8・・・(1/M)演i器9・・・(
1/M)プロット予測装首  X・・・本発明の方法に
より再現した(1/M)ブロワi・第2図 第3図
FIG. 1 is a diagram showing an example of the measurement of changes due to eff in the (1/M) plot, FIG. 2 is a block diagram showing the configuration of a critical approach monitoring method for implementing the method of the present invention, and FIG. The figure shows the hierarchical relationship between the neutron?!1laQ and the source region neutron detector and the reactor, and Figure 4 is an example of criticality approach recording using the (1/M) plot in a pressurized water reactor. 1... Source area neutron detector 2... Neutron source 3... Core 6... Detector NE31 (1/
M) Plot 7... (1/
M) Plot 8...(1/M) Operator 9...(
1/M) Plot predicted head wearing X...(1/M) Blower i reproduced by the method of the present invention, Figure 2

Claims (1)

【特許請求の範囲】 制御棒操作及び1次冷却材中のほう素濃度を変化させ(
1/M)プロットを用いて臨界接近時の臨界管理を行う
方法において、前記(1/M)プロットを少なくとも3
回経時的に求め、各時点の(1/M)に対し (1/M)=K_1√(V_T−v)+K_2(V_T
−v)+K_3(V_T−v)^2 ただし V_T・・・臨界となる時点までの必要な希釈水量v・
・・・・・当該測定時点までの希釈水量K_1、K_2
、K_3・・・(1/M)プロットを再現する定数 の式を与え、前記複数の連立式から導かれるV_Tによ
り原子炉の臨界接近を予測することを特徴とする原子炉
の臨界接近監視方法。
[Claims] Control rod operation and changing the boron concentration in the primary coolant (
1/M) plot to perform criticality management when approaching criticality, the (1/M) plot is
(1/M)=K_1√(V_T-v)+K_2(V_T
-v)+K_3(V_T-v)^2 However, V_T...The amount of dilution water required to reach the critical point v.
...Dilution water amount K_1, K_2 up to the relevant measurement point
, K_3...(1/M) A method for monitoring near-criticality of a nuclear reactor, characterized in that a constant equation is given to reproduce the (1/M) plot, and the near-criticality of a nuclear reactor is predicted by V_T derived from the plurality of simultaneous equations. .
JP60183677A 1985-08-21 1985-08-21 Method of monitoring critical access of nuclear reactor Granted JPS6243596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60183677A JPS6243596A (en) 1985-08-21 1985-08-21 Method of monitoring critical access of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60183677A JPS6243596A (en) 1985-08-21 1985-08-21 Method of monitoring critical access of nuclear reactor

Publications (2)

Publication Number Publication Date
JPS6243596A true JPS6243596A (en) 1987-02-25
JPH0469759B2 JPH0469759B2 (en) 1992-11-09

Family

ID=16139991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60183677A Granted JPS6243596A (en) 1985-08-21 1985-08-21 Method of monitoring critical access of nuclear reactor

Country Status (1)

Country Link
JP (1) JPS6243596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106104A (en) * 2012-11-27 2014-06-09 Mitsubishi Heavy Ind Ltd Subcriticality measuring method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106104A (en) * 2012-11-27 2014-06-09 Mitsubishi Heavy Ind Ltd Subcriticality measuring method and device

Also Published As

Publication number Publication date
JPH0469759B2 (en) 1992-11-09

Similar Documents

Publication Publication Date Title
US6181759B1 (en) Method and apparatus for determining nearness to criticality of a nuclear fueled electric power generating unit
JP2628534B2 (en) Method and apparatus for synthesizing continuous power distribution of reactor core
JPH02302695A (en) Updating of parameter of core model and updating of parameter of analytic model
JPS6097296A (en) Method and device for deciding access to critical state of nuclear reactor
JPS6243596A (en) Method of monitoring critical access of nuclear reactor
JP2013003001A (en) Subcriticality measuring method and apparatus
Mourtzanos et al. Calculation of the moderator temperature coefficient of reactivity for water moderated reactors
JPS6122278B2 (en)
CN111312417A (en) Method for measuring reactivity
JP3012891B2 (en) Identification of waste drum contents by active neutron method
JP3137569B2 (en) Method for evaluating neutron source intensity and gamma ray intensity of reactor
FR2442492A1 (en) METHOD FOR DETECTION AND MONITORING OF BREAKS IN THE GAINING OF NUCLEAR REACTOR COMBUSTIBLE ELEMENTS
FR2356244A1 (en) METHOD AND DEVICE FOR DETECTING AND PRELOCALING A SHEATH RUPTURE IN A FAST NEUTRON NUCLEAR REACTOR
JP2006105814A (en) Method and apparatus of measuring temperature coefficient of moderator
RU2107339C1 (en) Method for experimental detection of subcritically shut down nuclear reactor
JPS5832678B2 (en) Abnormality detection device for neutron flux measuring instruments for nuclear reactors
Wett Surface temperatures of Irradiated ORR fuel elements cooled in stagnant air
JPS60205386A (en) Radiation control monitor device
Z Mesquita et al. An innovative method for online power monitoring in nuclear reactors
JPH0219919B2 (en)
JPH04232497A (en) Apparatus for monitoring output distribution of core, reactor protecting apparatus, detector apparatus for core of reactor and method for monitoring coreof reactor
JP2023178592A (en) Radiation evaluation method, method for removing nuclear fuel debris, and radiation evaluation device
JPH0226754B2 (en)
JPH0345359B2 (en)
JPS63128290A (en) Non-critical degree monitor device for nuclear fuel facility