JPS6122278B2 - - Google Patents

Info

Publication number
JPS6122278B2
JPS6122278B2 JP50082743A JP8274375A JPS6122278B2 JP S6122278 B2 JPS6122278 B2 JP S6122278B2 JP 50082743 A JP50082743 A JP 50082743A JP 8274375 A JP8274375 A JP 8274375A JP S6122278 B2 JPS6122278 B2 JP S6122278B2
Authority
JP
Japan
Prior art keywords
power distribution
distribution
prediction
reactor
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50082743A
Other languages
Japanese (ja)
Other versions
JPS526896A (en
Inventor
Takashi Kiguchi
Yasuo Nishizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP50082743A priority Critical patent/JPS526896A/en
Publication of JPS526896A publication Critical patent/JPS526896A/en
Publication of JPS6122278B2 publication Critical patent/JPS6122278B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 本発明は、原子炉の冷却材流量変化、キセノン
空間分布の時間的変化などによつて変化する出力
分布の予測方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for predicting power distribution that changes due to changes in coolant flow rate in a nuclear reactor, temporal changes in xenon spatial distribution, and the like.

本発明の目的は、将来の出力分布を簡単にしか
も精度良く求めることができる原子炉の出力分布
予測方法を提供することにある。
An object of the present invention is to provide a method for predicting the power distribution of a nuclear reactor that can easily and accurately determine the future power distribution.

本発明の特徴は、検出された原子炉の現在の出
力分布に対応する中性子反射率を出力分布計算モ
デルに基づついて求める手段と、得られた中性子
反射率によつて調整された出力分布計算モデルに
所定の炉心状態信号を入力して将来の出力分布を
予測する手段とを設けたことにある。この結果、
原子炉の現在の出力分布に対応する中性子反射率
だけで計算モデルを修正すればよく、将来の出力
分布を簡単にしかも高精度で予測することができ
る。
The present invention is characterized by a means for determining the neutron reflectance corresponding to the detected current power distribution of the reactor based on a power distribution calculation model, and a power distribution calculation adjusted by the obtained neutron reflectance. The present invention also includes means for predicting future power distribution by inputting a predetermined core state signal into the model. As a result,
The calculation model only needs to be modified using the neutron reflectance that corresponds to the reactor's current power distribution, and the future power distribution can be predicted easily and with high accuracy.

以下、本発明を実施例によつて詳しく説明す
る。
Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図に、本発明の方法を実施するための装置
の一例をブロツク図で示す。1は炉心、2は現状
出力分布検出手段、3は出力分布に応じて計算モ
デルが炉心状態を最もよく表わすように予測計算
モデルに含まれるパラメータを調節するパラメー
タ設定手段、4は調節された計算モデルによつて
出力分布を予測する出力分布予測計算手段、5は
予測すべき炉心状態(炉心流量、キセノン濃度)
を指定する予測条件指定手段、6は予測出力分布
表示手段である。通常は、予測条件は原子炉運転
員により指定され、予測結果は原子炉運転員に表
示される。
FIG. 1 shows a block diagram of an example of an apparatus for carrying out the method of the invention. 1 is a reactor core, 2 is a current power distribution detection means, 3 is a parameter setting means for adjusting parameters included in a predictive calculation model so that the calculation model best represents the core state according to the power distribution, and 4 is an adjusted calculation A power distribution prediction calculation means that predicts the power distribution using a model; 5 is the core state to be predicted (core flow rate, xenon concentration);
6 is a prediction condition specifying means for specifying the predicted output distribution. Typically, the prediction conditions are specified by the reactor operator, and the prediction results are displayed to the reactor operator.

次に、予測方法の原理を示す。 Next, the principle of the prediction method will be explained.

第2図は、炉心の横断面図である。7は燃料ア
センブリを示す。いま、1本、または複数体(例
を8a,8bで示す)のアセンブリを含む局所的
領域に注目し、それを第3図に示す。8は、注目
された局所的領域である。
FIG. 2 is a cross-sectional view of the core. 7 indicates a fuel assembly. We now turn our attention to localized regions containing one or more assemblies (examples shown at 8a, 8b), which are illustrated in FIG. 8 is the local region of interest.

一般に、炉心内では、燃料アセンブリ間で中性
子のやりとりをしている。そのやりとりの量は、
あるアセンブリに注目すると、第3図に示すよう
に、中性子の反射率α(Z)であらわされる。こ
こで、Zは高さ方向位置を示し、反射率は高さ方
向に変化している。この反射率は、本発明で対象
としている炉心流量やキセノン濃度の変化に際し
ては、ほとんど変化しないことがわかつた。これ
は、炉心流量やキセノン濃度の変化によつて、各
燃料アセンブリの軸方向出力分布は変化するもの
の、その変化は径方向ではどの位置でもほぼ一様
であり、その結果上記した燃料アセンブリ間での
中性子のやりとりのバランスにはほとんど変化を
生じないという新たに見出した物理現象に基づい
ている。したがつて、予測前に現状の出力分布か
ら反射率、すなわち現状の出力分布に対応する反
射率を求め(予測モデルのパラメータ設定)、こ
の反射率を使用した予測モデルで出力分布を予測
計算すれば(出力分布予測計算)、精度のよい予
測が可能となる。
Generally, within a reactor core, neutrons are exchanged between fuel assemblies. The amount of interaction is
Focusing on a certain assembly, as shown in FIG. 3, it is expressed by the neutron reflectance α(Z). Here, Z indicates a position in the height direction, and the reflectance changes in the height direction. It was found that this reflectance hardly changes when the reactor core flow rate or xenon concentration changes, which is the object of the present invention. This is because although the axial power distribution of each fuel assembly changes due to changes in the core flow rate and xenon concentration, the change is almost uniform at any position in the radial direction, and as a result, the above-mentioned fuel assemblies differ from each other. This is based on a newly discovered physical phenomenon that causes almost no change in the balance of neutron exchange. Therefore, before making a prediction, calculate the reflectance from the current output distribution, that is, the reflectance that corresponds to the current output distribution (parameter setting of the prediction model), and use the prediction model that uses this reflectance to predict and calculate the output distribution. For example (output distribution prediction calculation), highly accurate prediction is possible.

本発明は、上記の検討結果に基づいてなされた
ものであり、本発明の好適な一実施例を以下に説
明する。
The present invention has been made based on the above study results, and a preferred embodiment of the present invention will be described below.

出力分布がみたす方程式の表わし方の一つに、
次の表式がある。
One way to express the equation satisfied by the output distribution is
There is the following expression.

k=K∞k{W k−1k-1+W k+1k+1 +〔1−2W −(4−αk)W 〕Pk} (1) Pk:高さ方向ノードkの出力 k∞k:ノードkの中性子無限増倍係数 W :ノードkの中性子が上または下に隣接す
るノードで吸収される確率(カーネル) W :ノードkの中性子が水平方向に隣接するノ
ードで吸収される確率(カーネル) αk:ノードkの中性子反射率 ここで、ノードとは、第3図のアセンブリを高さ
方向に適当な間隔で区分けして領域9a,9b,
……である。
P k =K ∞k {W v k-1 P k-1 +W v k+1 P k+1 +[1-2W v k -(4-α k )W H k ]P k } (1) P k : Output of node k in height direction k ∞k : Infinite multiplication coefficient of neutron of node k W v k : Probability (kernel) that neutron of node k is absorbed by the node adjacent above or below W H k : of node k Probability ( kernel ) that a neutron is absorbed by a horizontally adjacent node 9a, 9b,
It is...

式(1)にもとづく、予測モデルのパラメータ設定
手段3の実施例を第4図に示す。10はk∞分布
計算手段、11はカーネル分布計算手段、12は
燃焼度、制御棒位置検出手段、13はボイド分布
計算手段、14は反射率計算手段である。k∞
は、現状の出力分布、燃焼度、制御棒位置および
ボイド分布により決定される。また、カーネルは
ボイド分布から計算される。出力分布、k∞、カ
ーネルが与えられると、式(1)から現状の出力分布
に対応する反射率αkは求まる。
FIG. 4 shows an embodiment of the predictive model parameter setting means 3 based on equation (1). 10 is a k∞ distribution calculation means, 11 is a kernel distribution calculation means, 12 is a burnup and control rod position detection means, 13 is a void distribution calculation means, and 14 is a reflectance calculation means. k∞
is determined by the current power distribution, burnup, control rod position, and void distribution. Also, the kernel is calculated from the void distribution. Given the output distribution, k∞, and the kernel, the reflectance α k corresponding to the current output distribution can be found from equation (1).

αk=1/W〓{1/P(P/k∞k−W k−
k-1−W k+1k +1 )−1+2W +4W } (2) 以上の一連の計算により、モデルのパラメータ
である反射率αkが求まり、次の予測計算では、
このαkを用いる。
α k =1/W〓{1/P k (P k /k ∞k −W v k−
1
P k-1 −W v k+1 P k +1 )−1+2W v k +4W H k } (2) Through the above series of calculations, the reflectance α k , which is a parameter of the model, is determined, and in the next prediction calculation,
This α k is used.

第5図に、出力分布予測計算手段4と予測条件
指定手段5の実施例を示す。15は出力分布計算
手段、16はキセノン濃度設定手段、17は炉心
流量設定手段である。出力分布計算手段15で
は、与えられたk∞、カーネル、反射率に対する
出力分布Pkを計算する。予測したい炉心のキセ
ノン濃度、炉心流量は16,17から原子炉運転
員により与えられ、k∞、ボイド分布計算の入力
情報となる。なお、ボイド分布と出力分布は互に
影響しあうので、出力分布、ボイド分布の計算
を、予測出力分布が収れんするまで、交互にくり
返す。結果は、予測出力分布表示手段6で運転員
に示す。
FIG. 5 shows an embodiment of the output distribution prediction calculating means 4 and the prediction condition specifying means 5. 15 is a power distribution calculation means, 16 is a xenon concentration setting means, and 17 is a core flow rate setting means. The output distribution calculation means 15 calculates the output distribution P k for the given k∞, kernel, and reflectance. The core xenon concentration and core flow rate to be predicted are given by the reactor operator from 16 and 17, and serve as input information for k∞ and void distribution calculations. Note that since the void distribution and the output distribution influence each other, calculations of the output distribution and the void distribution are repeated alternately until the predicted output distribution converges. The results are shown to the operator using the predicted output distribution display means 6.

以上の予測装置による予測例を第6図、第7図
に示す。第6図は、原子炉プログラム後24時間で
再起動し、そのときの出力分布がわかつていると
き、スクラム後36時間の出力分布を予測した結果
である。現状、予測状態ともに、原子炉炉心冷却
材流量は定格の40%であり、出力分布の変化は、
キセノン濃度のちがいによる。また、第7図は、
炉心冷却材流量が定格の40%で運転されていると
き、100%流量としてときの出力分布を予測した
ものである。ともに、予測分布と実際の分布は、
きわめて良い一致を示す。
Examples of predictions made by the above prediction device are shown in FIGS. 6 and 7. Figure 6 shows the results of predicting the power distribution 36 hours after the scram when the reactor is restarted 24 hours after the reactor program and the power distribution at that time is known. In both the current and predicted state, the reactor core coolant flow rate is 40% of the rated value, and the change in power distribution is as follows.
Due to differences in xenon concentration. Also, Figure 7 shows
This is a prediction of the power distribution when the core coolant flow rate is 100% when operating at 40% of the rated flow rate. Together, the predicted distribution and the actual distribution are
Shows very good agreement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するための装置の
基本的構成を示すブロツク図、第2図は原子炉炉
心横断面図、第3図は局所的領域の見取図、第4
図および第5図は本発明の方法を実施するための
装置の要部の具体的構成を示すブロツク図、第6
図および第7図は本発明装置による予測結果の一
例を示す線図である。
Fig. 1 is a block diagram showing the basic configuration of an apparatus for carrying out the method of the present invention, Fig. 2 is a cross-sectional view of the reactor core, Fig. 3 is a sketch of the local area, and Fig. 4
5 and 5 are block diagrams showing the specific configuration of the main parts of the apparatus for carrying out the method of the present invention, and FIG.
FIG. 7 and FIG. 7 are diagrams showing an example of prediction results obtained by the apparatus of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉の現在の出力分布を求め、得られた現
在の出力分布に対応する中性子反射率を出力分布
計算モデルに基づいて求め、得られた前記中性子
反射率を使用した前記出力分布計算モデルに所定
の炉心状態信号を入力して、将来の出力分布を予
測することを特徴とする原子炉の出力分布予測方
法。
1 Find the current power distribution of the reactor, find the neutron reflectance corresponding to the obtained current power distribution based on the power distribution calculation model, and apply it to the power distribution calculation model using the obtained neutron reflectance. A method for predicting the power distribution of a nuclear reactor, which comprises inputting a predetermined core state signal to predict the future power distribution.
JP50082743A 1975-07-07 1975-07-07 Device to predict the output distribution of atomic reactor Granted JPS526896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50082743A JPS526896A (en) 1975-07-07 1975-07-07 Device to predict the output distribution of atomic reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50082743A JPS526896A (en) 1975-07-07 1975-07-07 Device to predict the output distribution of atomic reactor

Publications (2)

Publication Number Publication Date
JPS526896A JPS526896A (en) 1977-01-19
JPS6122278B2 true JPS6122278B2 (en) 1986-05-30

Family

ID=13782891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50082743A Granted JPS526896A (en) 1975-07-07 1975-07-07 Device to predict the output distribution of atomic reactor

Country Status (1)

Country Link
JP (1) JPS526896A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281788U (en) * 1988-12-08 1990-06-25
CN103794256A (en) * 2013-11-19 2014-05-14 国核(北京)科学技术研究院有限公司 Method and system for monitoring abnormality of reactor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592879B2 (en) * 1978-07-07 1984-01-20 株式会社日立製作所 Local output area monitor substitute value setting method
JPS55162096A (en) * 1979-06-06 1980-12-17 Hitachi Ltd Method of monitoring power change in bwr type reactor
JPS5951391A (en) * 1982-09-17 1984-03-24 株式会社東芝 Reactor core state monitoring device
US4475361A (en) * 1983-05-02 1984-10-09 Georg Alefeld Multi-effect heat-pump for heating and cooling
JPH0387165U (en) * 1989-12-26 1991-09-04
JPH03199861A (en) * 1989-12-27 1991-08-30 Ebara Corp Absorption refrigerator
CN108877969B (en) * 2018-05-24 2019-12-27 岭东核电有限公司 Nuclear power theoretical model establishing and verifying method, system and terminal equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281788U (en) * 1988-12-08 1990-06-25
CN103794256A (en) * 2013-11-19 2014-05-14 国核(北京)科学技术研究院有限公司 Method and system for monitoring abnormality of reactor
CN103794256B (en) * 2013-11-19 2015-12-09 国核(北京)科学技术研究院有限公司 Reactor method for monitoring abnormality and system

Also Published As

Publication number Publication date
JPS526896A (en) 1977-01-19

Similar Documents

Publication Publication Date Title
EP0238299B1 (en) Calibration of a nuclear reactor core parameter predictor
JPS6122278B2 (en)
US10998725B2 (en) Electric power generation prediction method based on expected value calculation, electric power generation prediction system based on expected value calculation, and electric power generation prediction program product based on expected value calculation
JPH06186380A (en) Performance calculator for reactor core
JPH0444708B2 (en)
Antonopoulos-Domis et al. Moderator temperature coefficient of reactivity in Pressurized Water Reactors: theoretical investigation and numerical simulations
JPH04265899A (en) Nuclear furnace simulator
JPH0875891A (en) Reactor core performance computing method and apparatus therefor
JP4008131B2 (en) Reactor core performance calculator
Druzhaev et al. Method of WWER active core power parameters evaluation by readings of ex-core neutron flux monitoring system using additional information
JPS5931489A (en) Reactor core performance calculating device
JPH06118193A (en) Reactor core nuclear characteristic simulator
JPH05134079A (en) Monitoring apparatus of reactor power distribution
Feeley Janus displays for improved reactor plant operation and control
JPH01126595A (en) Core performance monitoring apparatus
JPH0469759B2 (en)
JPH1123787A (en) Planning method for operating nuclear power station and reactor, and planning device therefor
JPS59164988A (en) Device for forecasting reactor power distribution
JPS6136196B2 (en)
JPH05196793A (en) Supporting apparatus for preparation of operation plan
JPH0711589B2 (en) Online core performance calculator for nuclear reactors
JPS63758B2 (en)
JP2001004780A (en) Reactor core monitor
JPS6148117B2 (en)
JPS58124987A (en) Control rod operation guide device for atomic power plant