JPH04265899A - Nuclear furnace simulator - Google Patents

Nuclear furnace simulator

Info

Publication number
JPH04265899A
JPH04265899A JP3025971A JP2597191A JPH04265899A JP H04265899 A JPH04265899 A JP H04265899A JP 3025971 A JP3025971 A JP 3025971A JP 2597191 A JP2597191 A JP 2597191A JP H04265899 A JPH04265899 A JP H04265899A
Authority
JP
Japan
Prior art keywords
time
reactor
nuclear reactor
neutron flux
atomic number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3025971A
Other languages
Japanese (ja)
Inventor
Akiyoshi Nakajima
章喜 中島
Hidemasa Kato
加藤 英正
Kanji Kato
加藤 監治
Akinobu Tagishi
田岸 昭宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3025971A priority Critical patent/JPH04265899A/en
Publication of JPH04265899A publication Critical patent/JPH04265899A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PURPOSE:To enable a calculation time of a reactor core simulator to be reduced by considering an output of a target unclear power reaching in ALPHAt after a time t to be a known quantity and a change in neutron flux distribution between the time t and (t+ALPHAt) as a function of charge rate of atomic power output. CONSTITUTION:A nuclear furnace 1 is operated according to operation conditions which are set by a nuclear furnace control panel 2, is detected by a neutron detector, and is input to an operation data processing device 4 by an operaiton data input device 3. The device 4 allows most recent neutron flux data to be input data recording device 6. Then, with a neutron flux phi(r,t) at a time t of a reactor core combustion calculation, a nuclear constant, and a target nuclear furnace output P at a time (t+ALPHAt) as known quantities, a transition change of the distriburion phi(r,t) within a combustion time step can be obatined by phi(r,t+ALPHAt)=phi(r,T)X(1+mXALPHAt) using a relative change rate m of the nuclaer furnace output within the combustion time step between the time t and (t+ALPHAt).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、原子炉の運転管理を行
うための原子炉シミュレータに係り、特に、原子炉の日
負荷運転や緊急停止後の再起動運転の制御棒計画作成の
改善に好適な原子炉シミュレータに関する。
[Industrial Application Field] The present invention relates to a nuclear reactor simulator for managing the operation of a nuclear reactor, and is particularly useful for improving control rod planning for daily load operation of a nuclear reactor and restart operation after an emergency shutdown. This invention relates to a preferred nuclear reactor simulator.

【0002】0002

【従来の技術】一般に、BWRやPWRの起動運転は、
炉心管理技術者が事前に作成した出力変更計画(原子炉
出力,制御棒パターンの時間変化に関する計画)に基づ
いて行われる。一方、電力の需要状況に応じて、その都
度、原子炉の出力運転計画を変更したい場合、プラント
サイトの技術者は、負荷追従の計画を作成する出力変更
計画支援システムを用いて、出力変更計画を作成する。 しかし、制御棒操作を伴う出力変更計画では、原子炉シ
ミュレータ等を用い、出力変更中の熱的制限値等の炉心
運転特性を評価しておく必要がある。原子炉緊急停止後
の再起動計画を作成する場合、キセノン,サマリウム等
の核分裂生成物が再起動時に炉心内でどのように蓄積し
ているかを迅速に評価し、適切な制御棒パターンを選択
しなければならない。また、原子炉燃料の高燃焼度化が
進み、原子炉内に中性子スペクトルの異なる燃料が混在
することも考慮すると、原子炉緊急停止後の再起動計画
を作成できる原子炉シミュレータの必要性は高い。従っ
て、原子炉シミュレータの計算精度と計算時間の両面を
向上させることが重要な課題である。
[Prior Art] Generally, the startup operation of a BWR or PWR is
This is done based on a power change plan (plan regarding time changes in reactor power and control rod pattern) prepared in advance by core management engineers. On the other hand, if you want to change the reactor output operation plan each time depending on the power demand situation, plant site engineers can use an output change planning support system that creates a load following plan to plan the output change. Create. However, in a power change plan that involves control rod manipulation, it is necessary to use a reactor simulator or the like to evaluate core operating characteristics such as thermal limit values during the power change. When creating a restart plan after an emergency reactor shutdown, it is necessary to quickly assess how fission products such as xenon and samarium accumulate in the reactor core at the time of restart, and select an appropriate control rod pattern. There must be. In addition, considering the fact that the burnup of nuclear reactor fuel is increasing and fuels with different neutron spectra are mixed in the reactor, there is a high need for a nuclear reactor simulator that can create a restart plan after an emergency reactor shutdown. . Therefore, it is an important issue to improve both the calculation accuracy and calculation time of nuclear reactor simulators.

【0003】ところで、原子炉内に配置された核燃料中
に生成される、熱中性子吸収断面積の大きい核分裂生成
物(例えば、キセノン)の原子数密度の時間変化を求め
、その変化に応じて、出力制御手段を用いて出力を上昇
させる原子炉の運転方法の例として、特開昭52−11
2097号公報がある。この従来例では、t+Δt時間
後の原子炉内のキセノンの原子数密度Nxe(t+Δt
)は、t時間後の原子炉出力から求めた中性子束φ(t
)とt時間後のキセノンの原子数密度Nxe(t)を用
いていた。       Nxe(t+Δt)=f(φ(t),Nx
e(t))                    
   …(1)
By the way, the temporal change in the atomic number density of a fission product (for example, xenon) with a large thermal neutron absorption cross section, which is produced in nuclear fuel placed in a nuclear reactor, is determined, and according to the change, As an example of a method of operating a nuclear reactor that increases the output using an output control means,
There is a publication No. 2097. In this conventional example, the xenon atomic number density Nxe(t+Δt
) is the neutron flux φ(t
) and the xenon atomic number density Nxe(t) after t time were used. Nxe(t+Δt)=f(φ(t), Nx
e(t))
...(1)

【0004】0004

【発明が解決しようとする課題】従来例では、キセノン
の原子数密度の炉心内三次元分布の過渡変化を考慮して
いないため、出力ピーキング等の熱的に重要な値が設計
制約値を満足していることを正確に把握できず、精度の
高い制御棒計画を作成できないという問題があった。
[Problem to be solved by the invention] In the conventional example, transient changes in the three-dimensional distribution of xenon atomic number density in the core are not considered, so thermally important values such as power peaking satisfy the design constraint value. There was a problem in that it was not possible to accurately understand what was going on, and it was not possible to create highly accurate control rod plans.

【0005】一方、従来、オフラインで計算する三次元
モデルに基づく原子炉シミュレータでは、t〜t+Δt
間に蓄積される、熱中性子を吸収する核分裂生成物によ
る反応度効果を反映して、t+Δt時間後の中性子束分
布を、逐次、更新して熱水力条件を含めて収斂させてい
く方法がとられている。従って、オフラインで詳細な予
測計算を行わなければならないため、再起動運転計画を
作成するには、多くの日時を要し、その割に精度が良く
ないという問題があった。
On the other hand, in conventional nuclear reactor simulators based on three-dimensional models that are calculated off-line, t~t+Δt
There is a method in which the neutron flux distribution after time t + Δt is updated sequentially to reflect the reactivity effect due to fission products that absorb thermal neutrons, which accumulates during the period, and to converge including the thermal-hydraulic conditions. It is taken. Therefore, since detailed prediction calculations must be performed off-line, creating a restart operation plan requires a lot of time and time, and there is a problem in that the accuracy is not good.

【0006】前述したように、今後主流となる高燃焼度
用燃料を装荷した炉心の三次元多群モデルに基づく原子
炉シミュレータに対し、計算精度と計算時間の両面を向
上させることは、将来、頻度が高くなると見込まれる、
日負荷運転や再起動運転の計画を作成することに対応で
きる炉心管理プログラム、及び、炉心シミュレータを提
供するために重要な課題である。
As mentioned above, it will be important in the future to improve both calculation accuracy and calculation time for nuclear reactor simulators based on three-dimensional multi-group models of reactor cores loaded with high-burnup fuel, which will become mainstream in the future. It is expected that the frequency will increase.
This is an important issue in order to provide a core management program and a core simulator that can support the creation of daily load operation and restart operation plans.

【0007】本発明の目的は、日負荷追従運転や緊急停
止後の再起動運転の計画を作成するうえで必要な三次元
多群炉心管理プログラムおよび炉心シミュレータの計算
時間の短縮及び精度の向上を図ることにある。。
The purpose of the present invention is to shorten the calculation time and improve the accuracy of a three-dimensional multi-group core management program and a core simulator necessary for creating plans for daily load following operation and restart operation after emergency shutdown. It's about trying. .

【0008】[0008]

【課題を解決するための手段】本発明は、燃料中の核分
裂生成物の原子数密度および炉心内出力分布を以下に示
す方法に従って計算することを特徴とする。すなわち、
(i)ある時刻tから、時間ステップΔt後に到達させ
る目標原子炉出力を既知量として、時刻tの原子炉出力
P(t)および時刻t+Δtの目標原子炉出力P(t+
Δt)を入力値とする。
[Means for Solving the Problems] The present invention is characterized in that the atomic number density of fission products in the fuel and the power distribution within the core are calculated according to the method shown below. That is,
(i) From a certain time t, assuming that the target reactor power to be reached after a time step Δt is a known quantity, the reactor power P(t) at time t and the target reactor power P(t+
Δt) is the input value.

【0009】(ii)時刻t〜t+Δt間の中性子束分
布の変化は、原子炉出力Pの変化率m、         m=〔(P(t+Δt)−P(t))
/P(t)〕/Δt          …(2)  
    に関する関数として表わす。
(ii) The change in the neutron flux distribution between time t and t+Δt is the rate of change m in the reactor power P, m=[(P(t+Δt)−P(t))
/P(t)]/Δt...(2)
Expressed as a function related to

【0010】         φ(r,t+Δt)=g(φ(r,t
),Δt,m)                …(
3)      ランプ状に原子炉出力を変化させる時
、中性子束も原子炉出力と同じ変化率で変化していくと
考えると、(3)式は、         φ(r,t+Δt)=φ(r,t)×
(1+m×Δt)           …(4)  
    と書き表わされる。
φ(r,t+Δt)=g(φ(r,t
), Δt, m) …(
3) When changing the reactor power in a ramp-like manner, considering that the neutron flux also changes at the same rate of change as the reactor power, equation (3) becomes φ(r, t + Δt) = φ(r, t )×
(1+m×Δt)…(4)
It is written as

【0011】(iii)時刻t〜t+Δt間の核分裂生
成物の原子数密度の変化は、その原子数密度の微分方程
式、          dN(r,t)/dt=h(
N(r,t),φ(r,t))         …(
5)        の中の中性子束を上記(ii)で
与えた関数とした場合に得られる解析解を用いて計算す
る。
(iii) The change in the atomic number density of the fission product between time t and t+Δt is expressed by the differential equation of the atomic number density, dN(r,t)/dt=h(
N(r, t), φ(r, t)) …(
5) Calculate using the analytical solution obtained when the neutron flux in is the function given in (ii) above.

【0012】(iv)時刻t+Δtの核分裂生成物の原
子数密度分布を考慮して、時刻t+Δtの中性子束およ
び出力分布を計算する。
(iv) Calculate the neutron flux and power distribution at time t+Δt by considering the atomic number density distribution of fission products at time t+Δt.

【0013】[0013]

【作用】ある時刻tからt+Δtの間に、例えば、原子
炉出力を上昇させる場合、原子炉出力の上昇割合に比例
して、中性子束の大きさも変化する。中性子束の大きさ
が、1013,1014(n/cm2・sec )のオ
ーダになってくると、熱中性子吸収断面積の大きな核分
裂生成物、例えば、Xe−135が炉心内に蓄積し、炉
心の反応度に影響を及ぼすようになる。この時、Xe−
135の原子数密度の時間変化は、熱中性子束の時間積
分値にほぼ比例し、短時間の熱中性子束の過渡変化の影
響は小さい。 従って、時刻tの中性子束分布を基準にした、中性子束
分布を利用して、最終の時刻t+Δtに形成されるキセ
ノンの原子数密度の空間分布を求める。本発明では、時
刻t〜t+Δtの間の原子炉出力の変化率mを中性子束
の時間変化を示す指標とする。即ち、ある時刻tから、
時間ステップΔt後に到達させる目標原子炉出力を既知
量として、時刻t〜t+Δt間の中性子束分布の変化を
、原子炉出力の変化率mに関する関数と考えることによ
り、時刻t〜t+Δt間の核分裂生成物の原子数密度の
時間変化は、その微分方程式を解析的に解いて求めるこ
とができる。微分方程式の解析解を基にして算出できる
ので、核分裂生成物の原子数密度を計算する過程での計
算誤差は小さくできる。また、直接に一回の計算で求め
た時刻t+Δtでの核分裂生成物の原子数密度分布に基
づき、目標原子炉出力の中性子束分布を一回の直接計算
で求められる。従って、原子炉シュミレータの計算時間
の短縮を図ることができる。
[Operation] For example, when increasing the reactor output between a certain time t and t+Δt, the magnitude of the neutron flux also changes in proportion to the rate of increase in the reactor output. When the size of the neutron flux reaches the order of 1013,1014 (n/cm2・sec), fission products with a large thermal neutron absorption cross section, such as Xe-135, accumulate in the reactor core. This will affect the reactivity. At this time, Xe-
The time change in the atomic number density of 135 is approximately proportional to the time integral value of the thermal neutron flux, and the influence of short-term transient changes in the thermal neutron flux is small. Therefore, using the neutron flux distribution based on the neutron flux distribution at time t, the spatial distribution of the atomic number density of xenon formed at the final time t+Δt is determined. In the present invention, the rate of change m in the reactor output between time t and t+Δt is used as an index indicating the temporal change in neutron flux. That is, from a certain time t,
By considering the change in neutron flux distribution between time t and t + Δt as a function regarding the rate of change m of the reactor power, assuming that the target reactor power to be reached after time step Δt is a known quantity, nuclear fission generation between time t and t + Δt is achieved. Changes in the atomic number density of a substance over time can be determined by analytically solving its differential equation. Since it can be calculated based on the analytical solution of the differential equation, calculation errors in the process of calculating the atomic number density of fission products can be reduced. Further, based on the atomic number density distribution of fission products at time t+Δt, which is directly obtained by one calculation, the neutron flux distribution of the target reactor output can be obtained by one direct calculation. Therefore, the calculation time of the nuclear reactor simulator can be reduced.

【0014】[0014]

【実施例】以下、実施例を説明する。[Example] Examples will be explained below.

【0015】図1は、ある時刻tからΔtだけ経た、時
刻t+Δtの核分裂生成物の原子数密度分布および出力
分布を求めるときの計算アルゴリズムを示したものであ
る。まず、時刻t+Δtにおける目標原子炉出力を入力
する。その後、時刻t+Δtにおいて、熱中性子吸収断
面積の大きい核分裂生成物および、崩壊により核分裂生
成物を生成する核種の原子数密度を計算する。本実施例
では、反射体部を含む全炉心体系を中性子エネルギ三群
,三次元拡散計算で扱い、熱中性子吸収断面積の大きい
核分裂生成物として、Xe−135,Sm−149、お
よびそれらの生成に係る核分裂生成物として、I−13
5,Pm−149の過渡変化を取扱う。また、時刻t+
Δt後の中性子束φi(r,t+Δt)は、指標mを考
え、     φi(r,t+Δt)=φi(r,t)×(1
+m×Δt)            …(6)   
     (i=1,2,3) ここで、i=1(高速群),i=2(中速群),i=3
(熱群)を表す。
FIG. 1 shows a calculation algorithm for determining the atomic number density distribution and power distribution of fission products at time t+Δt, which is Δt after a certain time t. First, the target reactor output at time t+Δt is input. Thereafter, at time t+Δt, the atomic number densities of fission products with a large thermal neutron absorption cross section and nuclides that produce fission products by decay are calculated. In this example, the entire core system including the reflector section is treated with three-group neutron energy and three-dimensional diffusion calculations, and Xe-135, Sm-149, and their production are treated as fission products with large thermal neutron absorption cross sections. As a fission product related to I-13
5, deals with transient changes in Pm-149. Also, time t+
The neutron flux φi (r, t + Δt) after Δt is calculated as φi (r, t + Δt) = φi (r, t) × (1
+m×Δt)…(6)
(i=1, 2, 3) Here, i=1 (high speed group), i=2 (medium speed group), i=3
(thermal group).

【0016】I−135,Xe−135,Pm−149
,Sm−149の原子数密度は、それらの微分方程式、
[0016] I-135, Xe-135, Pm-149
, the atomic number density of Sm-149 is expressed by their differential equation,

【0017】[0017]

【数1】[Math 1]

【0018】から求める解析解から直接の一回の計算で
求められる。そして、時刻t+Δtでの、熱中性子吸収
断面積の大きい核種であるXe−135,Sm−149
の巨視的吸収断面積を反映して、中性子拡散方程式を数
値的に解く。
It can be obtained directly by one calculation from the analytical solution obtained from ##EQU1## At time t+Δt, Xe-135 and Sm-149, which are nuclides with large thermal neutron absorption cross sections,
Solve the neutron diffusion equation numerically by reflecting the macroscopic absorption cross section of .

【0019】図2は本発明方法を適用した三次元三群拡
散モデルに基づく炉心燃焼計算プログラムを用いて、中
性子束密度が1014(n/cm2・sec )クラス
の非沸騰軽水冷却型研究用原子炉の百時間定格出力運転
の実績解析を行った例であり、クリーン炉心を基準とし
た反応度の時間変化を示している。測定値は、実験で得
られた制御棒校正曲線を用いて求めたものであり、本実
施例で求めた計算値と非常に良い一致を示している。即
ち、本発明に基づく炉心燃焼計算プログラムを用いて、
原子炉の臨界制御棒パターンを精度良く予測することが
できる。また、図2に示したように、本発明方法に基づ
く炉心燃焼計算プログラムによって、計画した、制御棒
計画により、原子炉を起動する運転方法がある。図2は
、予測解析に基づいて運転した実測との反応度の時間変
化を示す実施例である。本発明では、核分裂生成物の原
子数密度分布の反復計算に要する時間が短縮でき、同じ
三次元三群拡散計算モデルに基づく計算に比べおよそ1
0%を短縮できる。前述の実施例で、原子炉出力の変化
率mを、原子炉出力に比例する炉心平均中性子束を用い
て求めても良い。
FIG. 2 shows a non-boiling light water-cooled research atom with a neutron flux density of 1014 (n/cm2·sec) class using a core combustion calculation program based on a three-dimensional three-group diffusion model to which the method of the present invention is applied. This is an example of performance analysis of a 100-hour rated power operation of a reactor, and shows the change in reactivity over time based on a clean core. The measured values were obtained using control rod calibration curves obtained through experiments, and show very good agreement with the calculated values obtained in this example. That is, using the core combustion calculation program based on the present invention,
It is possible to accurately predict the critical control rod pattern of a nuclear reactor. Further, as shown in FIG. 2, there is an operation method in which a nuclear reactor is started up according to a control rod plan planned by a core burnup calculation program based on the method of the present invention. FIG. 2 is an example showing a change in reactivity over time compared to actual measurement based on predictive analysis. In the present invention, the time required for iterative calculation of the atomic number density distribution of fission products can be shortened, and the time required for iterative calculation of the atomic number density distribution of fission products can be reduced by approximately
0% can be shortened. In the above embodiment, the rate of change m of the reactor power may be determined using the core average neutron flux that is proportional to the reactor power.

【0020】前述の実施例で述べた本発明方法は、オン
ライン計算にも適用することができる。実施例として、
本発明方法を適用したオンラインによる原子炉模擬装置
の基本構成を図3に示す。図3において、原子炉1は、
原子炉制御盤2によって設定された運転条件で運転され
ている。図示しない中性子検出器によって検出され、運
転データ入力装置3によって、運転データ処理装置4へ
入力される。運転データ処理装置4は最新の中性子束デ
ータをデータ記憶装置6に記憶させ、この中性子束デー
タを基に、このデータを採り入れた時刻tから、時刻t
+Δtの間の中性子束レベルは一定として、Xe−13
5,Sm−149等の原子数密度の計算を、運転状態推
定装置5で推定すると同時に、求めた原子数密度を用い
て、時刻t+Δtの中性子束分布及び出力分布を推定す
る。推定結果は、データ記憶装置6へ記憶させられ、求
めた原子炉運転状態は、制限条件判定装置7において、
運転状態から定まる制限条件と比較され、その結果が表
示装置8に表示される。
The method of the invention described in the above embodiments can also be applied to online calculations. As an example,
FIG. 3 shows the basic configuration of an online nuclear reactor simulator to which the method of the present invention is applied. In FIG. 3, the reactor 1 is
The reactor is operated under operating conditions set by the reactor control panel 2. It is detected by a neutron detector (not shown), and is input to the operation data processing device 4 by the operation data input device 3. The operation data processing device 4 stores the latest neutron flux data in the data storage device 6, and based on this neutron flux data, from the time t when this data is adopted, to the time t.
Assuming that the neutron flux level during +Δt is constant, Xe-13
5, Sm-149, etc., is estimated by the operating state estimating device 5, and at the same time, the neutron flux distribution and power distribution at time t+Δt are estimated using the obtained atomic number density. The estimation result is stored in the data storage device 6, and the obtained reactor operating state is determined by the limit condition determination device 7.
It is compared with limiting conditions determined from the operating state, and the results are displayed on the display device 8.

【0021】[0021]

【発明の効果】本発明を適用した炉心燃焼管理プログラ
ムまたは炉心シミュレータを用いて、計算時間の短縮化
を図り、原子炉の再起動運転等の出力変更を伴う運転の
制御棒計画を精度良く作成することができる。
[Effects of the Invention] By using the core combustion management program or core simulator to which the present invention is applied, calculation time is shortened, and control rod plans for operations involving output changes such as reactor restart operations are created with high accuracy. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の計算アルゴリズムの説明図。FIG. 1 is an explanatory diagram of a calculation algorithm of the present invention.

【図2】本発明の計算アルゴリズムを適用した炉心燃焼
管理プログラムによる解析例の説明図。
FIG. 2 is an explanatory diagram of an example of analysis by a core combustion management program to which the calculation algorithm of the present invention is applied.

【図3】本発明の計算方法を適用した原子炉模擬装置の
ブロック図。
FIG. 3 is a block diagram of a nuclear reactor simulator to which the calculation method of the present invention is applied.

【符号の説明】[Explanation of symbols]

1…原子炉、2…原子炉制御盤、3…運転データ入力装
置、4…運転データ処理装置、5…運転状態推定装置、
6…データ記憶装置、7…制限条件判定装置、8…表示
装置。
1... Nuclear reactor, 2... Nuclear reactor control panel, 3... Operating data input device, 4... Operating data processing device, 5... Operating state estimation device,
6...Data storage device, 7...Limiting condition determination device, 8...Display device.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】原子炉の再起動運転等原子炉出力の変更を
伴う運転の制御棒計画を作成するために、原子炉の炉心
運転特性を予測する原子炉シミュレータにおいて、炉心
燃焼計算の時刻tの中性子束φ(r,t)、核定数およ
び時刻t+Δtにおける目標原子炉出力Pを既知量とし
、時刻t〜t+Δt間の燃焼タイムステップ中の原子炉
出力の相対変化率mを用いて、前記燃焼タイムステップ
中の中性子束分布φ(r,t)の過渡変化を、φ(r,
t+Δt)=φ(r,t)×(1+m×Δt)、と表わ
し、前記燃焼タイムステップ中における熱中性)吸収断
面積の非常に大きい核種の原子数密度の微分方程式にあ
らわれる中性子束φ(r,t)を前記関数形とした場合
に得られる解析解から、前記核種の原子数密度を算出し
、算出した原子数密度分布を考慮して時刻t+Δtの中
性子束分布及び出力分布を求めるという計算手順を特徴
とする原子炉シミュレータ。
Claim 1: In a nuclear reactor simulator that predicts the core operating characteristics of a nuclear reactor in order to create a control rod plan for an operation that involves a change in reactor output such as a restart operation of the reactor, a time t of core burn-up calculation is used. Assuming that the neutron flux φ(r, t), the nuclear constant, and the target reactor power P at time t+Δt are known quantities, and using the relative change rate m of the reactor power during the combustion time step between time t and t+Δt, The transient change in the neutron flux distribution φ(r, t) during the combustion time step is expressed as φ(r,
t + Δt) = φ (r, t) × (1 + m × Δt), where the neutron flux φ (r , t) from the analytical solution obtained when the function form is used, the atomic number density of the nuclide is calculated, and the neutron flux distribution and power distribution at time t + Δt are determined by considering the calculated atomic number density distribution. A nuclear reactor simulator featuring steps.
【請求項2】請求項1において、時刻t〜t+Δt間の
前記燃焼タイムステップ中の原子炉出力の相対変化率m
を、原子炉出力に比例した炉心平均中性子束から求める
原子炉シミュレータ。
2. In claim 1, a relative change rate m of the reactor power during the combustion time step between time t and t+Δt.
A nuclear reactor simulator that calculates from the core average neutron flux proportional to the reactor power.
【請求項3】請求項1において、炉心燃焼計算の時刻t
〜t+Δt間の中性子束分布φ(r,t)の過渡変化を
中性子束分布一定と表わして得られる原子数密度の微分
方程式の解析解から、前記核種の原子数密度を求める原
子炉シミュレータ。
Claim 3: In claim 1, the time t of core combustion calculation.
A nuclear reactor simulator that calculates the atomic number density of the nuclide from an analytical solution of a differential equation of the atomic number density obtained by representing a transient change in the neutron flux distribution φ(r, t) between ~t+Δt as a constant neutron flux distribution.
【請求項4】原子炉内の熱中性子吸収断面積の非常に大
きい核種の原子数密度分布の過渡変化を、中性子束分布
反復計算過程の外側で算出する原子炉シミュレータ。
4. A nuclear reactor simulator that calculates transient changes in the atomic number density distribution of a nuclide with a very large thermal neutron absorption cross section in a nuclear reactor outside of a neutron flux distribution iterative calculation process.
【請求項5】請求項1,2または3において、原子数密
度の微分方程式中の中性子束の代わりに出力を用いて、
前記核種の原子数密度を求める原子炉シミュレータ。
5. In claim 1, 2 or 3, using the output instead of the neutron flux in the differential equation of the atomic number density,
A nuclear reactor simulator that calculates the atomic number density of the nuclide.
【請求項6】原子炉に設置した中性子検出器から得られ
た中性子密度信号に基づいて、請求項3に記載の中性子
束分布一定の条件で得られる解析解から前記核種の原子
数密度を計算し、炉心運転特性の変化を予測するオンラ
イン原子炉模擬装置。
6. Calculating the atomic number density of the nuclide from an analytical solution obtained under the constant neutron flux distribution conditions according to claim 3, based on a neutron density signal obtained from a neutron detector installed in a nuclear reactor. An online reactor simulator that predicts changes in core operating characteristics.
【請求項7】請求項1,2,3,4,5または6に記載
の原子炉シミュレータで、熱中性子吸収断面積の非常に
大きい核種の原子数密度を求めるための解析解の適用に
おいて、前記記載の原子炉出力の相対変化率mに関して
、m≠0およびm=0なる判定条件を設けて、解析解を
選択することができる原子炉シミュレータ。
7. In the nuclear reactor simulator according to claim 1, 2, 3, 4, 5, or 6, in applying the analytical solution for determining the atomic number density of a nuclide with a very large thermal neutron absorption cross section, A nuclear reactor simulator that is capable of selecting an analytical solution by setting determination conditions such as m≠0 and m=0 regarding the relative rate of change m of the reactor output described above.
【請求項8】請求項1,2,3,4,5,6または7に
おいて、原子数密度を計算するのに、解析解の代わりに
数値解析を適用した原子炉シミュレータ。
8. The nuclear reactor simulator according to claim 1, 2, 3, 4, 5, 6, or 7, wherein numerical analysis is applied instead of an analytical solution to calculate the atomic number density.
【請求項9】請求項1,2,3,4,5,6,7または
8において、作成した日負荷運転計画または再起動運転
計画に基づき、原子炉を運転する原子炉運転方法。
9. A nuclear reactor operating method according to claim 1, 2, 3, 4, 5, 6, 7, or 8, which operates a nuclear reactor based on a prepared daily load operation plan or restart operation plan.
JP3025971A 1991-02-20 1991-02-20 Nuclear furnace simulator Pending JPH04265899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3025971A JPH04265899A (en) 1991-02-20 1991-02-20 Nuclear furnace simulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3025971A JPH04265899A (en) 1991-02-20 1991-02-20 Nuclear furnace simulator

Publications (1)

Publication Number Publication Date
JPH04265899A true JPH04265899A (en) 1992-09-22

Family

ID=12180618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3025971A Pending JPH04265899A (en) 1991-02-20 1991-02-20 Nuclear furnace simulator

Country Status (1)

Country Link
JP (1) JPH04265899A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010661A (en) * 2005-06-30 2007-01-18 Global Nuclear Fuel Americas Llc Method of improving nuclear reactor performance in reactor core operation period
JP2013505460A (en) * 2009-09-23 2013-02-14 シーレイト リミテッド ライアビリティー カンパニー Material movement in nuclear fission reactors
US10325689B2 (en) 2013-11-21 2019-06-18 Terrapower, Llc Method and system for generating a nuclear reactor core loading distribution

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010661A (en) * 2005-06-30 2007-01-18 Global Nuclear Fuel Americas Llc Method of improving nuclear reactor performance in reactor core operation period
JP2013505460A (en) * 2009-09-23 2013-02-14 シーレイト リミテッド ライアビリティー カンパニー Material movement in nuclear fission reactors
JP2016048261A (en) * 2009-09-23 2016-04-07 テラパワー, エルエルシー Movement of material in nuclear fission reactor
US9576688B2 (en) 2009-09-23 2017-02-21 Terrapower, Llc Movement of materials in a nuclear reactor
US10325689B2 (en) 2013-11-21 2019-06-18 Terrapower, Llc Method and system for generating a nuclear reactor core loading distribution
US10566100B2 (en) 2013-11-21 2020-02-18 Terrapower, Llc Method and system for generating a nuclear reactor core loading distribution
US10593436B2 (en) 2013-11-21 2020-03-17 Terrapower, Llc Method and system for generating a nuclear reactor core loading distribution

Similar Documents

Publication Publication Date Title
Rempe et al. SIMULATE-3 pin power reconstruction: methodology and benchmarking
EP0238299B1 (en) Calibration of a nuclear reactor core parameter predictor
RU2550689C2 (en) Method of facilitating nuclear reactor operation
JP2006017718A (en) Method, device and computer program to generate design of fuel assembly for reactor
CN112597631A (en) Super real-time calculation method for axial power deviation, electronic device and storage medium
Boyd et al. The BEACON on-line core monitoring system: functional upgrades and applications
Barhen et al. Uncertainty analysis of time-dependent nonlinear systems: Theory and application to transient thermal hydraulics
JPH04265899A (en) Nuclear furnace simulator
JPS59799B2 (en) Nuclear power plant reactor output prediction device
Tucker et al. The impact of fueling operations on full core uncertainty analysis in CANDU reactors
Demazière et al. On the possibility of the space-dependence of the stability indicator (decay ratio) of a BWR
JP2003177196A (en) Reactor core nuclear instrumentation response calculation method
Antonopoulos-Domis et al. Moderator temperature coefficient of reactivity in Pressurized Water Reactors: theoretical investigation and numerical simulations
JP2696049B2 (en) Reactor core characteristics simulation device
Lorenzi et al. Analytical models for a small LFR core dynamics studies
JPH06186380A (en) Performance calculator for reactor core
JP4008131B2 (en) Reactor core performance calculator
Ikeda et al. BWR stability issues in Japan
JPH0772282A (en) Method and device for estimating reactor core performance
Borkowski et al. S3R Advanced Training Simulator Core Model: Implementation and Validation
JPH09211177A (en) Performance prediction and surveillance device and prediction method for reactor core using mixed oxide fuel
JPH11258382A (en) Method for calculating reactor core performance of reactor
Kinast et al. Parametric Sensitivity Analysis of Stability Margins of Holos-Quad Microreactor
Antila et al. Recent improvements in on-line core supervision at Loviisa NPP
Lundberg et al. Core supervision methods and future improvements of the core master/presto system at KKB