JPH06186380A - Performance calculator for reactor core - Google Patents

Performance calculator for reactor core

Info

Publication number
JPH06186380A
JPH06186380A JP4335791A JP33579192A JPH06186380A JP H06186380 A JPH06186380 A JP H06186380A JP 4335791 A JP4335791 A JP 4335791A JP 33579192 A JP33579192 A JP 33579192A JP H06186380 A JPH06186380 A JP H06186380A
Authority
JP
Japan
Prior art keywords
calculation
calculation means
result
reactor
nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4335791A
Other languages
Japanese (ja)
Inventor
Hiroki Sano
広樹 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4335791A priority Critical patent/JPH06186380A/en
Publication of JPH06186380A publication Critical patent/JPH06186380A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To provide a performance calculator for reactor core in which calculation time of three-dimensional neutron flux distribution and the like can be shortened while allowing high monitoring calculation or predictive calculation. CONSTITUTION:Calculation of a first calculating means 2 is performed intermittently by a first nuclear thermal hydraulic calculation means 2 having an assembly as one node in horizontal direction, a second calculation means 3 having four assemblies as one node, and means 6 correcting the difference of calculation results between the first and second means 2, 3. When current condition monitoring is requested, correction results are displayed while taking account of the difference of preserved calculation results of the second means 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子炉出力分布等を計
算監視、あるいは予測するための原子炉炉心性能計算装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor core performance calculation device for calculating or monitoring a reactor power distribution and the like.

【0002】[0002]

【従来の技術】従来、原子炉の炉心の監視,予測には、
TIP(Traversing In-Core Probe),LPRM(Local P
ower Range Monitor)等の炉内中性子計測器による計数
値を利用すると同時に、原子炉の固有値,3次元の出力
分布,中性子束分布,熱的制限値からの余裕などの核熱
水力特性を求めるため、物理モデルに基づく3次元炉心
シミュレータを備えている。物理モデルは、中性子をエ
ネルギにより、高速群,熱外群,熱群等に分類し、各群
の中性子束の従う拡散方程式を導いたのち、これらを1
群化した、いわゆる、修正1群拡散方程式を解く核計算
モデルが良く用いられる。
2. Description of the Related Art Conventionally, for monitoring and predicting the core of a nuclear reactor,
TIP (Traversing In-Core Probe), LPRM (Local P
ower range monitor) and other nuclear neutron counters are used, and at the same time, nuclear thermohydraulic characteristics such as eigenvalues of reactor, three-dimensional power distribution, neutron flux distribution, and margin from thermal limit value are obtained. Therefore, it is equipped with a three-dimensional core simulator based on a physical model. The physical model classifies neutrons into high-speed groups, out-heat groups, heat groups, etc. according to energy, derives a diffusion equation that neutron flux of each group follows, and
A nuclear calculation model that solves a grouped so-called modified one-group diffusion equation is often used.

【0003】[0003]

【発明が解決しようとする課題】拡散方程式は、通常、
水平方向に数百体ある燃料集合体一体一体を1格子と
し、軸方向に十数ノードから二十数ノードの格子に分
割,離散化して解かれる。この核計算モデルには炉心内
のボイド分布や燃焼度分布,制御棒の有無などにより決
まる核定数を係数として含んでいる。ところで、中性子
束分布が変化すると出力分布が変化し、炉内のボイド分
布が変化するため、核定数が変化する。このため、つじ
つまの合う中性子束分布と、ボイド分布を求めるために
は格子上の変数を何度も置き換え、計算する反復計算を
要し、特にオンラインで監視,予測をする際には、非常
に時間がかかるという問題がある。
The diffusion equation is usually
Several hundred fuel assemblies in the horizontal direction are integrated into one lattice, which is divided into a lattice of ten-odd nodes to twenty-odd nodes in the axial direction and discretized for solving. This nuclear calculation model includes nuclear constants determined by the void distribution and burnup distribution in the core and the presence or absence of control rods as coefficients. By the way, when the neutron flux distribution changes, the power distribution also changes, and the void distribution in the reactor also changes, so the nuclear constant changes. For this reason, in order to find a neutron flux distribution and a void distribution that are consistent with each other, it is necessary to repeatedly replace variables on the grid and calculate iteratively, especially when performing online monitoring and prediction. There is a problem that it takes time.

【0004】本発明の目的は、監視,予測計算を短時間
で実行する原子炉炉心性能計算装置を提供することにあ
る。
An object of the present invention is to provide a reactor core performance calculation device which executes monitoring and prediction calculation in a short time.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、水平方向に集合体一体を1格子とする従
来の3次元計算手段(第1の計算手段)に加え、制御棒
周りの集合体四体を1格子とする3次元計算手段(第2
の計算手段),第2の計算手段の計算結果の第1の計算
手段の計算結果に対する相違を表す指標を保存する手
段,上記保存手段に保存した指標を入力とし第2の計算
結果を補正する手段を備え、上記第1の計算手段による
監視を間歇的に実行するとともに、その間の監視,予測
は上記第2の計算手段により実行する構成とした。
In order to achieve the above object, the present invention provides a control rod in addition to the conventional three-dimensional calculation means (first calculation means) in which the aggregates are integrated into one lattice in the horizontal direction. A three-dimensional calculation means (2nd unit) that uses four surrounding aggregates as one grid
Calculation means), means for storing an index indicating the difference between the calculation result of the second calculation means and the calculation result of the first calculation means, and the index stored in the storage means is input to correct the second calculation result. A means is provided, and the monitoring by the first calculation means is intermittently executed, and the monitoring and prediction during that time are executed by the second calculation means.

【0006】また、上記手段及び上記補正結果を第1の
計算手段に入力する手段とを備え、第1の計算手段に初
期計算結果を与える構成とした。
Further, the above-mentioned means and means for inputting the above-mentioned correction result to the first calculating means are provided, and an initial calculation result is given to the first calculating means.

【0007】[0007]

【作用】第2の計算手段は第1の計算手段より少ない格
子点数で計算するため、計算時間が短い。また、第2の
計算手段の計算結果の第1の計算手段の計算結果に対す
る相違を保存し、第2の計算結果を補正することによ
り、第2の計算手段を代用することにより生じる誤差が
低減できる。このため、第1の計算手段による計算は第
2の計算手段による誤差低減のために間歇的に実行すれ
ば良く、第2の計算手段を主体として計算することで全
体の計算時間が短縮できる。
Since the second calculating means calculates with a smaller number of grid points than the first calculating means, the calculation time is short. Further, by saving the difference between the calculation result of the second calculation means and the calculation result of the first calculation means and correcting the second calculation result, the error caused by substituting the second calculation means is reduced. it can. Therefore, the calculation by the first calculation means may be intermittently executed to reduce the error by the second calculation means, and the calculation time can be shortened by performing the calculation mainly by the second calculation means.

【0008】また、第2の計算手段による計算誤差が十
分補正されない場合、第2の計算手段による計算の補正
結果を用い、第1の計算手段の入力とすることにより、
第1の計算手段での計算の初期値とすることができる。
これにより、第1の計算手段での反復回数が減り、全体
の計算時間を短縮できる。
Further, when the calculation error by the second calculating means is not sufficiently corrected, the correction result of the calculation by the second calculating means is used and the input to the first calculating means is performed.
It can be used as the initial value of the calculation by the first calculation means.
As a result, the number of iterations in the first calculation means is reduced, and the total calculation time can be shortened.

【0009】[0009]

【実施例】以下、本発明の運転計画作成装置の第1の実
施例を図1により説明する。図1において、1は原子炉
炉心性能計算装置、2は第1の核熱水力計算手段、3は
第2の核熱水力計算手段、4は測定値入力部、5は保存
装置、6は補正装置、10は原子炉、11は炉心、12
はプロセスデータ処理部、13は表示装置を示してい
る。以下それぞれの計算部の動作について詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the operation plan creating apparatus of the present invention will be described below with reference to FIG. In FIG. 1, 1 is a reactor core performance calculation device, 2 is first nuclear thermal-hydraulic calculation means, 3 is second nuclear-thermal-hydraulic calculation means, 4 is a measured value input unit, 5 is a storage device, 6 Is a compensator, 10 is a reactor, 11 is a core, 12
Is a process data processing unit, and 13 is a display device. The operation of each calculator will be described in detail below.

【0010】原子炉10の炉心11からTIP,LPR
M等による中性子束測定正データφT0,φL0が得られる
と、プロセスデータ処理部12は測定値入力装置4を備
えた炉心性能計算装置1にTIP実測値φT ,LPRM
実測値φL として送られる。
From core 11 of reactor 10 to TIP, LPR
When the neutron flux measurement positive data φ T0 , φ L0 by M etc. are obtained, the process data processing unit 12 causes the core performance calculation device 1 equipped with the measured value input device 4 to measure the TIP measured values φ T , LPRM.
It is sent as the measured value φ L.

【0011】入力装置4は、LPRM,TIPの故障を
統計的手法などで判断したのち、正常と判断されたデー
タ、または最も確からしい値に置き換えたのちのデータ
を、第1の計算手段1や第2の計算手段2に転送する。
ここではこのような処理後のTIP実測値,LPRM実
測値もφT,φLとして示している。
The input device 4 uses the first calculation means 1 and the data obtained after the failure of LPRM and TIP is judged by a statistical method or the like, and the data judged to be normal or replaced with the most probable value. Transfer to the second calculation means 2.
Here, the TIP measured value and the LPRM measured value after such processing are also shown as φ T and φ L.

【0012】第1の計算手段2は、監視計算時には炉心
データとして得られる原子炉熱出力,炉心流量,制御棒
パターン等の運転パラメータ,予測計算時にはユーザ所
望の運転パラメータに基づき、修正1群中性子拡散モデ
ルに基づく核熱水力計算手段を実施する。この計算で
は、集合体一体を1計算格子(ノード)とし、それぞれ
の集合体の核特性を表す核定数をノードごとのボイド
率,燃焼度,燃料温度等の関数としている。この計算の
際、第1の計算手段は、入力装置4から得られた実測値
φTや、φLに合うように、中性子束や出力分布計算結果
を補正する。あるいは修正1群中性子拡散方程式に補正
パラメータを用意し、このパラメータを補正しながら中
性子束や出力分布を計算する。得られた中性子束分布,
出力分布、また補正パラメータ等(x1 、以下これらを
単に結果ともいう)は、第1の計算手段実行時に必要に
応じて表示装置13に表示され、保存装置5に送られ
る。
The first calculation means 2 uses the modified first group neutrons based on operating parameters such as reactor heat output, core flow rate, control rod pattern, etc. obtained as core data at the time of monitoring calculation, and operating parameters desired by the user at the time of prediction calculation. Implement nuclear thermal-hydraulic calculation means based on diffusion model. In this calculation, the aggregate of the aggregates is one calculation grid (node), and the nuclear constants representing the nuclear characteristics of each aggregate are the functions of the void fraction, burnup, fuel temperature, etc. for each node. At the time of this calculation, the first calculation means corrects the neutron flux and output distribution calculation results so as to match the measured values φ T and φ L obtained from the input device 4. Alternatively, a correction parameter is prepared for the modified first group neutron diffusion equation, and the neutron flux and output distribution are calculated while correcting this parameter. The obtained neutron flux distribution,
The output distribution, the correction parameters and the like (x 1 , hereinafter, also simply referred to as results) are displayed on the display device 13 as needed when the first calculation means is executed, and are sent to the storage device 5.

【0013】第1の計算手段による計算は、TIP走行
時は毎回計算するが、LPRMの実測値が得られ、監視
計算を要求される場合、全部について計算されず、数回
に1回実行される。
The calculation by the first calculating means is performed every time the TIP is running, but when the actual measurement value of LPRM is obtained and the monitoring calculation is requested, the calculation is not performed for all but is performed once every several times. It

【0014】第2の計算手段3は、監視計算時には炉心
データとして得られる原子炉熱出力,炉心流量,制御棒
パターン等の運転パラメータ,予測計算時にはユーザ所
望の運転パラメータに基づき、修正1群中性子拡散モデ
ルに基づく核熱水力計算手段を実施する。この計算で
は、制御棒周りの集合体四体を1計算格子(ノード)と
し、それぞれの集合体の核特性を表す核定数を運転パラ
メータや、燃焼度,燃料温度等の関数としている。制御
棒周りの集合体の核特性を表す核定数は、第1の計算手
段に使用される核定数の四体の中性子束重み付き平均等
を用いることができる。
The second calculation means 3 uses the modified first group neutrons based on operating parameters such as reactor heat output, core flow rate, control rod pattern, etc. obtained as core data at the time of monitoring calculation, and operating parameters desired by the user at the time of prediction calculation. Implement nuclear thermal-hydraulic calculation means based on diffusion model. In this calculation, four aggregates around the control rod are set as one calculation grid (node), and a nuclear constant representing the nuclear characteristic of each aggregate is used as a function of operating parameters, burnup, fuel temperature and the like. As the nuclear constant representing the nuclear characteristic of the aggregate around the control rod, a neutron flux weighted average of four nuclear constants used in the first calculation means can be used.

【0015】この計算の際、第2の計算手段は、入力装
置4から得られた実測値φT や、φL に合うように、中
性子束や出力分布計算結果を補正する。あるいは修正1
群中性子拡散方程式に補正パラメータを用意し、このパ
ラメータを補正しながら中性子束や出力分布を計算す
る。得られた中性子束分布,出力分布、また補正パラメ
ータ等(x2 、以下これらを単に結果ともいう)は、第
2の計算手段実行時に必要に応じて表示装置13に表示
されるとともに保存装置5に送られる。また、第1の計
算手段による計算のない場合、補正装置6にも結果を送
る。
At the time of this calculation, the second calculation means corrects the neutron flux and the output distribution calculation result so as to match the measured values φ T and φ L obtained from the input device 4. Or fix 1
A correction parameter is prepared for the group neutron diffusion equation, and the neutron flux and power distribution are calculated while correcting this parameter. The obtained neutron flux distribution, output distribution, correction parameters, etc. (x 2 , hereinafter these are also simply referred to as results) are displayed on the display device 13 as necessary when executing the second calculation means, and the storage device 5 Sent to. If there is no calculation by the first calculation means, the result is also sent to the correction device 6.

【0016】第2の計算手段による計算は、TIP走行
時、LPRMの実測値が得られ、監視計算を要求される
場合、ともに毎回実行される。
The calculation by the second calculating means is executed every time when the actual measurement value of LPRM is obtained during the TIP traveling and the monitoring calculation is requested.

【0017】なお、第2の計算手段3は、第1の計算手
段2と同じプログラムであり、使用する定数等を変える
など、使用法のみを変えても良い。
The second calculating means 3 is the same program as the first calculating means 2, and only the usage may be changed, such as changing the constants used.

【0018】保存装置5には第1,第2の両計算手段に
よる計算実行時に第2の計算手段3による結果x2 と、
第1の計算手段2による結果x1 の相違を表す指標α
(例えばx2とx1の差あるいは比等、以下保存値とい
う)が計算され、保存される。この結果保存点数は、少
なくとも第1の計算手段の計算格子数分の情報を格納す
る分必要である。
In the storage device 5, the result x 2 obtained by the second calculation means 3 when the calculation by the first and second calculation means is executed,
Index α representing the difference in the result x 1 obtained by the first calculation means 2
(For example, a difference or a ratio between x 2 and x 1 , etc., hereinafter referred to as a stored value) is calculated and stored. As a result, the number of storage points is required to store at least information corresponding to the number of calculation grids of the first calculation means.

【0019】補正装置6では第2の計算手段による計算
だけを実行した際に、保存装置5から保存値αを取りだ
し、最新の第2の計算手段による計算結果x2 に保存し
たときの逆算(たとえば、αとx2 の和,積)等を施
し、補正結果x′を計算する。なお、x2が集合体四体
に一体の結果であるのに対し、x1,x′は集合体一体
一体の結果であることはいうまでもない。
In the correction device 6, when only the calculation by the second calculation means is executed, the stored value α is taken out from the storage device 5 and stored backward in the latest calculation result x 2 by the second calculation means (back calculation ( For example, the correction result x'is calculated by applying (sum, product) of α and x 2 . It is needless to say that x 2 is the result of being integrated with the four aggregates, whereas x 1 and x ′ are the results of being integrally with the aggregate.

【0020】求められた補正結果x′は要求時に表示装
置13に表示される。計算手段2を用いたことによる誤
差は、前回計算時の第1の計算結果により補正されるた
め、この結果は、全監視計算要求時に計算手段1のみを
用いて計算した結果と良く一致する。特に、集合体周り
の四体の燃料核特性が似通っているとき有効である。本
実施例によれば、第1の計算手段に対して計算点数1/
4の第2の計算手段により3次元核熱水力計算時間が約
1/4となる。
The obtained correction result x'is displayed on the display device 13 at the time of request. Since the error due to the use of the calculation means 2 is corrected by the first calculation result at the time of the previous calculation, this result is in good agreement with the result calculated by using only the calculation means 1 at the time of requesting all monitoring calculations. This is especially effective when the fuel core characteristics of the four bodies around the assembly are similar. According to this embodiment, the number of calculation points is 1 / for the first calculation means.
The second calculation means of 4 reduces the three-dimensional nuclear thermal-hydraulic calculation time to about 1/4.

【0021】次に、本発明の運転計画作成装置の第2の
実施例を図2により説明する。図2は、第1の実施例に
おける補正装置6から第2の計算手段による計算の補正
結果x′を第1の計算手段3に受け渡す構成となってい
る。なお、その他の装置構成は第1の実施例と同様とな
っている。第1の計算装置ではこの結果を用い、前回計
算時の結果を置き換えて計算の初期値とし、その後今回
の計算値x1 を計算し、表示装置13に表示する。
Next, a second embodiment of the operation plan creating apparatus of the present invention will be described with reference to FIG. FIG. 2 shows a configuration in which the correction result x ′ calculated by the second calculation means is transferred from the correction device 6 in the first embodiment to the first calculation means 3. The other device configurations are similar to those of the first embodiment. The first calculation device uses this result, replaces the result of the previous calculation as the initial value of the calculation, and then calculates the calculated value x 1 of this time and displays it on the display device 13.

【0022】制御棒周りの四体の燃料集合体の核特性が
一体一体かなり異なっていると、第1の実施例のように
第2の計算手段に監視計算や予測計算を任せると、前回
の第1の計算手段による計算結果を用いて、結果が補正
されているとはいえ、誤差が増大する可能性がある。そ
こで、本実施例では第2の計算手段による計算結果は、
前回の第1の計算結果により補正したのち、第1の計算
結果の初期値として用い、第1の計算手段で今回の監視
予測結果を計算する。第2の計算結果の補正値は、第1
の計算手段の前回の計算結果に比べ、第1の計算手段に
対する良い初期値となっているため、第1の計算手段に
よる計算の反復回数を減らすことができる。
When the nuclear characteristics of the four fuel assemblies around the control rod are quite different from each other, if the second calculation means is allowed to perform the monitoring calculation and the prediction calculation as in the first embodiment, Although the result is corrected using the calculation result of the first calculating means, the error may increase. Therefore, in this embodiment, the calculation result by the second calculation means is
After being corrected by the first calculation result of the previous time, it is used as the initial value of the first calculation result, and the current monitoring prediction result is calculated by the first calculation means. The correction value of the second calculation result is the first
Compared with the previous calculation result of the calculation means of 1, the initial value for the first calculation means is a good value, so that the number of times of repetition of calculation by the first calculation means can be reduced.

【0023】なお、この際、第1の計算手段による計算
は、知識処理的手法により誤差が大きくなったことを判
断する手段を設けて起動する、もしくは第1の実施例よ
り単に回数を増やすことにより起動できる。
At this time, the calculation by the first calculation means is started by providing means for judging that the error has become large by the knowledge processing method, or simply by increasing the number of times as compared with the first embodiment. Can be started by.

【0024】本実施例によれば、計算点数の1/4の第
2の計算手段により第1の計算手段に収束解に近い初期
値を与えることができ、第1の計算手段の3次元核熱水
力計算における反復回数を減らし、計算時間を短縮する
効果がある。
According to this embodiment, an initial value close to a convergent solution can be given to the first calculating means by the second calculating means which is ¼ of the number of calculation points, and the three-dimensional kernel of the first calculating means can be given. This has the effect of reducing the number of iterations in thermal-hydraulic calculation and shortening the calculation time.

【0025】[0025]

【発明の効果】本発明によれば、炉心性能計算において
時間を要する3次元核熱水力計算時間を短縮し、全体の
監視,予測計算時間が短縮できる。
According to the present invention, it is possible to shorten the time required for three-dimensional nuclear thermal-hydraulics calculation in the core performance calculation, and to shorten the overall monitoring and prediction calculation time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の運転計画作成装置の第一の実施例を表
すブロック図。
FIG. 1 is a block diagram showing a first embodiment of an operation plan creation device of the present invention.

【図2】本発明の運転計画作成装置の第二の実施例の断
片図を表す説明図。
FIG. 2 is an explanatory diagram showing a fragmentary diagram of a second embodiment of the operation plan creation device of the present invention.

【符号の説明】[Explanation of symbols]

1…原子炉炉心性能計算装置、2…第1の核熱水力計算
手段、3…第2の核熱水力計算手段、4…測定値入力
部、5…保存装置、6…補正装置、10…原子炉、11
…炉心、12…プロセスデータ処理部、13…表示装
置。
DESCRIPTION OF SYMBOLS 1 ... Reactor core performance calculation device, 2 ... 1st nuclear thermal-hydraulic calculation means, 3 ... 2nd nuclear-thermal-hydraulic calculation means, 4 ... Measurement value input part, 5 ... Storage device, 6 ... Correction device, 10 ... Reactor, 11
... Reactor core, 12 ... Process data processing unit, 13 ... Display device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】原子炉の熱出力,炉心流量,制御棒パター
ン等の炉心状態を表すパラメータ、及び炉内中性子検出
器の計数値を入力とし、上記原子炉の固有値,3次元の
出力分布,中性子束分布,熱的制限値からの余裕などの
核熱水力特性を計算する原子炉性能計算装置において、
上記原子炉の炉心に装荷される燃料集合体一体の占める
領域を囲む2次元正方体系を、3次元核熱水力特性計算
における水平方向の1格子として計算する第1の計算手
段と、複数の隣接する燃料集合体の占める領域を囲む2
次元正方体系を、3次元核熱水力特性における水平方向
の1格子として計算する第2の計算手段と、上記第1の
計算手段による計算結果と上記第2の計算手段による結
果の相違を表す指標を上記第1の計算手段の計算格子点
数分保存する手段と、上記保存結果を入力し、第2の計
算手段の計算結果を補正する手段とを備え、上記第1の
計算手段の計算間隔が、上記第2の計算手段の計算間隔
以上であることを特徴とする原子炉炉心性能計算装置。
1. Reactor eigenvalues, three-dimensional output distributions, which are input with parameters representing core state such as reactor heat output, core flow rate, control rod pattern, etc., and in-core neutron detector count values, In a nuclear reactor performance calculation device that calculates nuclear thermal hydraulic characteristics such as neutron flux distribution and margin from thermal limit value,
A first calculation means for calculating a two-dimensional tetragonal system surrounding a region occupied by the fuel assemblies integrally loaded in the core of the nuclear reactor as one horizontal grid in the three-dimensional nuclear thermal-hydraulic characteristic calculation; Surround the area occupied by adjacent fuel assemblies 2
The second calculation means for calculating the three-dimensional tetragonal system as one horizontal grid in the three-dimensional nuclear thermal-hydraulic characteristic, and the difference between the calculation result by the first calculation means and the result by the second calculation means The calculation means includes means for storing the index for the number of calculation grid points of the first calculation means, and means for inputting the storage result and correcting the calculation result of the second calculation means, and the calculation interval of the first calculation means. Is a calculation interval of the second calculation means or more, the reactor core performance calculation device.
【請求項2】請求項1において、上記第2の計算手段に
用いられる格子は、制御棒周りの集合体四体を囲む正方
体系である原子炉炉心性能計算装置。
2. The nuclear reactor core performance calculation device according to claim 1, wherein the lattice used in the second calculation means is a tetragonal system surrounding four assembly bodies around a control rod.
【請求項3】請求項1において、上記第1の計算手段
と、上記第2の計算手段と、上記第1の計算手段による
計算結果と上記第2の計算手段による結果の相違を表す
指標を上記第1の計算手段の計算格子点数分保存する手
段と、上記保存結果を入力し、上記第2の計算手段の計
算結果を補正する手段とを備え、上記補正結果を上記第
1の計算手段に入力する手段を備えた原子炉炉心性能計
算装置。
3. The first calculation means, the second calculation means, and the index representing the difference between the calculation result of the first calculation means and the result of the second calculation means according to claim 1. The first calculation means comprises means for storing the number of calculation grid points of the first calculation means, and means for inputting the storage result and correcting the calculation result of the second calculation means. Reactor core performance calculation device having means for inputting into the reactor.
【請求項4】請求項3において、上記第2の計算手段の
補正結果を上記第1の計算手段の計算の初期値とする原
子炉炉心性能計算方法。
4. The reactor core performance calculation method according to claim 3, wherein the correction result of the second calculation means is used as an initial value for the calculation of the first calculation means.
JP4335791A 1992-12-16 1992-12-16 Performance calculator for reactor core Pending JPH06186380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4335791A JPH06186380A (en) 1992-12-16 1992-12-16 Performance calculator for reactor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4335791A JPH06186380A (en) 1992-12-16 1992-12-16 Performance calculator for reactor core

Publications (1)

Publication Number Publication Date
JPH06186380A true JPH06186380A (en) 1994-07-08

Family

ID=18292479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4335791A Pending JPH06186380A (en) 1992-12-16 1992-12-16 Performance calculator for reactor core

Country Status (1)

Country Link
JP (1) JPH06186380A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147377A (en) * 2005-11-25 2007-06-14 Mitsubishi Heavy Ind Ltd Core design support device and program
JP2011117855A (en) * 2009-12-04 2011-06-16 Toshihisa Shirakawa Heat transfer coefficient and temperature of nuclear fuel rod in boiling water reactor
CN103928065A (en) * 2014-04-17 2014-07-16 中国人民解放军陆军军官学院 Reactor internal component critical heat flux real-time monitoring method based on sonic sensor
JP2017020881A (en) * 2015-07-10 2017-01-26 株式会社東芝 Reactor core monitoring system and reactor core monitoring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147377A (en) * 2005-11-25 2007-06-14 Mitsubishi Heavy Ind Ltd Core design support device and program
JP2011117855A (en) * 2009-12-04 2011-06-16 Toshihisa Shirakawa Heat transfer coefficient and temperature of nuclear fuel rod in boiling water reactor
CN103928065A (en) * 2014-04-17 2014-07-16 中国人民解放军陆军军官学院 Reactor internal component critical heat flux real-time monitoring method based on sonic sensor
JP2017020881A (en) * 2015-07-10 2017-01-26 株式会社東芝 Reactor core monitoring system and reactor core monitoring method

Similar Documents

Publication Publication Date Title
CN105006262B (en) A kind of method for demarcating nuclear reactor ex-core detector
JPH0515240B2 (en)
RU2012115980A (en) METHOD FOR PROMOTING NUCLEAR REACTOR OPERATION
US20110224966A1 (en) System and method for evaluating nuclear reactor fueling plan
JPS633279B2 (en)
JPH06186380A (en) Performance calculator for reactor core
JPS6122278B2 (en)
JPS59799B2 (en) Nuclear power plant reactor output prediction device
JP3679866B2 (en) Core performance calculator
JP2001133581A (en) Reactor core performance calculating method and apparatus
JP2001133580A (en) Reactor core performance computing method and apparatus for reactor
JPH1020072A (en) Reactor core performance calculating device
JP2696049B2 (en) Reactor core characteristics simulation device
JP4008131B2 (en) Reactor core performance calculator
JPH07134196A (en) Reactor monitoring device
JP3023185B2 (en) Reactor core performance calculator
JPH0875891A (en) Reactor core performance computing method and apparatus therefor
JP2000162364A (en) Device for calculating reactor core performance of reactor
JPH0772282A (en) Method and device for estimating reactor core performance
JPH1123787A (en) Planning method for operating nuclear power station and reactor, and planning device therefor
JPH11337677A (en) Performance calculator for reactor core
JP2975654B2 (en) Core monitoring device
JP3064554B2 (en) Reactor core characteristics monitoring device
JPH04265899A (en) Nuclear furnace simulator
JP2023089505A (en) Core performance calculator