JP4008131B2 - Reactor core performance calculator - Google Patents
Reactor core performance calculator Download PDFInfo
- Publication number
- JP4008131B2 JP4008131B2 JP33527298A JP33527298A JP4008131B2 JP 4008131 B2 JP4008131 B2 JP 4008131B2 JP 33527298 A JP33527298 A JP 33527298A JP 33527298 A JP33527298 A JP 33527298A JP 4008131 B2 JP4008131 B2 JP 4008131B2
- Authority
- JP
- Japan
- Prior art keywords
- core
- calculation
- prediction
- eigenvalue
- reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、原子炉炉心内の臨界固有値や出力分布等を計算によって監視,予測するための原子炉炉心性能計算装置に関する。
【0002】
【従来の技術】
原子炉の炉心の監視,予測には、炉内中性子計測器による計数値を利用するとともに、原子炉の固有値,三次元の出力分布,中性子束分布等の核熱水力特性を求めるために、物理モデルに基づく三次元炉心シミュレータを備えている。物理モデルとしては、中性子をエネルギに基づき、高速群,熱外群,熱群等に分類し、各群の中性子束の従う拡散方程式を導出後、一群化した修正一群拡散方程式を解く核計算モデルが良く用いられる。
【0003】
この拡散方程式は、一つの燃料集合体を一格子とし、軸方向に十数ノードから二十数ノードに分割,離散化されて解かれるのが、一般的である。核計算モデルでは、減速材ボイド率,燃焼度,制御棒の有無等により整理された核定数を使用する。一般に、この核定数は、各燃料集合体の境界において鏡面反射しているとした無限体系で計算される。
【0004】
原子炉を安全かつ効率良く運転するためには、炉内出力分布等を正確に監視,把握するとともに、運転操作に伴う出力分布等の変化を事前に予測することが重要である。炉心性能予測計算とは、制御棒の操作,炉心流量の調整等の将来の運転に対して、出力分布,燃料集合体の熱的余裕等の炉心特性を、三次元炉心シミュレータを用いて予測するものである。
【0005】
臨界固有値は、本来1.0 で一定なはずであるが、中性子の拡散方程式に修正一群拡散方程式を用いていること、核定数を無限体系で計算していること等に起因する三次元炉心シミュレータの誤差により、臨界固有値は1.0 にならず、運転を通して1.0 の近傍で推移する。
【0006】
炉心性能予測計算には、ある運転操作後の炉心特性を求める機能が備わっている。一般に、この予測計算は、炉心熱出力,炉心流量,制御棒パターン,予測日時等のパラメータを用いて行われる。またこのとき、ユーザが、目標臨界固有値を過去の原子炉の運転実績追跡解析に基づいて値を設定し、入力する。
【0007】
炉心性能予測計算に関する従来技術としては、特開平7−209473 号公報に、臨界となる状態の試行計算において、初期の原子炉の核特性,熱水力特性の繰り返し計算過程で得られた固有値を格納し、得られた繰り返し計算途中の固有値をもとに、固有値の最終収束値を計算し、固有値の最終収束値を導出するのに必要な前記繰り返し計算数を低減し、炉心性能予測計算に要する計算時間を短縮する技術が記載されている。
【0008】
【発明が解決しようとする課題】
予測計算においては、炉心の固有値が、炉心が臨界であることを示す臨界固有値に収束するまで繰り返し計算が行われることで、炉心性能が予測される。従来、このとき用いられる臨界固有値はユーザによる入力値とされていた。このユーザの設定する目標臨界固有値は、過去の運転実績データからユーザが決定するものであり、予測計算の内部で自動計算され、設定されるものではなかった。
【0009】
本発明の目的は、炉心性能予測計算において、目標臨界固有値をユーザによる入力値でなく、自動的に内部計算して設定する炉心性能計算装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、予測開始点から時間が経過した予測対象点での原子炉の炉心性能を三次元炉心計算により予測する炉心性能予測計算において、挿入される制御棒を囲む四体の燃料集合体の制御棒と隣接する軸方向ノード位置を対象にその三次元炉心計算により算出された予測対象点での炉心内相対熱出力の予測開始点からの変化に基づく値を用いて、予測対象点での目標臨界固有値を内部計算する。
【0011】
【発明の実施の形態】
目標臨界固有値の設定に用いる指標は、運転操作(炉心流量操作,炉心熱出力操作,制御棒操作等)による炉心状態の変化を良く表現するものである必要がある。以下に本発明で用いた指標の炉心状態との関連について述べる。
【0012】
まず、炉心平均燃焼度について述べる。予測計算において、予測開始点と予測対象点の間には、必ず時間経過が存在するため、炉心平均燃焼度に違いが生じる。この燃焼度変化は、燃料集合体の物質組成に影響を与える。そして、この物質組成は、炉心内で発生する核分裂反応の種類または中性子束分布等に影響を与え、固有値に影響を与える。
【0013】
次に、炉心平均減速材ボイド率について説明する。主に、炉心流量操作後、または、制御棒操作により炉心熱出力が変化した場合、減速材ボイド率は変化する。減速材ボイド率が変化すると、核分裂反応を起こすのに適当なエネルギの中性子の数が変化するため、炉心の固有値は影響を受ける。
【0014】
次に、相対炉心熱出力について説明する。相対炉心熱出力は、原子炉の熱出力を定格熱出力との相対値で示すものである。この相対炉心熱出力の変化は、燃料集合体の温度変化を伴う。燃料集合体の温度変化は、燃料集合体内で生じる共鳴吸収によって吸収される中性子数に影響を与え、炉心の固有値に影響を与える。
次に、挿入される制御棒周りの四体の燃料集合体の制御棒と隣接する軸方向ノード位置の炉心内相対熱出力で決定される値について説明する。制御棒の挿入される箇所に変更がなく、挿入されている制御棒の深さのみを調整する操作は、一般に、短時間に炉心流量の変化なく行われる。このため、上述の指標(炉心平均燃焼度,炉心平均減速材ボイド率,炉心熱出力)において、このような制御棒深さ調整では、変化が小さい。
【0015】
制御棒操作に伴う変化は、図2に示す挿入される制御棒10を囲む四体の燃料集合体11の制御棒と隣接する軸方向ノード位置の炉心相対熱出力において現れる。したがって、挿入される制御棒10を囲む四体の燃料集合体11の制御棒と隣接する軸方向ノード位置の炉心相対熱出力変化を基にした値を指標とすれば、短時間に炉心流量の変化がなく、かつ制御棒が挿入される箇所に変化のない制御棒深さ調整においても、制御棒深さ調整前後で変化が生じる。制御棒の挿入は、炉心内に存在する熱中性子数に影響を与え、炉心の固有値に影響を与える。
【0016】
次に、炉心平均キセノン濃度について説明する。原子炉の出力が変化すると、中性子束に変化が生じるため、炉心内のキセノンの生成及び消滅量に変化が生じる。キセノンは、熱中性子吸収断面積が大きいため、炉心平均キセノン濃度の変化は炉心の固有値に影響を与える。
【0017】
原子炉炉心性能計算装置には、上述の指標の変化に伴う固有値の変化を評価する係数及び式等を、原子炉の運転実績追跡解析の結果より求めて、予め格納しておく。そして、予測計算において、上述の指標の変化に応じて、変化する固有値量を求め、目標臨界固有値を内部計算する。
【0018】
次に、図1を用いて、本発明の原子炉炉心性能計算装置を説明する。図1において、1は原子炉炉心性能計算装置、2は入力処理部、3は三次元炉心計算部、4は炉心性能実績データ格納部、5は目標臨界固有値計算部、6は目標臨界固有値計算用データベース、7は原子炉、8は炉心、9は炉内中性子計測器を示す。
炉心性能監視計算においては、原子炉7から制御棒挿入パターン,炉心流量等、炉内中性子計測器9から炉内中性子束分布の情報が入力処理部2に取り込まれ、三次元炉心計算部3で炉心性能が計算され、炉心性能実績データが炉心性能実績データ格納部4に格納される。
【0019】
一方、炉心性能予測計算においては、ユーザが、予測計算に必要なパラメータ(炉心熱出力,炉心流量,制御棒パターン,予測日時等)を入力処理部2に入力し、三次元炉心計算部3で三次元炉心計算を行い、その結果と炉心性能実績データ格納部4に格納されている予測開始点の炉心性能実績データを基に、目標臨界固有値計算用データベース6からのデータを用いて、目標臨界固有値計算部5で目標臨界固有値を計算する。
【0020】
図4に、本発明の予測計算のフローチャートを示す。炉心性能予測計算では、まず、予測計算に必要なパラメータ(炉心熱出力,炉心流量,制御棒パターン,予測日時等)の設定を行う。このとき、予測したいパラメータについては、推定値を設定する。その後、三次元炉心シミュレータにより三次元炉心計算を行い、出力分布と固有値を計算する。この計算は、出力分布が中性子束分布と矛盾しない分布となるまで繰り返し、収束計算が行われる。そして、収束した炉心状態に基づき、前述の指標により目標臨界固有値を内部計算し、設定する。
【0021】
そして、出力分布が収束したときの三次元シミュレータによる固有値と、出力分布が収束した炉心状態に基づき内部計算された目標臨界固有値が一致しているか判別し、所定の範囲内で一致する場合は計算終了となり、所定の範囲内で一致しない場合は目標臨界固有値と固有値との差に基づき、求めたいパラメータを再設定して、一連の計算を繰り返す。この繰り返し計算の過程で、内部計算される目標臨界固有値の値は更新されていく。
【0022】
炉心平均燃焼度変化量に対応する固有値変化量Aは、次式1で定義する。
【0023】
【数1】
A=FA(E2)−FA(E1)
ここで、E2は予測対象点の炉心平均燃焼度、E1は予測開始点の炉心平均燃焼度、FA(E)は炉心平均燃焼度Eにおける固有値の想定値を表わす。ここに示すFAの値は、燃焼点毎に整理された形式で、目標臨界固有値計算用データベース6に格納されている。
【0024】
相対炉心熱出力,炉心平均減速材ボイド率の変化に対応する固有値変化量Bは式2で定義される。
【0025】
【数2】
B=FB(P2,V2)−FB(P1,V1)
ここで、P1は予測開始点の相対炉心熱出力、P2は予測対象点の相対炉心熱出力、V1は予測開始点の炉心平均減速材ボイド率、V2は予測対象点の炉心平均減速材ボイド率を示し、FB(P,V)は、相対熱出力P,炉心平均減速材ボイド率Vにおける固有値の相対値を示し、本実施例では、次式3で定義した。
【0026】
【数3】
FB(P,V)=P*(FV(1)*V+FV(2)*V*V)
FV(1),FV(2)は、相対炉心熱出力,炉心平均減速材ボイド率と臨界固有値の相関係数を表わし、目標臨界固有値計算用データベース6に格納されている。
【0027】
挿入される制御棒を囲む四体の燃料集合体の制御棒と隣接する軸方向ノード位置の炉心内相対熱出力の変化に対する固有値変化量Cは次式4で定義する。
【0028】
【数4】
C=FC(R2)−FC(R1)
ここで、R1は予測開始点における挿入される制御棒を囲む四体の燃料集合体の制御棒と隣接する軸方向ノード位置の炉心内相対熱出力に基づき算出される値、R2は予測対象点におけると隣接する軸方向ノード位置の炉心内相対熱出力に基づき算出される値、FC(R)は挿入される制御棒を囲む四体の燃料集合体の制御棒と隣接する軸方向ノード位置の炉心内相対熱出力に基づき算出される値Rにおける固有値を表わす。FC(R)の値は、目標臨界固有値計算用データベース6に格納されている。
【0029】
炉心平均キセノン濃度の変化に対する固有値変化量Dは、次式5で定義する。
【0030】
【数5】
D=FX(X2)−FX(X1)
ここで、X2は予測対象点の炉心平均キセノン濃度、X1は予測開始点の炉心平均キセノン濃度、FX(X)は、炉心平均キセノン濃度Xにおける固有値の想定値を表わす。ここに示すFXの値は、目標臨界固有値計算用データベース6に格納されている。
【0031】
予測対象点の目標臨界固有値は、上述した各指標の変化により、次式6で内部計算される。
【0032】
【数6】
K2=K1+A+B+C+D
ここで、K2は予測対象点で内部計算される目標臨界固有値、K1は予測開始点の臨界固有値、Aは炉心平均燃焼度変化に対する固有値変化量、Bは炉心熱出力と炉心平均ボイド率の変化に対する固有値変化量、Cは挿入される制御棒を囲む四体の燃料集合体の制御棒と隣接する軸方向ノード位置の炉心内相対熱出力に基づき算出される変化に対する固有値変化量、Dは炉心平均キセノン濃度の変化に対する固有値変化量を表わす。
【0033】
図3に、本発明の効果を示す。図3は、横軸が時間、縦軸が臨界固有値を示し、実線が運転実績追跡解析による臨界固有値、一点鎖線が本発明により内部計算された目標臨界固有値を示す。両者は良く一致しており、ユーザが目標臨界固有値を入力することなくても、予測計算を精度良く行うことができる。
【0034】
【発明の効果】
本発明によれば、炉心状態を表わす指標を用いて、目標臨界固有値の内部計算を行い、炉心性能予測計算を精度良く行うことができる。
【図面の簡単な説明】
【図1】本発明の原子炉炉心性能計算装置のブロック図。
【図2】挿入される制御棒とそれを囲む四体の燃料集合体を示す図。
【図3】本発明の効果を示す内部計算された目標臨界固有値の特性図。
【図4】本発明の予測計算におけるフローチャート。
【符号の説明】
1…原子炉炉心性能計算装置、2…入力処理部、3…三次元炉心計算部、4…炉心性能実績データ格納部、5…目標臨界固有値計算部、6…目標臨界固有値計算用データベース、7…原子炉、8…炉心、9…炉内中性子計測器、10…制御棒、11…制御棒10を囲む四体の燃料集合体。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reactor core performance calculation apparatus for monitoring and predicting critical eigenvalues, power distribution and the like in a reactor core by calculation.
[0002]
[Prior art]
For monitoring and prediction of the reactor core, in order to obtain the nuclear thermohydraulic characteristics such as eigenvalue, three-dimensional power distribution, neutron flux distribution, etc. A 3D core simulator based on a physical model is provided. As a physical model, neutrons are classified into high-speed groups, thermal outer groups, thermal groups, etc. based on energy, and after deriving diffusion equations that follow the neutron flux of each group, a nuclear calculation model that solves the grouped modified one-group diffusion equation Is often used.
[0003]
This diffusion equation is generally solved by dividing one fuel assembly into one grid and dividing it into 10 to 20 nodes in the axial direction and discretizing it. The nuclear calculation model uses nuclear constants arranged according to the moderator void fraction, burnup, control rods, etc. In general, this nuclear constant is calculated by an infinite system that is specularly reflected at the boundary of each fuel assembly.
[0004]
In order to operate a nuclear reactor safely and efficiently, it is important to accurately monitor and grasp the power distribution in the reactor and to predict changes in the power distribution and the like accompanying the operation in advance. Core performance prediction calculation predicts core characteristics such as power distribution and fuel assembly thermal margin for future operation such as control rod operation and core flow rate adjustment using 3D core simulator Is.
[0005]
The critical eigenvalue should be 1.0 at first, but it is a three-dimensional core simulator due to the use of a modified one-group diffusion equation for the neutron diffusion equation and the calculation of nuclear constants using an infinite system. Due to this error, the critical eigenvalue does not become 1.0, but changes around 1.0 throughout the operation.
[0006]
The core performance prediction calculation has a function for obtaining the core characteristics after a certain operation. In general, this prediction calculation is performed using parameters such as core thermal power, core flow rate, control rod pattern, prediction date and time. At this time, the user sets and inputs the target critical eigenvalue based on the past operation performance tracking analysis of the reactor.
[0007]
As a conventional technique related to the core performance prediction calculation, Japanese Patent Laid-Open No. 7-209473 discloses the eigenvalues obtained in the repeated calculation process of the nuclear characteristics and thermal hydraulic characteristics of the initial reactor in the trial calculation in a critical state. Store and calculate the final convergence value of the eigenvalue based on the obtained eigenvalue during the iterative calculation, reduce the number of iterations required to derive the final convergence value of the eigenvalue, and calculate the core performance prediction A technique for reducing the calculation time required is described.
[0008]
[Problems to be solved by the invention]
In the prediction calculation, the core performance is predicted by repeatedly performing the calculation until the eigenvalue of the core converges to a critical eigenvalue indicating that the core is critical. Conventionally, the critical eigenvalue used at this time is an input value by the user. The target critical eigenvalue set by the user is determined by the user from the past operation result data, and is automatically calculated within the prediction calculation and is not set.
[0009]
An object of the present invention is to provide a core performance calculation apparatus that automatically calculates and sets a target critical eigenvalue instead of a user input value in a core performance prediction calculation.
[0010]
[Means for Solving the Problems]
In order to achieve the above objective, in the core performance prediction calculation that predicts the core performance of the reactor at the prediction target point after the prediction start point by the three-dimensional core calculation , the four bodies surrounding the control rods to be inserted are Using the value based on the change from the prediction start point of the relative heat output in the core at the prediction target point calculated by the three-dimensional core calculation for the axial position of the fuel assembly control rod adjacent to the prediction The target critical eigenvalue at the target point is calculated internally.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The index used for setting the target critical eigenvalue needs to be a good representation of changes in the core state due to operation (core flow rate operation, core heat output operation, control rod operation, etc.). The relationship between the index used in the present invention and the core state will be described below.
[0012]
First, the core average burnup will be described. In the prediction calculation, there is always a time lapse between the prediction start point and the prediction target point, and therefore a difference occurs in the core average burnup. This change in burnup affects the material composition of the fuel assembly. This material composition affects the type of fission reaction occurring in the core, the neutron flux distribution, etc., and the eigenvalue.
[0013]
Next, the core average moderator void ratio will be described. The moderator void ratio changes mainly after the core flow rate operation or when the core thermal output changes due to control rod operation. As the moderator void fraction changes, the number of neutrons with adequate energy to cause a fission reaction changes, and the core eigenvalue is affected.
[0014]
Next, the relative core thermal output will be described. The relative core thermal power is a value indicating the thermal power of the nuclear reactor as a value relative to the rated thermal power. This change in relative core thermal output is accompanied by a change in the temperature of the fuel assembly. The temperature change of the fuel assembly affects the number of neutrons absorbed by resonance absorption occurring in the fuel assembly, and affects the eigenvalue of the core.
Next, the value determined by the relative heat output in the core at the axial node position adjacent to the control rods of the four fuel assemblies around the inserted control rod will be described. The operation for adjusting only the depth of the inserted control rod is generally performed in a short time without a change in the core flow rate without changing the position where the control rod is inserted. For this reason, in the above-mentioned indexes (core average burnup, core average moderator void ratio, core heat output), such control rod depth adjustment has little change.
[0015]
The change accompanying the control rod operation appears in the core relative heat output at the axial node position adjacent to the control rods of the four
[0016]
Next, the core average xenon concentration will be described. When the power of the reactor changes, the neutron flux changes, so that the amount of xenon produced and extinguished in the core changes. Since xenon has a large thermal neutron absorption cross section, changes in the core average xenon concentration affect the eigenvalue of the core.
[0017]
In the reactor core performance calculation apparatus, coefficients, formulas, and the like for evaluating changes in eigenvalues accompanying changes in the above-described index are obtained from the results of the operation performance tracking analysis of the reactor and stored in advance. Then, in the prediction calculation, the amount of eigenvalue that changes in accordance with the change in the above-mentioned index is obtained, and the target critical eigenvalue is internally calculated.
[0018]
Next, the reactor core performance calculation apparatus of the present invention will be described with reference to FIG. In FIG. 1, 1 is a reactor core performance calculation device, 2 is an input processing unit, 3 is a three-dimensional core calculation unit, 4 is a core performance record data storage unit, 5 is a target critical eigenvalue calculation unit, and 6 is a target critical eigenvalue calculation. Database, 7 is a nuclear reactor, 8 is a core, and 9 is an in-core neutron measuring instrument.
In the core performance monitoring calculation, information on the distribution of the neutron flux in the reactor such as the control rod insertion pattern and the core flow rate from the reactor 7 is taken into the input processing unit 2 from the in-core neutron measuring instrument 9, and the three-dimensional core calculation unit 3 The core performance is calculated, and the core performance record data is stored in the core performance record
[0019]
On the other hand, in the core performance prediction calculation, the user inputs parameters necessary for the prediction calculation (core thermal output, core flow rate, control rod pattern, prediction date, etc.) to the input processing unit 2, and the three-dimensional core calculation unit 3 Based on the result and the core performance record data of the prediction start point stored in the core performance record
[0020]
FIG. 4 shows a flowchart of the prediction calculation of the present invention. In the core performance prediction calculation, first, parameters necessary for the prediction calculation (core thermal output, core flow rate, control rod pattern, prediction date, etc.) are set. At this time, an estimated value is set for a parameter to be predicted. After that, 3D core calculation is performed by 3D core simulator to calculate power distribution and eigenvalue. This calculation is repeated until the output distribution becomes a distribution consistent with the neutron flux distribution, and the convergence calculation is performed. Then, based on the converged core state, the target critical eigenvalue is internally calculated and set by the aforementioned index.
[0021]
Then, it is determined whether the eigenvalue by the 3D simulator when the power distribution has converged and the target critical eigenvalue calculated internally based on the core state where the power distribution has converged. If it does not match within the predetermined range, the parameter to be obtained is reset based on the difference between the target critical eigenvalue and the eigenvalue, and a series of calculations is repeated. In the process of this iterative calculation, the value of the target critical eigenvalue calculated internally is updated.
[0022]
The eigenvalue change amount A corresponding to the core average burnup change amount is defined by the
[0023]
[Expression 1]
A = FA (E2) -FA (E1)
Here, E2 represents the core average burnup at the prediction target point, E1 represents the core average burnup at the prediction start point, and FA (E) represents the assumed value of the eigenvalue in the core average burnup E. The FA values shown here are stored in the target critical eigenvalue calculation database 6 in a format arranged for each combustion point.
[0024]
An eigenvalue variation B corresponding to a change in the relative core thermal output and the core average moderator void ratio is defined by Equation 2.
[0025]
[Expression 2]
B = FB (P2, V2) -FB (P1, V1)
Here, P1 is the relative core heat output at the prediction start point, P2 is the relative core heat output at the prediction target point, V1 is the core average moderator void rate at the prediction start point, and V2 is the core average moderator void rate at the prediction target point. FB (P, V) represents the relative value of the eigenvalues in the relative heat output P and the core average moderator void ratio V, and is defined by the following formula 3 in this embodiment.
[0026]
[Equation 3]
FB (P, V) = P * (FV (1) * V + FV (2) * V * V)
FV (1) and FV (2) represent the correlation coefficient between the relative core thermal output, the core average moderator void ratio and the critical eigenvalue, and are stored in the target critical eigenvalue calculation database 6.
[0027]
The eigenvalue change amount C with respect to the change in the relative thermal power in the core at the axial node position adjacent to the control rods of the four fuel assemblies surrounding the inserted control rod is defined by the
[0028]
[Expression 4]
C = FC (R2) -FC (R1)
Here, R1 is a value calculated based on the relative heat output in the core at the axial node position adjacent to the control rods of the four fuel assemblies surrounding the control rod to be inserted at the prediction start point, and R2 is the prediction target point The value calculated on the basis of the relative thermal power in the core at the axial node position adjacent to and at FC (R) is the value of the axial node position adjacent to the control rod of the four fuel assemblies surrounding the inserted control rod. This represents an eigenvalue in the value R calculated based on the relative heat output in the core. The value of FC (R) is stored in the target critical eigenvalue calculation database 6.
[0029]
The eigenvalue change amount D with respect to the change in the core average xenon concentration is defined by the following equation 5.
[0030]
[Equation 5]
D = FX (X2) −FX (X1)
Here, X2 represents the core average xenon concentration at the prediction target point, X1 represents the core average xenon concentration at the prediction start point, and FX (X) represents an assumed value of the eigenvalue in the core average xenon concentration X. The FX value shown here is stored in the target critical eigenvalue calculation database 6.
[0031]
The target critical eigenvalue of the prediction target point is internally calculated by the following equation 6 by the change of each index described above.
[0032]
[Formula 6]
K2 = K1 + A + B + C + D
Here, K2 is a target critical eigenvalue calculated internally at the prediction target point, K1 is a critical eigenvalue at the prediction start point, A is an eigenvalue change amount with respect to core average burnup change, and B is a change in core thermal output and core average void ratio. , C is the eigenvalue change amount with respect to the change calculated based on the relative heat output in the core at the axial node position adjacent to the control rods of the four fuel assemblies surrounding the inserted control rod, and D is the core It represents the eigenvalue change amount with respect to the change of the average xenon concentration.
[0033]
FIG. 3 shows the effect of the present invention. In FIG. 3, the horizontal axis represents time, the vertical axis represents the critical eigenvalue, the solid line represents the critical eigenvalue based on the operation performance tracking analysis, and the alternate long and short dash line represents the target critical eigenvalue calculated internally by the present invention. Both agree well, and the prediction calculation can be performed with high accuracy without the user inputting the target critical eigenvalue.
[0034]
【The invention's effect】
According to the present invention, an internal calculation of a target critical eigenvalue can be performed using an index representing a core state, and a core performance prediction calculation can be performed with high accuracy.
[Brief description of the drawings]
FIG. 1 is a block diagram of a reactor core performance calculation apparatus according to the present invention.
FIG. 2 is a view showing a control rod to be inserted and four fuel assemblies surrounding the control rod.
FIG. 3 is a characteristic diagram of an internally calculated target critical eigenvalue showing the effect of the present invention.
FIG. 4 is a flowchart in the prediction calculation of the present invention.
[Explanation of symbols]
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33527298A JP4008131B2 (en) | 1998-11-26 | 1998-11-26 | Reactor core performance calculator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33527298A JP4008131B2 (en) | 1998-11-26 | 1998-11-26 | Reactor core performance calculator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000162365A JP2000162365A (en) | 2000-06-16 |
JP4008131B2 true JP4008131B2 (en) | 2007-11-14 |
Family
ID=18286669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33527298A Expired - Lifetime JP4008131B2 (en) | 1998-11-26 | 1998-11-26 | Reactor core performance calculator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4008131B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7532698B2 (en) * | 2006-11-29 | 2009-05-12 | Global Nuclear Fuel - Americas, Llc | Systems and methods of predicting a critical effective k for a nuclear reactor |
CN113139325B (en) * | 2021-05-12 | 2022-06-24 | 上海交通大学 | Implementation method for uniform distribution of global variance of reactor based on Monte Carlo critical calculation |
CN115828643B (en) * | 2023-02-15 | 2023-05-02 | 西安交通大学 | Method for simultaneously moving multiple control rod groups to search critical by considering overlapping steps |
-
1998
- 1998-11-26 JP JP33527298A patent/JP4008131B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000162365A (en) | 2000-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rashid et al. | Light water reactor fuel performance modeling and multi-dimensional simulation | |
Hursin et al. | Analysis of the core power response during a PWR rod ejection transient using the PARCS nodal code and the DeCART MOC code | |
Ghezzi et al. | TRISO burnup-dependent failure analysis in FHRs using BISON | |
JP4008131B2 (en) | Reactor core performance calculator | |
JP2001133580A (en) | Reactor core performance computing method and apparatus for reactor | |
JP3441178B2 (en) | Method and apparatus for calculating core performance of nuclear reactor | |
JP2001133581A (en) | Reactor core performance calculating method and apparatus | |
Tucker et al. | The impact of fueling operations on full core uncertainty analysis in CANDU reactors | |
JP2005148079A (en) | Device for calculating core performance | |
JP2696049B2 (en) | Reactor core characteristics simulation device | |
Lorenzi et al. | Spatial neutronics modelling to evaluate the temperature reactivity feedbacks in a lead-cooled fast reactor | |
JPH06186380A (en) | Performance calculator for reactor core | |
JPH1020072A (en) | Reactor core performance calculating device | |
JP2004333433A (en) | Method and device for evaluating thermal characteristic of fuel assembly | |
Liao et al. | Applying Machine Learning to Improve BOA Analysis of CIPS/CILC | |
Clamens et al. | Analysis of the Doppler feedback reactivity in LWR RIA power tran-sients–Application to the CABRI reactor | |
Hernandez | Multiphysics Design and Sensitivity Analysis of Nuclear Heated Critical Heat Flux Pool Boiling Test Devices in TREAT. | |
Blyth | Fuel performance code benchmark for uncertainty analysis in light water reactor modeling | |
Kastanya et al. | Development and implementation of a Newton-BICGSTAB iterative solver in the FORMOSA-B BWR core simulator code | |
Borkowski et al. | S3R Advanced Training Simulator Core Model: Implementation and Validation | |
Arkoma et al. | Statistical analysis of fuel failures in accident conditions | |
Novascone et al. | Assessment of PCMI Simulation Using the Multidimensional Multiphysics BISON Fuel Performance Code | |
Shimazu | Verification of optimal control strategy search using a simplest 3-D PWR xenon oscillation simulator | |
JPH11258382A (en) | Method for calculating reactor core performance of reactor | |
Gamarino et al. | A rehomogenization-based approach to model spectral effects of local nuclide density changes in nodal calculations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041214 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20041214 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060512 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060512 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070209 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070419 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070419 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070605 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070803 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070828 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070829 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100907 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100907 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110907 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120907 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120907 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130907 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |