JPH0468002B2 - - Google Patents

Info

Publication number
JPH0468002B2
JPH0468002B2 JP14229286A JP14229286A JPH0468002B2 JP H0468002 B2 JPH0468002 B2 JP H0468002B2 JP 14229286 A JP14229286 A JP 14229286A JP 14229286 A JP14229286 A JP 14229286A JP H0468002 B2 JPH0468002 B2 JP H0468002B2
Authority
JP
Japan
Prior art keywords
electrode
filter
fluid
voltage
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14229286A
Other languages
Japanese (ja)
Other versions
JPS6291214A (en
Inventor
Noboru Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIMASA KIKO KK
Original Assignee
FUJIMASA KIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIMASA KIKO KK filed Critical FUJIMASA KIKO KK
Publication of JPS6291214A publication Critical patent/JPS6291214A/en
Publication of JPH0468002B2 publication Critical patent/JPH0468002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0032Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions using electrostatic forces to remove particles, e.g. electret filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/06Separation of liquids from each other by electricity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/06Filters making use of electricity or magnetism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0002Casings; Housings; Frame constructions
    • B01D46/0012In-line filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D51/00Auxiliary pretreatment of gases or vapours to be cleaned
    • B01D51/02Amassing the particles, e.g. by flocculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D57/00Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C
    • B01D57/02Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C by electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C11/00Separation by high-voltage electrical fields, not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • B03C3/155Filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/024Non-uniform field separators using high-gradient differential dielectric separation, i.e. using a dielectric matrix polarised by an external field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/02Electro-statically separating liquids from liquids

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は流体から不純物を除去する流体濾過
装置に関するものである。 〔従来の技術〕 従来における流体中の不純物の除去は、流体を
フイルタに向つて圧送し不純物をフイルタによつ
て濾過するフイルタ法や、不純物を遠心力によつ
て円筒壁面に衝突させて沈降させる遠心分離法を
用いて行われている。また、含塵ガスのダスト除
去を行う装置として、相対する電極間に数万ボル
トの直流電圧を印加して放電を生じさせ、この電
極間に送り込まれた気体中の不純物を集塵電極に
捕集する電気集塵法による装置がある。 〔発明が解決しようとする問題点〕 しかしながら、上記のようなフイルタ法や遠心
分離法による不純物の除去装置では、近時要望さ
れるようになつているコロイド粒子の除去等の精
密濾過を行うことが技術的に困難であり、もしで
きたとしてもコスト的に採算が合わず実用に適し
ないという問題があつた。即ち、近時要求される
濾過精度はダスト1μ以下、油中水分50PPM以下
あるいは排水中油分15PPM以下といつたように
極めて厳しいものとなつてきており、上記フイル
タ法や遠心分離法ではこれに対応できないのであ
る。一方、電気集塵法による装置は1μ以下の粒
子も捕集できる極めて高性能の装置であるが、高
圧電源を用いるために絶縁の確保や防爆仕様によ
り装置が大型化してコストが高くつく上、水系の
流体には使用できないという問題があつた。しか
し、上述したような精度の高い濾過を行うことの
要望は、近時界面活性剤が大量に使われるように
なつてきたことでより大きなものとなつている。 〔発明の目的〕 上述したような極めて高い精度を必要とする濾
過はコロイド濾過の領域であり、こうした濾過を
行うには上述のフイルタ法、遠心分離法等の単な
る物理的手段では到達が難しい。そこで、本発明
は、前記コロイド領域の分子、粒子が誘電、イオ
ンの吸着等で帯電することによりこれら粒子等と
流体との界面に電気二重層によるゼータ電位が発
生し、このゼータ電位により粒子間に生じるクー
ロン力で粒子が反撥しあい流体中に懸濁して沈降
しにくい点に注目し、このゼータ電位を消去し
て、コロイド粒子の凝集粗粒化にともなう沈降ま
たは浮上によりフイルタ通過前に予め比較的粒子
の大きい不純物を除去することによつて、濾過精
度の向上とともにフイルタ負荷の軽減によるフイ
ルタ寿命の延長を実現することができる流体濾過
装置を提供することを目的とする。 [問題点を解決するための手段] 上記目的を達成するために、本発明による流体
濾過装置は、円筒型の外筒電極とこの外筒電極の
内部に該外筒電極と同電位に設けたパイプ状の内
部電極との間に、これら内外両電極に対して絶縁
させて荷電電極を配置し、前記内部電極の表面を
誘電体からなるフイルタで覆うとともに、前記外
部電極と荷電電極との間に電圧を印加する電圧源
を設けて、前記外筒電極と荷電電極との間に圧入
した流体を荷電電極と内部電極間に流入させ、か
つ前記フイルタを通過させて外部に流出させるよ
うに構成したものである。 [作用] 本発明による流体濾過装置によれば、流体を外
筒電極と荷電電極との間の電界中に通過させるこ
とにより、表面にゼータ電位をもつコロイド粒子
がクーロン力で荷電電極の表面に集められてゼー
タ電位が打ち消される。これによつて、コロイド
粒子が凝集沈降または浮上して比較的粒子の大き
い不純物がフイルタ通過前に除去される。つづい
て、流体を荷電電極と内部電極間に流入させるこ
とにより、残存コロイド粒子が荷電電極と内部電
極との間の電界中で分極して、強いゼータ電位を
発生するフイルタの表面にクーロン力で引き寄せ
られて吸着され、フイルタ表面に不純物によるケ
ーキ層を形成し、そのケーキ層により高い精度の
濾過性能が発揮されることになる。 〔実施例〕 以下、本発明を図示した実施例に基づいて詳細
に説明する。 第1図〜第3図は本発明による流体濾過装置の
基本原理を示しており、図中1は両端を閉塞した
円筒状の荷電電極であつて、この荷電電極1の上
部には処理室2に通じる流入口3と通電孔4が、
また底部には電極支持孔5とドレン抜き孔6がそ
れぞれ開設されている。7は荷電電極1の中心部
に設けられたパイプ状の内部電極であつて、この
内部電極7は通路8が軸方向に貫通し且つ周壁に
は通水孔9が多数穿設されている。また、この内
部外極7は表面が誘電体でなるフイルタ10によ
つて覆われており、且つ一端が絶縁碍子11を介
して流出口12に接続されている。13は電源装
置である。 これら各構成部分は、荷電電極1の処理室2内
へ、内部電極7を電極支持孔5から挿入してその
絶縁碍子11部分を電極支持孔5に支持固定させ
て流出口12を荷電電極1の外へ臨出する状態に
結合され、また、電源装置13の一方の端子は荷
電電極1へ、他方の端子は通電孔4に支持された
導入碍子14を通つて内部電極7にそれぞれ結線
されている。 この装置は、第2図に示すように未処理液タン
クT1からポンプPを介して流入口3に配管され、
他方、流出口12は清浄タンクT2へ配管されて
いる。 次に、上記第1図〜第3図に示した装置による
基本的な濾過過程を説明する。 荷電電極1と内部電極7の間に電源装置13が
供給する電圧を印加してフイルタ10を電界中に
置くと、誘電体でなるフイルタ10は電界の方向
に分極し、その表面には強いゼータ電位が発生す
る。したがつて、流入口3から処理室2内へ流体
を圧入すると、流体中の帯電したコロイド粒子は
前記フイルタ10表面に発生したゼータ電位にク
ーロン力で引かれフイルタ10表面に吸着する。
この吸着によつてフイルタ10表面と同電位とな
つたコロイド粒子はゼータ電位を失いフアンデル
フアールス力により凝集し、フイルタ10表面に
凝集体によるケーク層を形成する。このケーク層
を形成するコロイド粒子の凝集は、フイルタ10
の目の周囲になされてこのフイルタ10の目を小
さくするため、このケーク層はフイルタ10が本
来持つ濾過精度よりも遥かに高い濾過精度をもつ
て不純物の通過を阻止する。しかもフイルタ10
は分極しているため、コロイド粒子は必ずフイル
タ10の表面に凝集して内部へ入り込むことがな
く、フイルタ10が目詰り起こすこともなくなる
のである。 電源装置13から供給される電圧は、流体が気
体の場合、1000〜3000V/cmの直流電圧、非水系
の液体の場合、10〜200V/cmの交流電圧、交流
と直流の重量電圧または直流電圧、または水系の
液体の場合、1〜20V/cmの交流電圧または交流
と直流の重畳電圧が好適に用いられる。但し、こ
のような電圧の種類の選択及び電圧値の選択は、
流体に固有の電気抵抗によつて適宜決定されるも
のであり、望ましくは実験的に選択されるのが適
切である。したがつて、電圧の種類及び電圧値は
必ずしも前記に示したものに限定されるわけでは
ない。しかしながら、流体の水系の場合、直流荷
電は電解による電極の電蝕あるいは水素、酸素の
発生による危険を伴うので交流又は交直重畳の電
圧が望ましい。 尚、交流の場合はサイクル変動に応じた流体の
激しい攪拌が行われ、ゼータ電位が攪拌によつて
消滅し、コロイドの凝集が起るものと推定され
る。その他交流の極性効果によつて発生する直流
分による荷電効果、あるいは双方の相乗効果も凝
集の原因と考えられる。 この他、流体の流速は、流体の粘度に応じて決
定される。 第4図〜第6図は、本発明による流体濾過装置
の第1実施例を示している。 図中1は両端開放の円筒状荷電電極である。7
は荷電電極の1の中心に設けられたパイプ状内部
電極であつて、通路8が軸方向に貫通している。
また、15は前記荷電電極1及び内部電極7を収
納した処理室2を有する両端閉塞の円筒状外筒電
極であつて、この外筒電極15は保護絶縁碍子1
6を介して前記荷電電極1を同心上に支持してい
る。この外筒電極15の側面上部には処理室2に
通じる流入口3と通電孔4が、また底部には電極
支持孔5とドレン抜き孔6がそれぞれ開設されて
いる。そして、電極支持孔5からは前記内部電極
7が外部へと突出しており、そして内部電極7は
この突出部先端に流出口12を開設している。外
筒電極15と内部電極7は前記電極支持孔5にお
いて接触しており、よつてこれら外筒電極15と
内部電極7は常に同電位にある。また、内部電極
7の表面は荷電電極1と相対する部分が誘電体で
なるフイルタ10で覆われており、このフイルタ
10の一端は内部電極7に鍔状に形成された支持
突片17に支持され、他端は内部電極7の上端と
間隔を開けて設けられる絶縁碍子18を介して外
筒電極15の上面15aに支持されている。13
は電源装置である。 以上のような構成により、本装置において流入
口3から圧入された流体は、外筒電極15と荷電
電極1の間を通つて下方へ進み、次いでフイルタ
10を通過して内部電極7の上端から通路8内に
入り流出口12から流出する流路が形成されてい
る。 次に動作を説明する。本装置においては流入口
3から圧入された流体はまず外筒電極15と荷電
電極1の間の電界中を通過する。したがつて、表
面にゼータ電位を持つコロイド粒子はクーロン力
で荷電電極1の表面に集まり、ここでゼータ電位
を打ち消される。ゼータ電位が打ち消されたコロ
イド粒子間に働く力はフアンデフアールス力だけ
であるので、この分子間引力により粒子は凝集し
粗粒化する。粗粒化したコロイド粒子は流体より
比重が大きい場合沈降分離する。このように沈降
する例として気体中の微粒子や油中の水分や微粒
子あるいは水中のSS分等がある。また、粗粒化
されたコロイド粒子は流体より比重が小さい場合
浮上分離し、このような例としては水の中の油分
が挙げられる。この外に流体が水系の場合には電
圧の印加による水の電気分解によつて発生する金
属イオンがコロイド粒子のゼータ電位を消してコ
ロイドを凝集したり、活性な金属水酸化物がコロ
イドを包んで共に凝集するなどが相乗されると考
えられる。 一方、凝集沈降出来なかつた残存コロイド粒子
はフイルタ流路に沿つて、フイルタ10表面に集
まるが、このフイルタ10の表面には荷電電極1
と内部電極7の間に印加した電圧により生じた電
界によりゼータ電位が発生しており、前述した第
1図〜第3図の基本原理に説明した場合と全く同
様にしてフイルタ10の表面にケーク層を形成す
る。 以上のように本実施例装置では流体を電界中に
おいたフイルタ10に通す前に、外筒電極15と
荷電電極1の間でコロイド粒子の持つゼータ電位
を消去してコロイド粒子を凝集沈降もしくは浮上
させるようにしており、比較的粒子の大きい不純
物をフイルタ10通過前に除去することができ
る。したがつてフイルタ10の負荷が軽減され、
その寿命が延長される。また少ない濾過回数で良
好な濾過精度を得ることにも寄与できる。 尚、荷電電極1と内部電極7あるいは外筒電極
15間に印加する電圧の種類及び電圧値、あるい
は流体の速度等については上述の基本原理に説明
した場合と同様である。 第7図及び第8図は、流入口3を処理室2の上
方で且つ外筒電極15の内周の接線方向から流体
が流入するように配置するとともに、外筒電極1
5と荷電電極1の間にグラスウール等の誘電体1
9を介在させた本発明の第2実施例を示してい
る。この第2実施例は基本的には前記第1実施例
と同一のものであり、円筒状の荷電電極1と、こ
の荷電電極1の中心部に設けられた内部電極7、
及びこれら荷電電極1と内部電極7を収納し且つ
内部電極7と同電位の外筒電極15とを具備して
おり、内部電極7の表面は誘電体でなるフイルタ
10で覆われている。 本実施例装置は上述したように、流入口3が処
理室2の上方で且つ外筒電極15の内周の接線方
向から流体が流入するように設けられている。し
たがつて流体は螺旋状に旋回しながら処理室2へ
流入し外筒電極15と荷電電極1の間にムラなく
送り込まれ、コロイド粒子をクーロン力で引きつ
ける際に、荷電電極1の表面を効率良く使用する
ことができる。 また、本実施例では外筒電極15と荷電電極7
の間にグラスウール等の誘電体19を介在させた
ことにより、前記外筒電極15と荷電電極7間に
印加した電圧で前記誘電体19が分極し、この間
に多数の電極が介在したのと同等の効果を得るこ
とができる。したがつて、外筒電極15と荷電電
極7間におけるコロイド粒子の凝集をさらに効率
良く行うことができ、しいてはフイルタ10の濾
過精度及び寿命をより良好なものとすることがで
きる。 また、本実施例では外筒電極15と内部電極7
を傾斜壁20で接続しており、この傾斜壁20と
外筒電極15の底面15bの間に処理室2と隔離
された清浄液集合室21が形成されている。そし
て、ドレン抜き孔6は処理室2の最深部、即ち傾
斜壁20の最下端部近傍の外筒電極15側壁に設
けられ、流出口12は外筒電極15の底面に設け
られている。したがつて、処理室2において沈降
した不純物はドレン抜き孔6から効率良く排出さ
れる。 尚、図中22は、フイルタ10の上昇流による
せりあがりを押える絶縁プレートであつて、処理
室2の天内面間に介在させたスプリング23によ
り押付けられている。 第9図及び第10図は円筒状の荷電電極1の内
部に多数の内部電極7を設けた本発明の第3実施
例を示している。この第3実施例は前述した第2
実施例の装置を大型化したもので、流入口3を接
線方向二個所とすると共に荷電電極1の内周面に
沿つて、フイルタ10で被覆された内部電極7を
多数(図面では八個)を立設支持させた構成であ
り、他の構成部分は前記実施例と同じとなつてい
る。このようにフイルタ10で被覆された多数の
内部電極15を設けることにより、処理能力の向
上を図ることができる。 以上の実施例の説明したような流体濾過装置
は、空気、ガスなどの気体中からの微粒子の除
去、非水系の潤滑油、加工油、洗浄油等の脱水や
微粒子の除去、水系の純水、排水、飲料水、潤滑
液、加工液、洗浄液等の油分や微粒子の除去等に
用いられる。 次に上記において第1実施例として説明した本
発明による流体濾過装置の試作機を用いた実験デ
ータを示す。 a 窒素ガス中の微粒子の除去 濾過条件 ガス流量0.5m2/Hr、荷電圧5000VDC/3
cm、資料微粒子0.1〜1μダスト フイルタ公称1ミクロン パス回数1
[Industrial Application Field] The present invention relates to a fluid filtration device for removing impurities from a fluid. [Prior art] Conventional techniques for removing impurities from a fluid include the filter method, in which the fluid is pumped toward a filter and the impurities are filtered out by the filter, and the impurities are caused to collide with a cylindrical wall surface using centrifugal force to settle. This is done using centrifugation. In addition, as a device for removing dust from dust-containing gas, a DC voltage of tens of thousands of volts is applied between opposing electrodes to generate a discharge, and impurities in the gas sent between the electrodes are captured by the dust collecting electrode. There is a device that uses electrostatic precipitator method. [Problems to be solved by the invention] However, in the impurity removal device using the filter method or centrifugation method as described above, it is difficult to perform precision filtration such as removal of colloid particles, which has recently become a demand. However, there was a problem that it was technically difficult, and even if it were possible, it would not be cost-effective and would not be suitable for practical use. In other words, the filtration accuracy required these days has become extremely strict, such as dust of 1μ or less, moisture in oil of 50PPM or less, and oil in wastewater of 15PPM or less, and the filter method and centrifugal separation method mentioned above can meet these requirements. It cannot be done. On the other hand, electrostatic precipitator-based devices are extremely high-performance devices that can collect particles of 1μ or less, but because they use a high-voltage power supply, they require insulation and explosion-proof specifications, making the devices larger and more expensive. There was a problem that it could not be used with water-based fluids. However, the demand for highly accurate filtration as described above has become even greater as surfactants have recently come to be used in large quantities. [Object of the Invention] Filtration that requires extremely high precision as described above is in the area of colloid filtration, and it is difficult to achieve such filtration by mere physical means such as the above-mentioned filter method and centrifugation method. Therefore, in the present invention, when the molecules and particles in the colloidal region are charged due to dielectricity, ion adsorption, etc., a zeta potential is generated due to an electric double layer at the interface between these particles and the fluid, and this zeta potential causes the interparticles to Focusing on the fact that the particles repel each other due to the Coulomb force generated in the fluid and become suspended in the fluid, it is difficult for them to settle.This zeta potential is eliminated and the colloidal particles are pre-compared before passing through the filter by settling or floating due to agglomeration and coarsening. An object of the present invention is to provide a fluid filtration device that can improve filtration accuracy and extend filter life by reducing filter load by removing impurities with large target particles. [Means for Solving the Problems] In order to achieve the above object, the fluid filtration device according to the present invention includes a cylindrical outer tube electrode and an inner tube provided at the same potential as the outer tube electrode. A charged electrode is arranged between the pipe-shaped internal electrode and insulated from both the inner and outer electrodes, the surface of the inner electrode is covered with a filter made of a dielectric, and a charged electrode is arranged between the outer electrode and the charged electrode. A voltage source that applies a voltage is provided to cause the fluid press-fitted between the outer cylindrical electrode and the charged electrode to flow between the charged electrode and the inner electrode, and to flow out through the filter to the outside. This is what I did. [Operation] According to the fluid filtration device of the present invention, by passing the fluid into the electric field between the outer cylinder electrode and the charged electrode, colloidal particles having a zeta potential on the surface are transferred to the surface of the charged electrode by Coulomb force. are collected and the zeta potential is canceled out. As a result, colloidal particles coagulate or float, and relatively large impurities are removed before passing through the filter. Next, by flowing fluid between the charged electrode and the internal electrode, the remaining colloid particles are polarized in the electric field between the charged electrode and the internal electrode, and Coulomb force is applied to the surface of the filter, which generates a strong zeta potential. They are attracted and adsorbed, forming a cake layer of impurities on the filter surface, and this cake layer provides highly accurate filtration performance. [Example] Hereinafter, the present invention will be described in detail based on an illustrated example. 1 to 3 show the basic principle of the fluid filtration device according to the present invention. In the figures, 1 is a cylindrical charging electrode with both ends closed, and a processing chamber 2 is located above the charging electrode 1. The inflow port 3 and the energizing hole 4 that lead to the
Furthermore, an electrode support hole 5 and a drain hole 6 are provided at the bottom. Reference numeral 7 denotes a pipe-shaped internal electrode provided at the center of the charging electrode 1. A passage 8 passes through the internal electrode 7 in the axial direction, and a large number of water holes 9 are formed in the peripheral wall. Further, the surface of the inner and outer poles 7 is covered with a filter 10 made of a dielectric material, and one end is connected to the outlet 12 via an insulator 11. 13 is a power supply device. These components are constructed by inserting the internal electrode 7 into the processing chamber 2 of the charging electrode 1 through the electrode support hole 5, supporting and fixing the insulator 11 part in the electrode support hole 5, and connecting the outlet 12 to the charging electrode 1. Further, one terminal of the power supply device 13 is connected to the charging electrode 1, and the other terminal is connected to the internal electrode 7 through the lead-in insulator 14 supported in the current carrying hole 4. ing. As shown in FIG. 2, this device is connected from an untreated liquid tank T1 to an inlet port 3 via a pump P.
On the other hand, the outlet 12 is piped to the clean tank T2 . Next, the basic filtration process using the apparatus shown in FIGS. 1 to 3 above will be explained. When a voltage supplied by the power supply 13 is applied between the charged electrode 1 and the internal electrode 7 and the filter 10 is placed in an electric field, the filter 10 made of a dielectric material is polarized in the direction of the electric field, and a strong zeta is formed on its surface. A potential is generated. Therefore, when the fluid is forced into the processing chamber 2 through the inlet 3, the charged colloidal particles in the fluid are attracted by the Coulomb force to the zeta potential generated on the surface of the filter 10 and adsorbed to the surface of the filter 10.
The colloid particles, which have the same potential as the surface of the filter 10 due to this adsorption, lose their zeta potential and aggregate due to Van der Fars force, forming a cake layer of aggregates on the surface of the filter 10. The colloidal particles forming this cake layer are aggregated by the filter 10.
The cake layer prevents impurities from passing through with a much higher filtration accuracy than the filter 10 originally has because the pores of the filter 10 are made small. And 10 filters
Since the particles are polarized, the colloidal particles do not necessarily aggregate on the surface of the filter 10 and enter the inside, and the filter 10 will not be clogged. The voltage supplied from the power supply device 13 is a DC voltage of 1000 to 3000 V/cm when the fluid is a gas, an AC voltage of 10 to 200 V/cm when the fluid is a non-aqueous liquid, a weight voltage of AC and DC, or a DC voltage. , or in the case of an aqueous liquid, an alternating current voltage or a superimposed voltage of alternating current and direct current of 1 to 20 V/cm is preferably used. However, the selection of such voltage type and voltage value is
It is appropriately determined depending on the electric resistance specific to the fluid, and is preferably appropriately selected experimentally. Therefore, the type of voltage and voltage value are not necessarily limited to those shown above. However, in the case of a water-based fluid, DC charging involves the risk of electrolytic corrosion of the electrodes due to electrolysis or the generation of hydrogen and oxygen, so AC or AC/DC superimposed voltage is desirable. In the case of alternating current, the fluid is violently agitated in response to cycle fluctuations, and it is presumed that the zeta potential disappears due to the agitation, causing aggregation of colloids. In addition, the charging effect due to the DC component generated by the polarity effect of AC, or the synergistic effect of both, is also considered to be the cause of aggregation. In addition, the flow rate of the fluid is determined according to the viscosity of the fluid. 4-6 illustrate a first embodiment of a fluid filtration device according to the present invention. In the figure, 1 is a cylindrical charging electrode with both ends open. 7
is a pipe-shaped internal electrode provided at the center of the charging electrode 1, through which a passage 8 passes through in the axial direction.
Reference numeral 15 denotes a cylindrical outer tube electrode with both ends closed and having a processing chamber 2 housing the charging electrode 1 and the internal electrode 7, and this outer tube electrode 15 is connected to the protective insulator 1.
The charging electrode 1 is supported concentrically via the electrode 6. The outer cylinder electrode 15 has an inlet 3 communicating with the processing chamber 2 and a current supply hole 4 in the upper side of the electrode, and an electrode support hole 5 and a drain hole 6 in the bottom thereof. The internal electrode 7 projects outward from the electrode support hole 5, and the internal electrode 7 has an outlet 12 at the tip of this projecting portion. The outer cylinder electrode 15 and the internal electrode 7 are in contact with each other at the electrode support hole 5, and therefore, the outer cylinder electrode 15 and the internal electrode 7 are always at the same potential. Further, the surface of the internal electrode 7 is covered with a filter 10 made of a dielectric material at the portion facing the charging electrode 1, and one end of this filter 10 is supported by a support protrusion 17 formed in the shape of a brim on the internal electrode 7. The other end is supported by the upper surface 15a of the outer cylindrical electrode 15 via an insulator 18 provided with a gap from the upper end of the internal electrode 7. 13
is the power supply device. With the above-described configuration, the fluid injected from the inlet 3 in this device passes between the outer cylindrical electrode 15 and the charging electrode 1, passes downward, then passes through the filter 10, and flows from the upper end of the inner electrode 7. A flow path is formed that enters the passage 8 and exits from the outlet 12. Next, the operation will be explained. In this device, the fluid press-injected from the inlet 3 first passes through an electric field between the outer cylinder electrode 15 and the charging electrode 1. Therefore, colloidal particles having a zeta potential on the surface gather on the surface of the charged electrode 1 due to Coulomb force, where the zeta potential is canceled out. Since the only force that acts between colloid particles whose zeta potential is canceled is the Juan de Wears force, the particles aggregate and become coarse due to this intermolecular attraction. If the coarse colloidal particles have a higher specific gravity than the fluid, they will settle and separate. Examples of sedimentation include fine particles in gas, water and fine particles in oil, and SS in water. In addition, coarse colloidal particles float and separate when their specific gravity is lower than that of a fluid, and an example of this is oil in water. In addition, when the fluid is water-based, metal ions generated by electrolysis of water due to the application of voltage erase the zeta potential of colloid particles and cause the colloids to aggregate, and active metal hydroxides may encapsulate the colloids. It is thought that this effect is synergistic, such as coagulation. On the other hand, the remaining colloid particles that could not be coagulated and sedimented collect on the surface of the filter 10 along the filter flow path, but a charged electrode 1 is placed on the surface of the filter 10.
A zeta potential is generated by the electric field generated by the voltage applied between the internal electrode 7 and the internal electrode 7, and a cake is formed on the surface of the filter 10 in exactly the same manner as explained in the basic principle of FIGS. 1 to 3 above. form a layer. As described above, in the device of this embodiment, before passing the fluid through the filter 10 placed in an electric field, the zeta potential of the colloid particles is erased between the outer cylindrical electrode 15 and the charged electrode 1, so that the colloid particles coagulate and settle or float. Therefore, relatively large particles of impurities can be removed before passing through the filter 10. Therefore, the load on the filter 10 is reduced,
Its lifespan is extended. It can also contribute to obtaining good filtration accuracy with a small number of filtration times. Note that the type and voltage value of the voltage applied between the charging electrode 1 and the internal electrode 7 or the outer cylinder electrode 15, the velocity of the fluid, etc. are the same as those explained in the above-mentioned basic principle. 7 and 8, the inlet 3 is arranged above the processing chamber 2 so that the fluid flows in from the tangential direction of the inner circumference of the outer cylindrical electrode 15, and
A dielectric material 1 such as glass wool is placed between the charging electrode 1 and the charging electrode 1.
Fig. 9 shows a second embodiment of the present invention in which 9 is interposed. This second embodiment is basically the same as the first embodiment, and includes a cylindrical charging electrode 1, an internal electrode 7 provided at the center of the charging electrode 1,
It also includes an outer cylindrical electrode 15 that accommodates the charged electrode 1 and the internal electrode 7 and has the same potential as the internal electrode 7, and the surface of the internal electrode 7 is covered with a filter 10 made of a dielectric material. As described above, in the apparatus of this embodiment, the inlet port 3 is provided above the processing chamber 2 so that the fluid flows in from the tangential direction of the inner circumference of the outer cylindrical electrode 15. Therefore, the fluid flows into the processing chamber 2 while spirally swirling, and is evenly sent between the outer cylinder electrode 15 and the charging electrode 1, and when attracting colloid particles with Coulomb force, the surface of the charging electrode 1 is efficiently It can be used well. In addition, in this embodiment, the outer cylinder electrode 15 and the charging electrode 7
By interposing a dielectric material 19 such as glass wool between them, the dielectric material 19 is polarized by the voltage applied between the outer cylindrical electrode 15 and the charged electrode 7, which is equivalent to having a large number of electrodes interposed between them. effect can be obtained. Therefore, the colloidal particles between the outer cylinder electrode 15 and the charged electrode 7 can be aggregated more efficiently, and the filtration accuracy and life of the filter 10 can be improved. In addition, in this embodiment, the outer cylinder electrode 15 and the inner electrode 7
are connected by an inclined wall 20, and a cleaning liquid collecting chamber 21 isolated from the processing chamber 2 is formed between the inclined wall 20 and the bottom surface 15b of the outer cylinder electrode 15. The drain hole 6 is provided in the innermost part of the processing chamber 2, that is, in the side wall of the outer cylinder electrode 15 near the lowermost end of the inclined wall 20, and the outlet 12 is provided in the bottom surface of the outer cylinder electrode 15. Therefore, the impurities that have settled in the processing chamber 2 are efficiently discharged from the drain hole 6. Reference numeral 22 in the figure is an insulating plate that suppresses the rise of the filter 10 due to the upward flow, and is pressed by a spring 23 interposed between the top surfaces of the processing chamber 2. 9 and 10 show a third embodiment of the present invention in which a large number of internal electrodes 7 are provided inside a cylindrical charging electrode 1. FIG. This third embodiment is similar to the second embodiment described above.
This is a larger version of the device of the embodiment, with two inflow ports 3 in the tangential direction, and a large number of internal electrodes 7 (eight in the drawing) covered with a filter 10 along the inner peripheral surface of the charging electrode 1. The other components are the same as those of the previous embodiment. By providing a large number of internal electrodes 15 covered with filters 10 in this manner, processing capacity can be improved. The fluid filtration device as described in the above embodiments can be used to remove particulates from gases such as air and gas, dehydrate and remove particulates from non-aqueous lubricating oils, processing oils, cleaning oils, etc., and remove particulates from water-based pure water. It is used to remove oil and fine particles from waste water, drinking water, lubricating fluids, processing fluids, cleaning fluids, etc. Next, experimental data using a prototype of the fluid filtration device according to the present invention described as the first embodiment above will be shown. a Removal of particulates in nitrogen gas Filtration conditions Gas flow rate 0.5m 2 /Hr, charging voltage 5000VDC/3
cm, data fine particles 0.1 to 1μ dust, filter nominal 1 micron, number of passes 1

【表】 電圧印加による処理能力の向上は明らかである。 b 潤滑油の直流、交流荷電比較濾過テスト 濾過条件 流量1/min、荷電圧AC及びDC 0〜
10000V/3cmフイルタ公称1ミクロン、粘度
56cst、温度25℃
[Table] It is clear that the processing capacity is improved by applying voltage. b. Comparative filtration test of DC and AC charging of lubricating oil. Filtration conditions: Flow rate 1/min, charging voltage AC and DC 0~
10000V/3cm filter nominal 1 micron, viscosity
56cst, temperature 25℃

【表】 本データーによれば、油については交流、直流
共大差は無いが、やや直流荷電の効果が優れてい
る。最も効果があるのは直流500Vでゼータ電位
消去、ゼータ電位発生に最も適した電圧と判断さ
れる。また、本データから明らかなように本発明
による流体濾過装置では交流、直流とも500Vを
越える電圧を印加すると濾過能力は低下してお
り、このことから従来ある電気集塵とは全く異な
つた原理のもとに不純物の除去がなされているこ
とがわかる。 c 水グライコール液の金属塩の除去 濾過条件 流量1/min、荷電圧AC25V/3cm、フ
イルタ公称1ミクロン、粘度46cst、温度25℃、
数量20
[Table] According to this data, there is no big difference between AC and DC charging for oil, but DC charging is slightly more effective. The most effective voltage is 500V DC, which is judged to be the most suitable voltage for erasing zeta potential and generating zeta potential. Furthermore, as is clear from this data, in the fluid filtration device according to the present invention, the filtration ability decreases when a voltage exceeding 500V is applied to both AC and DC. It can be seen that impurities have been removed from the original. c Removal of metal salts from water glycol liquid Filtration conditions Flow rate 1/min, charging voltage AC 25V/3cm, filter nominal 1 micron, viscosity 46cst, temperature 25℃,
quantity 20

【表】 本データは電解による電蝕の防止のため印加電
圧としてAC25V/3cmを採用した例で、交流電
圧によつても著しい濾過能の向上が認められる。 d 含油排水処理 濾過条件 流量1/min、フイルタ公称1ミクロン、
但し、印加電圧12VDC+12VAC重畳の場合外
筒電極と荷電電極にグラスウールを介在
[Table] This data is an example in which AC25V/3cm was used as the applied voltage to prevent galvanic corrosion due to electrolysis, and it was observed that the filtration performance was significantly improved even with AC voltage. d Oil-containing wastewater treatment Filtration conditions Flow rate 1/min, filter nominal 1 micron,
However, if the applied voltage is 12VDC + 12VAC superimposed, glass wool must be inserted between the outer cylinder electrode and the charged electrode.

【表】 交流電圧のみを印加した場合に比べ交流、直流の
重畳電圧を印加し且つ外筒電極と荷電電極間にグ
ラスウールを介在させると、少ない処理回数で良
好な濾過結果が得られた。 以上の実験データからも、本発明による流体濾
過装置が、気体、排水系及び水系の液体を問わず
極めて高精度の濾過を行い得ることが明らかであ
る。 尚、本発明は上記各実施例に限定されるもので
なく、特許請求の範囲を逸脱しない範囲で適宜の
設計変更が可能である。 [発明の効果] 以上の説明から明らかなように、本発明の流体
濾過装置によれば、フイルタ通過前の段階におい
て、外筒電極と荷電電極との間でコロイド領域の
不純物の持つゼータ電位を消去して、コロイド領
域の不純物をフアンデルフアールス力(分子間引
力)で凝集粗粒化し、その凝集した比較的大きい
不純物を沈降または浮上させて分離することがで
きるとともに、それに続く流体流路を形成する荷
電電極と内部電極との間で残存コロイド領域の不
純物の持つゼータ電位を消去し、分子間引力によ
りフイルタ表面に、該フイルタが本来持つ濾過精
度よりも高い濾過精度をもたせることができる。
したがつて、従来のフイルタ法や遠心分離法など
の物理的手段では到底実現できない極めて高精度
な濾過性能を発揮させることができるとともに、
フイルタの負荷を軽減して、そのフイルタ寿命の
著しい延長化を達成することができる。また、少
ない濾過回数で良好な濾過精度を得ることができ
る。しかも、電気集塵のような数万ボルトの高電
圧を必要とせず、低電圧を印加すればよいので、
絶縁の確保が簡単で、かつ防爆仕様とする必要も
ないので、装置全体を小型化しやすいとともに、
コスト的にも安価に製造でき、さらに水系の流体
にも適用できるという効果も奏する。
[Table] Compared to the case where only AC voltage was applied, good filtration results were obtained with fewer treatments by applying a superimposed voltage of AC and DC and interposing glass wool between the outer cylinder electrode and the charged electrode. From the above experimental data, it is clear that the fluid filtration device according to the present invention can perform extremely high-precision filtration regardless of whether it is a gas, a wastewater system, or an aqueous liquid. It should be noted that the present invention is not limited to the above embodiments, and appropriate design changes can be made without departing from the scope of the claims. [Effects of the Invention] As is clear from the above description, according to the fluid filtration device of the present invention, the zeta potential of impurities in the colloid region is reduced between the outer cylinder electrode and the charged electrode at a stage before passing through the filter. By erasing the impurities in the colloidal region, the impurities in the colloidal region are aggregated into coarse particles by Van der Juaars force (intermolecular attraction), and the aggregated relatively large impurities can be separated by settling or floating, and the subsequent fluid flow path can be separated. The zeta potential of impurities in the remaining colloid region is erased between the charged electrode to be formed and the internal electrode, and the intermolecular attraction allows the filter surface to have a higher filtration precision than the filter originally has.
Therefore, it is possible to demonstrate extremely high-precision filtration performance that cannot be achieved by conventional physical means such as filter methods and centrifugation methods, and
The load on the filter can be reduced and the life of the filter can be significantly extended. Moreover, good filtration accuracy can be obtained with a small number of filtration times. Moreover, it does not require high voltages of tens of thousands of volts like electrostatic precipitators, but only a low voltage can be applied.
It is easy to ensure insulation, and there is no need for explosion-proof specifications, making it easy to downsize the entire device, and
It has the advantage that it can be manufactured at low cost and can also be applied to water-based fluids.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本原理による装置の一部を
切欠いた斜視図、第2図は第1図の装置の縦断面
及び装置に対する配管系統を示した説明図、第3
図は第1図の径方向断面図、第4図は本発明の第
1実施例による装置の一部を切欠いた斜視図、第
5図は第4図の縦断面図、第6図は第4図の径方
向断面図、第7図は本発明の第2実施例による装
置の一部を切欠いた平面図、第8図は同じく縦断
面図、第9図は本発明の第3実施例による装置の
一部を切欠いた平面図、第10図は同じく縦断面
図である。 1……荷電電極、3……流入口、7……内部電
極、10……フイルタ、13……電源装置、15
……外筒電極。
FIG. 1 is a partially cutaway perspective view of the device according to the basic principle of the present invention, FIG.
The figures are a radial sectional view of FIG. 1, FIG. 4 is a partially cutaway perspective view of the device according to the first embodiment of the present invention, FIG. 5 is a longitudinal sectional view of FIG. 4, and FIG. 4 is a radial sectional view, FIG. 7 is a partially cutaway plan view of a device according to a second embodiment of the present invention, FIG. 8 is a longitudinal sectional view of the same, and FIG. 9 is a third embodiment of the present invention. FIG. 10 is a partially cutaway plan view of the device according to the present invention, and FIG. 10 is also a longitudinal sectional view. DESCRIPTION OF SYMBOLS 1...Charging electrode, 3...Inflow port, 7...Internal electrode, 10...Filter, 13...Power supply device, 15
...Outer cylinder electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 円筒型の外筒電極とこの外筒電極の内部に該
外筒電極と同電位に設けたパイプ状の内部電極と
の間に、これら内外両電極に対して絶縁させて荷
電電極を配置し、前記内部電極の表面を誘電体か
らなるフイルタで覆うとともに、前記外部電極と
荷電電極との間に電圧を印加する電圧源を設け
て、前記外筒電極と荷電電極との間に圧入した流
体を荷電電極と内部電極間に流入させ、かつ前記
フイルタを通過させて外部に流出させるように構
成したことを特徴とする流体濾過装置。
1. A charged electrode is arranged between a cylindrical outer tube electrode and a pipe-shaped inner electrode provided inside the outer tube electrode at the same potential as the outer tube electrode, insulated from both the inner and outer electrodes. , the surface of the internal electrode is covered with a dielectric filter, a voltage source is provided for applying a voltage between the external electrode and the charged electrode, and a fluid is press-fitted between the external cylindrical electrode and the charged electrode. 1. A fluid filtration device, characterized in that the fluid is configured to flow into between a charging electrode and an internal electrode, and flow out through the filter to the outside.
JP61142292A 1985-06-17 1986-06-17 Fluid filter Granted JPS6291214A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13132985 1985-06-17
JP60-131329 1985-06-17

Publications (2)

Publication Number Publication Date
JPS6291214A JPS6291214A (en) 1987-04-25
JPH0468002B2 true JPH0468002B2 (en) 1992-10-30

Family

ID=15055399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61142292A Granted JPS6291214A (en) 1985-06-17 1986-06-17 Fluid filter

Country Status (2)

Country Link
JP (1) JPS6291214A (en)
GB (1) GB2177625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017080523A1 (en) * 2015-11-15 2017-05-18 吴翔 Realization of drying, moistening, sterilizing, disinfecting and kinetic energy acquisition by using polar molecule repulsion

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417361U (en) * 1987-07-15 1989-01-27
JPH0832290B2 (en) * 1989-08-18 1996-03-29 ゼオテック・エル・アール・シー株式会社 Two-liquid separator
JPH061206Y2 (en) * 1989-09-26 1994-01-12 昇 井上 Fluid filtration device
JPH0722651B2 (en) * 1990-06-20 1995-03-15 ゼオテック・エル・アール・シー株式会社 Oil-water separation device and oil-water separation method
JPH0744445Y2 (en) * 1991-11-29 1995-10-11 東レエンジニアリング株式会社 Polishing waste liquid treatment device
GB2377397A (en) * 2001-07-12 2003-01-15 Mojtaba Ghadiri Separating components of liquid/liquid emulsion using electrostatic force
DE20315935U1 (en) * 2003-10-16 2005-02-24 Hengst Gmbh & Co.Kg Electrostatic separator with self-purging
CN101223403B (en) * 2005-07-20 2010-06-16 艾尔廸科技有限公司 Apparatus for air purification and disinfection
US10071921B2 (en) * 2013-12-02 2018-09-11 Lean Environment Inc. Electrochemical reactor system for treatment of water
CN109490200B (en) * 2018-10-31 2021-07-06 上海江南长兴造船有限责任公司 Tool for testing OMD oil content measuring instrument
CN109455798B (en) * 2018-12-21 2022-01-04 清华大学 Prevent that biological dirt blocks up filter core and cartridge filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4521597Y1 (en) * 1965-09-13 1970-08-27
JPS5244464A (en) * 1975-10-03 1977-04-07 Noboru Shimaoka Electrostatic-type oil purifier with double outside vessels
JPS5337962A (en) * 1976-09-21 1978-04-07 Ee Pii Waarudo Kk Insulating liquid clarifier

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3438180A (en) * 1965-12-28 1969-04-15 Trane Co Air-cleaning apparatus
CA1006457A (en) * 1971-10-29 1977-03-08 G. Ray Fritsche Employment of glass beads in electrofilter equipment
SE385271B (en) * 1974-02-13 1976-06-21 Lectrostatic Ab ELECTROSTATIC FILTER
US3999964A (en) * 1975-03-28 1976-12-28 Carrier Corporation Electrostatic air cleaning apparatus
JPS53115978A (en) * 1977-03-21 1978-10-09 Shiyunji Matsumoto Electrostatic filter
CH629684A5 (en) * 1977-05-12 1982-05-14 Manfred R Burger METHOD AND ELECTROSTATIC FILTER DEVICE FOR PURIFYING GASES.
EP0035973B1 (en) * 1980-03-11 1984-09-12 Aktiengesellschaft Gimag Apparatus for the discontinuous cleaning of dust-charged raw gas
ES504616A0 (en) * 1980-10-01 1982-08-16 Burger Manfred R ELECTROSTATIC FILTRATION DEVICE FOR GAS DEPURATION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4521597Y1 (en) * 1965-09-13 1970-08-27
JPS5244464A (en) * 1975-10-03 1977-04-07 Noboru Shimaoka Electrostatic-type oil purifier with double outside vessels
JPS5337962A (en) * 1976-09-21 1978-04-07 Ee Pii Waarudo Kk Insulating liquid clarifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017080523A1 (en) * 2015-11-15 2017-05-18 吴翔 Realization of drying, moistening, sterilizing, disinfecting and kinetic energy acquisition by using polar molecule repulsion

Also Published As

Publication number Publication date
GB2177625A (en) 1987-01-28
GB8614490D0 (en) 1986-07-16
JPS6291214A (en) 1987-04-25

Similar Documents

Publication Publication Date Title
US3252885A (en) Electrostatic filter for cleaning dielectric fluids
JPH0468002B2 (en)
EP0206688A2 (en) Electrostatic adsorptive fluid filtering apparatus
CA1240953A (en) Method and apparatus for separating impurities from low conductivity liquids
US2593377A (en) Gas cleaning apparatus
US3247091A (en) Electrohydrodynamic precipitator
US20180353970A1 (en) Electric Solid-liquid Separator Using Insulated Metal Beads
US3970536A (en) Liquid treating method and apparatus
US3852178A (en) Electrostatic filtering for cleaning dielectric fluids
US3544441A (en) Electrostatic filtering for cleaning dielectric fluids
US8580098B1 (en) Electrically enhanced cellulose filtration system
US1358031A (en) Gas purification
US3368963A (en) Apparatus for removing contaminants from high-resistivity fluids
RU2333040C1 (en) Electric precipitator
US2336542A (en) Method of treating emulsions
JP2006088144A (en) Fluid filtration device
RU2145524C1 (en) Electric cleaner of dielectric liquids
RU2121883C1 (en) Method of electrical cleaning of liquid dielectric media
JP6877004B2 (en) Particle coagulation separation device and particle coagulation separation method
RU2004305C1 (en) Electrical hydrodynamic filter
JP2766720B2 (en) Electric desalination equipment
RU2212377C1 (en) Water purifying apparatus
RU42188U1 (en) ELECTRIC CLEANER OF DIELECTRIC LIQUIDS AND GASES
SU244297A1 (en) ELECTRICAL LIQUID CLEANER
RU2056951C1 (en) Electrical centrifugal liquid cleaner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term