JPH0832290B2 - Two-liquid separator - Google Patents

Two-liquid separator

Info

Publication number
JPH0832290B2
JPH0832290B2 JP1213168A JP21316889A JPH0832290B2 JP H0832290 B2 JPH0832290 B2 JP H0832290B2 JP 1213168 A JP1213168 A JP 1213168A JP 21316889 A JP21316889 A JP 21316889A JP H0832290 B2 JPH0832290 B2 JP H0832290B2
Authority
JP
Japan
Prior art keywords
liquid
electrode
separated
space
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1213168A
Other languages
Japanese (ja)
Other versions
JPH0377603A (en
Inventor
昇 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1213168A priority Critical patent/JPH0832290B2/en
Publication of JPH0377603A publication Critical patent/JPH0377603A/en
Publication of JPH0832290B2 publication Critical patent/JPH0832290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、油と水、フロンと水、フロンと油等混合状
態にある比重の異なる二液を効率よく分離する装置に関
し、例えば船舶用ビルヂ廃液や工場廃液の油水分離、更
には飲料水等の不純物液体分離等ができる装置に関し、
加えて不純物液体除去後の被分離液の浄化も可能な二液
分離装置を提供することを目的とする。
Description: TECHNICAL FIELD The present invention relates to a device for efficiently separating two liquids having different specific gravities in a mixed state such as oil and water, flon and water, and flon and oil, for example, for marine vessels. Regarding equipment that can separate oil and water of bilge waste liquid and factory waste liquid, and further separation of impurity liquid such as drinking water,
In addition, it is another object of the present invention to provide a two-liquid separation device that can purify the liquid to be separated after removing the impurity liquid.

〔従来の技術〕[Conventional technology]

混合状態の二液を分離する技術としては、邪魔板式分
離法、傾斜板分離法やコアレッサー方式等がよく知られ
ている。これらは、混合液が通過する流路に障害物や傾
斜板を設置し、これら障害物や傾斜板を通過する過程
で、二液を物理的比重差により時間をかけて徐々に分離
することを基本原理とするものである。
As a technique for separating two liquids in a mixed state, a baffle plate separation method, an inclined plate separation method, a coalescer method and the like are well known. In these processes, obstacles and inclined plates are installed in the flow path through which the mixed liquid passes, and in the process of passing through these obstacles and inclined plates, the two liquids are gradually separated by a physical difference in specific gravity over time. This is the basic principle.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、例えば懸濁状態の油水混合液では油の
コロイド粒子表面にはイオンが吸着している為、水液と
の界面において電気二重層によるゼーター電位が発生
し、このゼーター電位に起因して発生するクーロン力に
より油粒子は相反撥して安定して浮遊しており、特に低
濃度の油水混合液では油のコロイド粒子間距離が隔たっ
ている為、ゼーター電位によるクーロン斥力のほうが分
子間引力よりもはるかに大きく、したがって従来のよう
な物理的手法では二液の分離ができない問題があった。
又、界面活性剤の混入によりエマルジョン化した油水混
合液においては油粒子が小粒化しているうえに水と油粒
子の結合電位も高く、従来の物理的手法のみによるもの
では二液分離は原理的に不可能であった。
However, for example, in an oil-water mixture in a suspended state, since ions are adsorbed on the surface of the colloidal particles of oil, a zeta potential due to the electric double layer is generated at the interface with the water liquid, which is caused by this zeta potential. Due to the Coulomb force, the oil particles repel each other stably and float in a stable manner, and especially in a low-concentration oil-water mixture, the distance between the colloidal particles of the oil is large, so the Coulomb repulsive force due to the zeta potential is better than the intermolecular attractive force. However, there is a problem that the two liquids cannot be separated by a conventional physical method.
In addition, in the oil-water mixture that has been emulsified by mixing the surfactant, the oil particles are smaller and the binding potential between water and oil particles is also high. It was impossible.

更に従来の二液分離装置は二液分離機能を有するのみ
であり、不純物液体除去後の被分離液を再利用しようと
すれば、別途設けた浄化装置による浄化処理工程が必要
となり、処理作業が煩雑となる上に処理時間が長時間化
する問題があった。
Further, the conventional two-liquid separation device only has a two-liquid separation function, and if the separated liquid after the removal of the impurity liquid is to be reused, a purification treatment step by a separately provided purification device is required, and the treatment work is There is a problem that the processing becomes complicated and the processing time becomes long.

本発明はかかる現況に鑑みてなされたものであり、通
常濃度の混合液の二液分離は勿論のこと、低濃度の混合
液やエマルジョン化した混合液に対しても適用でき、し
かも分離効率も極めて高い二液分離装置を提供すること
目的とし、加えて、被分離液の浄化処理も同時に行える
二液分離装置を提供することを目的とするものである。
The present invention has been made in view of the present situation, and can be applied not only to two-liquid separation of a mixed liquid of normal concentration but also to a mixed liquid of low concentration or an emulsified mixed liquid, and the separation efficiency is also high. It is an object of the present invention to provide an extremely high two-liquid separating apparatus, and also to provide a two-liquid separating apparatus that can simultaneously purify liquid to be separated.

〔課題を解決するための手段〕[Means for solving the problem]

ここで混乱を避ける為に、分離液と被分離液を次のよ
うに定義しておく。
Here, in order to avoid confusion, the separated liquid and the liquid to be separated are defined as follows.

分離液:油水混合液中の油のように混合液中に少量存
在する不純物液体を収集した液体であり、分離回収の目
的となるものをいう。
Separated liquid: A liquid that collects a small amount of impurity liquid such as oil in an oil-water mixed liquid that is present in the mixed liquid and is the object of separation and recovery.

被分離液:油水混合液中の水液のように混合液中の大部
分を占める液体であり、不純物液体除去後の液体をい
う。
Liquid to be separated: A liquid that occupies most of the mixed liquid, such as a water liquid in an oil-water mixed liquid, and refers to a liquid after removal of an impurity liquid.

従来技術における上記課題を解決した本発明の二液分
離装置は次の構成を有している。
The two-liquid separating apparatus of the present invention, which has solved the above-mentioned problems in the prior art, has the following configuration.

本体容器を兼ねた外筒電極と該外筒電極に対し同心円
状に配置され、且つ外筒電極と同電位に設定された内筒
電極の中間に前記外筒電極及び内筒電極と電気的に絶縁
された荷電極を同心円状に設け、前記各電極間に二液混
合液を上方向に流通させる混合液通過空間を形成すると
ともに、該混合液通過空間の上部には本体容器外部への
排出口を最上部に具備するとともに分離液を一旦溜める
容積を有し且つその空間内には分離液と混合液との界面
位置を監視する界面検知センサーの検知部を設置してな
る分離液収集空間を形成し、前記排出口に連通する排出
通路に前記界面検知センサーの出力信号によって開閉が
制御される自動弁を設け、且つ前記内筒電極の内側には
不純物液体除去後の混合液を下方へ向かって導出する混
合液流下空間を設けてなり、外筒電極及び内筒電極と荷
電極間に混合液中の不純物液体粒子のゼーター電位を中
和させ得る電圧を印加してなる構成である。
The outer cylinder electrode also serving as the main body container and the inner cylinder electrode arranged concentrically with respect to the outer cylinder electrode and set to the same potential as the outer cylinder electrode are electrically connected to the outer cylinder electrode and the inner cylinder electrode. Insulated load electrodes are provided concentrically to form a mixed liquid passage space for circulating the two-liquid mixed liquid in the upward direction between the respective electrodes, and the upper part of the mixed liquid passage space is discharged to the outside of the main container. Separated liquid collection space that has an outlet at the top and has a volume for temporarily storing the separated liquid, and that has a detection part of an interface detection sensor that monitors the position of the interface between the separated liquid and the mixed liquid in the space. And an automatic valve whose opening and closing is controlled by the output signal of the interface detection sensor is provided in the discharge passage communicating with the discharge port, and the mixed liquid after the impurity liquid is removed downward inside the inner cylindrical electrode. Providing a space for the mixed liquid to flow out toward It is made by applying a voltage capable of neutralizing the zeta potential of impurity liquid particles in the mixture between the outer tubular electrode and the inner tube electrode and the load electrode configuration.

分離液収集空間は本体容器外部に設けることも可能
で、例えば、本体容器上部又は下部に設けたり、上部と
下部の両方に設けたりできる。又、荷電極を挟んで外筒
電極の反対側に位置し荷電極との間に電界を形成する為
の電極としては内筒電極以外のものを用いることも可能
であり、例えば、内部に被分離液流下空間を形成した管
状電極を本体容器中央に設けることも可能である。
The separated liquid collecting space can be provided outside the main body container, and can be provided, for example, at the upper or lower part of the main body container or at both the upper and lower parts. It is also possible to use an electrode other than the inner cylinder electrode as the electrode located on the opposite side of the outer cylinder electrode with the load electrode interposed therebetween to form an electric field with the load electrode. It is also possible to provide a tubular electrode having a separated liquid flow space in the center of the main body container.

管状電極は、本体容器の略中央を中心として放射状に
複数個配置することもできる。
A plurality of tubular electrodes may be arranged radially around the substantial center of the main body container.

又、荷電源としては油水混合液を処理対象とするとき
は1〜10V/cmの交流電圧を用いることが好ましく、特に
エマルジョン化した油水混合液を処理対象とするときは
10〜50V/cmの交流電圧を用いることが好ましい。
Further, as the cargo power source, it is preferable to use an AC voltage of 1 to 10 V / cm when the oil-water mixed liquid is the processing target, and particularly when the emulsified oil-water mixed liquid is the processing target.
It is preferable to use an alternating voltage of 10 to 50 V / cm.

又、フロン混合油等のように絶縁性の高い混合液を処
理対象とする場合は、電極が電蝕するおそれがない為、
荷電源としては直流電圧を用いることも可能であり、荷
電圧としては100〜200V/cmの交流電圧や直流電圧、更に
は直流電圧と交流電圧の重畳電圧を用いることもでき
る。
In addition, when a mixed liquid having a high insulating property such as CFC mixed oil is to be treated, there is no risk of electrolytic corrosion of the electrodes.
A DC voltage can be used as the load power source, and an AC voltage or DC voltage of 100 to 200 V / cm, or a superimposed voltage of the DC voltage and the AC voltage can be used as the load voltage.

外筒電極と荷電極間には多電極効果を有する多孔性誘
電体を隙間なく介在させることが好ましい。
It is preferable to interpose a porous dielectric having a multi-electrode effect between the outer cylinder electrode and the load electrode without a gap.

又、外筒電極と荷電極間に形成された混合液通過空間
を流通する混合液は容器高さ方向に流通させる必要があ
るが、混合液を分離する観点からは特に上向流とするこ
とが好ましい。
Further, the mixed liquid flowing through the mixed liquid passage space formed between the outer cylinder electrode and the load electrode needs to flow in the height direction of the container, but from the viewpoint of separating the mixed liquid, the upward flow is particularly required. Is preferred.

又、不純物液体除去後の被分離液が通過する空間には
微小懸濁物質(suspended solids:以下、SS粒子と称
す)を除去する為のSS除去層又は有機物吸着層の何れか
一方若しくは両方を設けて、本装置に被分離液の浄化機
能を付与することも好ましく、更に、このSS除去層若し
くは有機物吸着層の表面には荷電極と同電位となした多
孔板電極を接触状態で設けて、SS除去層若しくは有機物
吸着層表面の電界強度を高めることも好ましい。
In addition, either or both of the SS removal layer and the organic matter adsorption layer for removing fine suspended solids (hereinafter, referred to as SS particles) are provided in the space where the liquid to be separated after the removal of the impurity liquid passes. It is also preferable to provide this device with a purification function of the liquid to be separated, and further, a perforated plate electrode having the same potential as the load electrode is provided in contact with the surface of the SS removal layer or the organic matter adsorption layer. It is also preferable to increase the electric field strength on the surface of the SS removal layer or the organic substance adsorption layer.

〔作 用〕[Work]

このような構成の本発明の二液分離装置による二液分
離は以下のようにして行なわれる。
The two-liquid separation by the two-liquid separating apparatus of the present invention having such a structure is performed as follows.

第1請求項記載の装置では、本体容器外部から供給さ
れた混合液は、先ず外筒電極と荷電極間及び内筒電極と
荷電極間に形成された混合液流通空間内を上向流で流通
させられる。混合液流通空間を通過する以前の混合液中
には分離対象となる不純物液体粒子が浮遊しており、液
体粒子はその性質によって液中の陽イオン若しくは陰イ
オンを選択的に吸着する結果、表面が帯電し、周囲の他
の液体との間に電気二重層を形成しゼーター電位を有し
ている。そして各液体粒子の表面電荷は同極であるの
で、各液体粒子はゼーター電位に起因するクーロン力に
よって反発し安定的に浮遊している。
In the apparatus according to the first aspect, the mixed liquid supplied from the outside of the main body container first flows upward in the mixed liquid flow space formed between the outer cylinder electrode and the load electrode and between the inner cylinder electrode and the load electrode. Distributed. Impurity liquid particles to be separated float in the mixed liquid before passing through the mixed liquid circulation space, and the liquid particles selectively adsorb cations or anions in the liquid depending on their properties, resulting in the surface. Are charged, form an electric double layer with other liquid around them, and have a zeta potential. Since the surface charge of each liquid particle is the same pole, each liquid particle repels due to the Coulomb force due to the zeta potential and floats stably.

外筒電極と荷電極間には、液体粒子のゼーター電位を
打ち消すことができる大きさの電圧が印加されている
為、混合液流通空間を通過する過程で混合液中の液体粒
子のゼーター電位は中和され、その結果、液体粒子は分
子間引力の働きにより凝集粗粒化することになる。そし
て粗粒化した不純物液体粒子は周囲液体との比重差によ
り浮上若しくは沈降し、混合液は不純物液体を主体とす
る分離液と不純物液体を除去した被分離液とに分離され
る。
Since a voltage of a magnitude that can cancel the zeta potential of the liquid particles is applied between the outer cylinder electrode and the load electrode, the zeta potential of the liquid particles in the mixed liquid during the process of passing through the mixed liquid circulation space is The liquid particles are neutralized, and as a result, the liquid particles are agglomerated and coarsened by the action of intermolecular attraction. The coarse particle liquid particles float or settle due to the difference in specific gravity from the surrounding liquid, and the mixed liquid is separated into a separation liquid mainly containing the impurity liquid and a liquid to be separated from which the impurity liquid has been removed.

分離後の液体は、分離液が低比重のときには本体容器
上部に設けた分離液収集空間に溜められた後、該分離液
収集空間に設けられた排出口より本体容器外部へ排出さ
れ、他方、分離液が高比重であるときは、内筒電極内に
形成された被分離液流下空間を通じて下方へ案内され
る。分離液収集空間に溜められた分離液は時間経過に伴
ってその量が増加していく。分離液収集空間内に溜まる
分離液の量は界面検知センサーによって常時監視されて
いる。界面検知センサーは分離液収集空間における所定
高さ位置にその検出部が位置づけられており、二液界面
が界面検知センサーの検出部の設定位置よりも低くなれ
ば、界面検知センサーから信号が送出され、この信号に
基づいて分離液収集空間の最上部に設けた排出口に連通
する排出通路に設置した自動弁が開放されて、分離液収
集空間内の分離液が排出通路を通じて自動的に排出され
る。そして、分離液の排出が進んで二液界面が検知部の
設定位置よりも高くなれば、その状態が界面検知センサ
ーによって検知され前記自動弁は閉鎖される。このよう
に本発明装置では分離液の収集及び排出が自動的に行わ
れ、且つ装置は連続運転される。又、分離液は分離液収
集空間の最上部から排出されるので純度の高い分離液が
収集できる。
When the separated liquid has a low specific gravity, the separated liquid is stored in the separated liquid collecting space provided in the upper portion of the main body container, and then discharged to the outside of the main body container from an outlet provided in the separated liquid collecting space, while When the separated liquid has a high specific gravity, it is guided downward through the space into which the liquid to be separated flows formed in the inner cylinder electrode. The amount of the separated liquid accumulated in the separated liquid collecting space increases with the passage of time. The amount of the separated liquid accumulated in the separated liquid collecting space is constantly monitored by the interface detection sensor. The interface detection sensor has its detection part positioned at a predetermined height position in the separated liquid collection space, and when the two-liquid interface becomes lower than the set position of the detection part of the interface detection sensor, a signal is sent from the interface detection sensor. Based on this signal, the automatic valve installed in the discharge passage communicating with the discharge port provided at the top of the separated liquid collection space is opened, and the separated liquid in the separated liquid collection space is automatically discharged through the discharge passage. It Then, when the separation liquid is discharged and the interface between the two liquids becomes higher than the set position of the detection unit, the state is detected by the interface detection sensor, and the automatic valve is closed. As described above, in the device of the present invention, the separation liquid is automatically collected and discharged, and the device is continuously operated. Further, since the separated liquid is discharged from the uppermost part of the separated liquid collecting space, a highly pure separated liquid can be collected.

又、第2請求項記載の二液分離装置では、混合液は外
筒電極と荷電極間及び荷電極と管状電極間を通過する間
に、不純物液体粒子はそのゼーター電位を打ち消されて
分子間力によって凝集粗粒化し、その比重に応じて浮上
若しくは沈降する。分離後の不純物液体はその比重が周
囲液体よりも軽い場合は本体容器上部に連設された浮上
分離液収集用の分離液収集容器内に集まり、他方、不純
物液体の比重が周囲液体よりも重い場合は本体容器下部
に連設された沈降分離液収集用の分離液収集容器内に分
離液が集まる。本体容器上部と本体容器下部の両方又は
一方に連設された前記分離液収集容器内には界面検知セ
ンサーの検出部が位置づけられており、容器内部に溜ま
った分離液の量は常時監視されている。そして分離液の
量が所定量以上となれば界面検知センサーが送出する信
号によって排出通路に設けた自動弁が開放され、分離液
収集容器内の分離液が排出通路を通じて自動的に排出さ
れる。このとき浮上分離液収集用の分離液収集容器内の
分離液は当該容器の最上部に設けた排出口に連通する排
出通路を通じて排出され、他方、沈降分離液収集用の分
離液収集容器内の分離液は当該容器の最下部に設けた排
出口に連通する排出通路を通じて排出される。分離液の
排出が進んで分離液収集容器内の分離液の量が一定量以
下となれば、その状態が界面検知センサーによって検知
され前記自動弁は閉鎖される。
Further, in the two-liquid separation device according to the second aspect, while the mixed liquid passes between the outer cylinder electrode and the load electrode and between the load electrode and the tubular electrode, the impurity liquid particles have their zeta potential canceled out and the intermolecular liquid particles are intermolecular. It aggregates into coarse particles by force and floats or sinks depending on its specific gravity. If the specific gravity of the separated impurity liquid is lighter than that of the surrounding liquid, it will be collected in the separated liquid collection container for collecting the floating separated liquid that is connected to the upper part of the main body container, while the specific gravity of the impurity liquid is heavier than that of the surrounding liquid. In this case, the separated liquid is collected in the separated liquid collecting container for collecting the settled separated liquid, which is connected to the lower part of the main body container. The detection part of the interface detection sensor is located in the separated liquid collection container that is connected to both or one of the upper part and the lower part of the main container, and the amount of separated liquid accumulated inside the container is constantly monitored. There is. When the amount of the separated liquid exceeds a predetermined amount, the automatic valve provided in the discharge passage is opened by the signal sent by the interface detection sensor, and the separated liquid in the separated liquid collection container is automatically discharged through the discharge passage. At this time, the separated liquid in the separated liquid collecting container for collecting the floating separated liquid is discharged through a discharge passage communicating with the discharge port provided at the top of the container, while the separated liquid in the separated liquid collecting container for collecting the settled separated liquid is collected. The separated liquid is discharged through a discharge passage that communicates with a discharge port provided at the bottom of the container. When the discharge of the separated liquid progresses and the amount of the separated liquid in the separated liquid collection container becomes a predetermined amount or less, the state is detected by the interface detection sensor, and the automatic valve is closed.

そしてこのようにして収集された不純物液体は定期的
に分離液収集容器内から抜き取られ、他方、不純物を除
去された被分離液は、管状電極内の被分離液流下空間を
通じて容器外部へ排出される。
The impurity liquid thus collected is periodically withdrawn from the separation liquid collection container, while the separated liquid from which impurities have been removed is discharged to the outside of the container through the separation liquid flowing space inside the tubular electrode. It

又、第3請求項に記載される如く、外筒電極の内側に
被分離液流下空間を内部に形成した複数の管状電極を放
射状に配置し、且つ外筒電極と管状電極の間に両電極に
対して電位差を与えた荷電極を外筒電極に対して同心円
状に設けた場合は、不純物液体粒子の凝集粗粒化は各管
状電極と荷電極間及び外筒電極と荷電極間で行われ、不
純物液体除去後の被分離液は各管状電極内の被分離液流
下空間を通じて複数経路で容器外部へ排出される。被分
離液の排出は複数の被分離液流下空間を通じて行われる
為、一度に大量の混合液を処理することができ、処理効
率を高めることが可能である。この場合も分離液は本体
容器の上部又は下部の一方又は両方に設けられた分離液
収集容器に一旦溜められ、分離液収集容器内の分離液の
収集量が一定量以上となったときに、界面検知センサー
からの信号に基づいて排出通路に設けた自動弁を開放し
て排出し、他方、排出が進んで分離液収集容器の収集量
が一定量以下となったときに前記自動弁は閉鎖される。
Further, as described in the third aspect, a plurality of tubular electrodes having a flow-down space for liquid to be separated formed therein are radially arranged inside the outer tubular electrode, and both electrodes are provided between the outer tubular electrode and the tubular electrode. When a load electrode with a potential difference is provided concentrically with respect to the outer cylinder electrode, coagulation and coarsening of impurity liquid particles occur between each tubular electrode and the load electrode and between the outer cylinder electrode and the load electrode. That is, the separated liquid after the removal of the impurity liquid is discharged to the outside of the container through a plurality of paths through the separated liquid flowing space in each tubular electrode. Since the liquid to be separated is discharged through a plurality of spaces in which the liquid to be separated flows, it is possible to process a large amount of the mixed liquid at one time, and it is possible to improve the processing efficiency. In this case as well, the separated liquid is temporarily stored in the separated liquid collecting container provided in one or both of the upper part and the lower part of the main body container, and when the collected amount of the separated liquid in the separated liquid collecting container becomes a certain amount or more, The automatic valve provided in the discharge passage is opened and discharged based on the signal from the interface detection sensor, while the automatic valve is closed when the discharge progresses and the collection amount of the separated liquid collection container falls below a certain amount. To be done.

又、外筒電極と荷電極間に多電極効果を有する多孔質
形状の誘電体を隙間なく介在させたときには、誘電体の
分極により両電極間の各部分における電界強度が高ま
り、しかも電極間を流通する混合液は誘電体内を必ず通
過するので、二液分離の効率が高まる。
Further, when a porous dielectric having a multi-electrode effect is interposed between the outer cylinder electrode and the load electrode without any gap, the polarization of the dielectric increases the electric field strength in each part between the two electrodes, and moreover, between the electrodes. Since the flowing mixed liquid always passes through the dielectric body, the efficiency of two-liquid separation is enhanced.

被分離液流下空間に向かって移動する被分離液が通過
する空間にSS除去層と有機物吸着層の一方若しくは両方
を設置したときには不純物除去後の被分離液中の残存不
純物をSS除去層によるフィルター効果若しくは吸着剤の
静電吸着能によって除去することができるので、被分離
液の浄化が可能となり、本装置以外に別途浄化装置を設
置する必要がなくなる。
When one or both of the SS removal layer and the organic matter adsorption layer are installed in the space where the liquid to be separated moving toward the space to be separated flows, the residual impurities in the liquid to be separated after the impurities are removed are filtered by the SS removal layer. Since it can be removed by the effect or the electrostatic adsorption ability of the adsorbent, the liquid to be separated can be purified, and it is not necessary to install a separate purification device other than this device.

又、SS除去層若しくは有機物吸着剤層の表面に荷電電
極と同電位の多孔板電極を接触状態で設けたときには、
SS除去層若しくは有機物吸着剤層内各部位の電界強度を
高めてフィルター効果を高めることができるとともに、
凝集粗粒化した不純物液体粒子をSS除去層若しくは有機
物吸着層表面にクーロン力で引きつけて表面にケーク層
を作ることができ、SS除去層若しくは有機物吸着層がも
つ本来のフィルター効果に加えてケーク層のもつフィル
ター効果を付加することにより高精度な濾過が可能とな
る。
Further, when a perforated plate electrode having the same potential as the charging electrode is provided in contact with the surface of the SS removal layer or the organic adsorbent layer,
The filter effect can be enhanced by increasing the electric field strength at each site in the SS removal layer or the organic substance adsorbent layer,
A cake layer can be formed on the surface of the SS removal layer or the organic matter adsorption layer by the Coulomb force, and the cake liquid can be added to the original filter effect of the SS removal layer or the organic matter adsorption layer. By adding the filter effect of the layer, highly accurate filtration becomes possible.

〔実施例〕〔Example〕

次に本発明の詳細を図示した実施例にもとづき説明す
る。第1図(イ)は本発明にかかる二液分離装置の最も
基本的な一実施例を示す説明用縦断面図であり、第1図
(ロ)は同実施例の横断面図である。
Next, details of the present invention will be described based on illustrated embodiments. FIG. 1 (a) is a longitudinal sectional view for explaining the most basic embodiment of the two-liquid separating apparatus according to the present invention, and FIG. 1 (b) is a transverse sectional view of the same embodiment.

図中1は本体容器Aを兼ねた外筒電極であり、該外筒
電極1の内側には該外筒電極1と同電位となした内筒電
極2が同心円状に配設されている。又、外筒電極1と内
筒電極2間には両電極と電気的に絶縁された荷電極3が
保持絶縁体4、4…を介して外筒電極1及び内筒電極2
に対して同心円状に配置されており、各電極間に上下方
向に流通可能な混合液通過空間5を形成し、且つ内筒電
極2の内側には不純物液体除去後の被分離液を下方へ案
内する被分離液流下空間6を設けている。
In the figure, 1 is an outer cylinder electrode which also serves as the main body container A, and an inner cylinder electrode 2 having the same potential as the outer cylinder electrode 1 is concentrically arranged inside the outer cylinder electrode 1. Further, between the outer cylinder electrode 1 and the inner cylinder electrode 2, a load electrode 3 electrically insulated from both electrodes is provided between the outer cylinder electrode 1 and the inner cylinder electrode 2 via holding insulators 4, 4 ,.
Are arranged concentrically with respect to each other to form a mixed liquid passage space 5 which can flow vertically between the respective electrodes, and the liquid to be separated after the impurity liquid is removed downward inside the inner cylindrical electrode 2. A space 6 into which the liquid to be separated flows is provided for guiding.

本体容器Aの側面下部には油水混合液等の二液混合液
を流入させる為の混合液流入口7が開設され、容器底面
の略中心には分離水等の不純物液体を除去した後の被分
離液を排出する為の被分離液排出口8が開設されてい
る。又、容器本体Aの内部空間上部には分離浮上した分
離液を収容する分離液収容空間9が形成されるととも
に、容器天蓋には分離液を排出する為の分離液排出口10
が設けられている。
A mixed liquid inlet 7 for inflowing a two-liquid mixed liquid such as an oil-water mixed liquid is opened in the lower part of the side surface of the main body container A, and a substantially liquid-containing mixed liquid inlet 7 is provided at a substantially center of a bottom surface of the container after removing an impurity liquid such as separated water. The separated liquid discharge port 8 for discharging the separated liquid is opened. Further, a separated liquid storage space 9 for storing the separated and floated separated liquid is formed in the upper part of the internal space of the container body A, and a separated liquid discharge port 10 for discharging the separated liquid is provided on the container canopy.
Is provided.

内筒電極2は、その下端を本体容器A底面に保持固定
することで外筒電極1と同電位にされ、両電極間に同心
円状に配置された荷電極3には両電極に対して電位差を
与えているが、この電位差は、電源装置11の出力端子の
一方を外筒電極1に接続し、他方の端子を荷電極3に接
続することによって与えている。
The inner cylinder electrode 2 is made to have the same potential as the outer cylinder electrode 1 by holding and fixing the lower end of the inner cylinder electrode 2 to the bottom surface of the main body container A, and the load electrode 3 concentrically arranged between the two electrodes has a potential difference with respect to both electrodes. This potential difference is given by connecting one of the output terminals of the power supply device 11 to the outer cylinder electrode 1 and the other terminal to the load electrode 3.

電源装置11はフロンと油の混合液等、処理対象が電源
抵抗の高い混合液の場合は直流電源、交流電源のいずれ
を用いることもできるが、油水混合液のように電気抵抗
が低い場合は電蝕のおそれがあることから、交流電源を
用いることが好ましい。
The power supply device 11 can use either a DC power supply or an AC power supply when a processing liquid having a high power resistance such as a mixed liquid of CFC and oil is used, but when the electric resistance is low like an oil / water mixed liquid, It is preferable to use an AC power source because of the possibility of electrolytic corrosion.

又、印加する電圧は、混合液中の分離対象となる不純
物液体粒子のゼーター電位を打ち消すことができる大き
さを基準にして設定されるが、一般に混合液の電気抵抗
が小さいものほど印加電圧も低く、例えば油水混合液の
場合は1V/cm〜10V/cmの交流電圧が、又、フロンと油と
の混合液のように電気抵抗の高い混合液に対しては100/
cm〜200V/cmの交流電圧が用いられる。又、印加電圧は
混合液の状態によっても左右され、例えば界面活性剤の
混入等によりエマルジョン化した油水混合液の場合は、
油粒子と水粒子との結合電位が高い為、印加する電圧も
10V/cm〜500V/cmに設定する必要がある。又、印加電圧
は混合液の電気抵抗が小さいものについては直流電圧を
用いると電極が電蝕するおそれがある為、交流電圧を用
いる必要があるが、電気抵抗が大きい混合液については
前述したように直流電圧や交流電圧と直流電圧の重畳電
圧を用いることもできる。特に直流電圧と交流電圧の重
畳電圧を用いたときには両電圧の組み合わせを工夫する
ことによって分離効率を高めることもできる。
The applied voltage is set on the basis of a size capable of canceling the zeta potential of the impurity liquid particles to be separated in the mixed liquid. Generally, the smaller the electric resistance of the mixed liquid, the larger the applied voltage. Low, for example, an AC voltage of 1 V / cm to 10 V / cm in the case of oil-water mixture, or 100 / cm for a mixture having high electric resistance such as a mixture of CFC and oil.
An alternating voltage of cm to 200 V / cm is used. The applied voltage also depends on the state of the mixed liquid. For example, in the case of an oil-water mixed liquid that is emulsified by mixing a surfactant, etc.,
Since the binding potential between oil particles and water particles is high, the applied voltage is also
It should be set to 10V / cm to 500V / cm. As for the applied voltage, if a DC voltage is used for a mixed solution having a low electric resistance, the electrodes may be electrolytically corroded, so it is necessary to use an AC voltage. It is also possible to use a DC voltage or a superimposed voltage of an AC voltage and a DC voltage. In particular, when a superimposed voltage of a DC voltage and an AC voltage is used, the separation efficiency can be improved by devising a combination of both voltages.

図中12は外筒電極1と荷電極3間及び内筒電極2と荷
電極3間に配置された網状等の多孔質性の誘電体であ
り、グラスウールやポリプロピレン等の樹脂系のものが
用いられる。誘電体12は各電極間に隙間なく介在させら
れている。各電極間に配置された誘電体12は電極間に印
加された電界により分極して多電極効果を発揮し、この
ことにより各電極間に形成された混合液通過空間を流通
する混合液中の不純物液体粒子のゼーター電位を効率よ
く中和することができる。
In the figure, reference numeral 12 denotes a mesh-like porous dielectric material disposed between the outer cylinder electrode 1 and the load electrode 3 and between the inner cylinder electrode 2 and the load electrode 3, and is made of resin such as glass wool or polypropylene. To be The dielectric 12 is interposed between the electrodes without any gap. The dielectric 12 disposed between the electrodes is polarized by the electric field applied between the electrodes and exhibits a multi-electrode effect, whereby the mixed liquid passing through the mixed liquid passage space formed between the electrodes It is possible to efficiently neutralize the zeta potential of the impurity liquid particles.

又、図中13は分離液収容空間9内における所定高さ位
置に配置された界面検知センサーであり、例えば、二液
の導電率の相違を検出したり比重差を検出することによ
って二液界面が所定高さ位置に達したことを検知するも
のである。尚、図中14は本装置の運転を停止した際に混
合液通過空間5内に残留した油水混合液を排水する為の
残留液排水口であり、本装置稼働中は蓋15によって閉止
されている。
Reference numeral 13 in the figure denotes an interface detection sensor disposed at a predetermined height position in the separated liquid storage space 9. For example, the interface between the two liquids can be detected by detecting a difference in conductivity between the two liquids or a difference in specific gravity. Is to detect that it has reached a predetermined height position. In the figure, 14 is a residual liquid drainage port for draining the oil-water mixed liquid remaining in the mixed liquid passage space 5 when the operation of this device is stopped, and is closed by a lid 15 while the device is operating. There is.

このようにして構成される二液分離装置を使用するに
は、例えば第2図に示す如く、混合液流入口7に流入管
16を接続し、且つ容器本体Aの天蓋に設けた分離液排出
口8には界面検知センサー13からの情報に基づいて開閉
する自動弁17を設けた上部排出管18を連結するととも
に、被分離液排出口8には自動弁19を設けた下部排出管
20を連結する。そして混合液流入口7から本体容器A内
へ混合液を圧入して本体容器内で二液分離を行ない、上
部排出管18を通じて不純物液体の回収を行うとともに、
下部排出管20を通じて不純物除去後の被分離液を液槽21
に回収し、回収後の被分離液を再度、前記混合液流入口
7を通じて本体容器内部に還流することで二液分離処理
を反復して行ない、より純度の高い分離液を行う。
In order to use the two-liquid separating device constructed in this way, for example, as shown in FIG.
16 is connected to the separated liquid discharge port 8 provided on the canopy of the container body A, and an upper discharge pipe 18 provided with an automatic valve 17 that opens and closes based on information from the interface detection sensor 13 is connected and Lower discharge pipe with automatic valve 19 at liquid discharge port 8
Connect 20. Then, the mixed liquid is pressed into the main body container A from the mixed liquid inlet 7 to separate the two liquids in the main body container, and the impurity liquid is recovered through the upper discharge pipe 18,
The liquid to be separated after impurities are removed through the lower discharge pipe 20 into a liquid tank 21.
The recovered liquid to be separated is again returned to the inside of the main body container through the mixed liquid inflow port 7 again to repeat the two-liquid separation process to obtain a higher-purity separated liquid.

このような二液分離装置内部での二液分離は次のよう
にして行われる。尚、以下の実施例では油水混合液を処
理対象とした場合について述べるが、処理対象となる二
液混合液は比重差を有するものであれば他の混合液であ
っても同様に処理できることはいうまでもない。
The two-liquid separation inside such a two-liquid separation device is performed as follows. In the following examples, a case where an oil-water mixed liquid is used as a processing target will be described. However, the two-liquid mixed liquid to be processed can be similarly processed even if it is another mixed liquid as long as it has a difference in specific gravity. Needless to say.

第1図(イ)に示す如く、先ず、本体容器側面下部に
位置する混合液流入口7から油水混合液が圧入される。
本装置圧入前の油水混合液中には水液との間に電気二重
層を形成したコロイド粒子が浮遊しており、各コロイド
粒子は電気二重層に起因したゼーター電位によるクーロ
ン力で相反撥して浮遊している。
As shown in FIG. 1 (a), first, the oil-water mixed liquid is press-fitted from the mixed liquid inlet 7 located at the lower portion of the side surface of the main body container.
Colloidal particles that form an electric double layer between the water and liquid are suspended in the oil-water mixture before press-fitting this device, and each colloidal particle repels each other due to the Coulomb force due to the zeta potential caused by the electric double layer. Are floating.

内筒電極2の下端は本体容器底板に固着されて本体容
器内空間を内筒電極2を挟んで外部空間22と内部空間22
とに二分しているので、混合液流入口7から流入した混
合液は第1図中矢印で示す如く、混合液通過空間5を上
向流で通過する。混合液通過空間には誘電体12が隙間な
く介在しているので、混合液通過空間に流入した混合液
は混合液通過空間を通過するあいだ誘電体12の内部を通
過しつづける。
The lower end of the inner cylinder electrode 2 is fixed to the bottom plate of the main body container, and the inner space of the main body container is sandwiched by the outer space 22 and the inner space 22.
Since it is divided into two parts, the mixed liquid flowing in from the mixed liquid inlet 7 passes through the mixed liquid passage space 5 in an upward flow as shown by an arrow in FIG. Since the dielectric 12 is present in the mixed liquid passage space without a gap, the mixed liquid flowing into the mixed liquid passage space continues to pass through the inside of the dielectric 12 while passing through the mixed liquid passage space.

外筒電極1と荷電極3間及び内筒電極2と荷電極3間
には交流電圧が印加されいてるので、各電極間に介在す
る誘電体12は電界方向に分極して、混合液通過空間5は
実質上、多数の電極が隣接配置された状態と同じにな
る。この多電極化された空間内を上向流で通過する混合
液中の油粒子はその表面が空間内電荷に対応して帯電す
ることによって電気二重層が破壊され、各油粒子を反撥
浮遊させていたゼーター電位に起因するクーロン斥力が
消失する。この結果、油粒子同士は分子間引力により凝
集粗粒化し、凝集後は水液との比重差により浮上する。
浮上した油分は本体容器上部に形成された分離油収容空
間9内上層に集合して油層を形成し、時間経過とともに
該油層の厚みを増大させて、油水界面位置を押し下げ
る。
Since an AC voltage is applied between the outer cylinder electrode 1 and the load electrode 3 and between the inner cylinder electrode 2 and the load electrode 3, the dielectric 12 interposed between the electrodes is polarized in the electric field direction, and the mixed liquid passage space is formed. 5 is substantially the same as a state where a large number of electrodes are arranged adjacent to each other. The electric double layer is destroyed by the surface of the oil particles in the mixed liquid passing through the multi-electrode space in the upward flow corresponding to the electric charge in the space, and the oil particles are repelled and suspended. The repulsive Coulomb force due to the zeta potential disappears. As a result, the oil particles are aggregated into coarse particles due to the intermolecular attractive force, and after aggregation, they float due to the difference in specific gravity from the aqueous liquid.
The floating oil component collects in the upper layer in the separated oil storage space 9 formed in the upper part of the main body container to form an oil layer, and increases the thickness of the oil layer with the lapse of time to push down the oil / water interface position.

この油水界面の高さ位置の降下は本体容器内面に取り
つけられた界面検知センサー13によって監視されてお
り、油水界面が界面検知センサー13の検知部の設定位置
よりも低くなれば、界面センサー13から信号が送出さ
れ、該信号に基づいて上部排出管18の管路に設置した自
動弁17を開放して油分を本体容器外部に排出するもので
ある。
This drop of the height position of the oil-water interface is monitored by the interface detection sensor 13 attached to the inner surface of the main body container, and if the oil-water interface becomes lower than the set position of the detection section of the interface detection sensor 13, the interface sensor 13 A signal is sent, and based on the signal, the automatic valve 17 installed in the conduit of the upper discharge pipe 18 is opened to discharge the oil component outside the main body container.

他方、油分が分離された後の水液は内部空間23に形成
された被分離液流下空間内を下向流で通過し、本体容器
底面に開設した被分離液排出口8から容器外部に排出さ
れる。油水混合液は本装置を一回通過させるだけでも相
当量分離できるが、分離された水液中の油分濃度をより
下げる為には、第2図に示す如く被分離液排出口8から
排出された水液を再度混合液流入口7を通じて本体容器
A内へ還流し、上記油水分離工程を複数回反復させるこ
とが好ましい。
On the other hand, the water liquid after the oil has been separated passes downward in the separated liquid flow-down space formed in the internal space 23 and is discharged to the outside of the container from the separated liquid discharge port 8 formed in the bottom of the main container. To be done. The oil-water mixture can be separated in a considerable amount by passing it through the device only once, but in order to further reduce the oil concentration in the separated water-liquid, it is discharged from the separated liquid discharge port 8 as shown in FIG. It is preferable to recirculate the water liquid into the main body container A again through the mixed liquid inlet 7 and repeat the oil-water separation step a plurality of times.

第3図として示すものは、油水分離して得られた水液
からSS粒子を除去する為に、被分離液流下空間6に筒状
のSS除去フィルター24を設けた場合である。SS除去用フ
ィルター24は筒状であって中央に被分離液流下孔25を有
し、且つその保持は被分離液流下孔25内に外筒電極1及
び内筒電極2と同電位となした中央電極26を挿通し、前
記中央電極26の上端に設けた上部フランジ27でSS除去フ
ィルター上端を押さえるとともに中央電極26下部にはリ
ング状の下部フランジ28を挿通し、押しバネ29で下部フ
ランジ28をSS除去フィルター下端面に押しつけることで
固定している。
What is shown as FIG. 3 is a case where a cylindrical SS removal filter 24 is provided in the separated liquid flow-down space 6 in order to remove SS particles from the water liquid obtained by separating the oil and water. The SS removing filter 24 has a cylindrical shape and has a separated liquid flow-down hole 25 in the center, and the holding thereof is made to have the same potential as the outer cylinder electrode 1 and the inner cylinder electrode 2 in the separated liquid flow-down hole 25. The central electrode 26 is inserted, and the upper flange 27 provided on the upper end of the central electrode 26 presses the upper end of the SS removal filter and the lower electrode 28 of the ring shape is inserted under the central electrode 26. Is fixed by pressing on the bottom surface of the SS removal filter.

中央電極26の下部は第4図(ロ)に示す如く中空に形
成され、中空パイプ30の上部側面には流入孔31が開設さ
れて、SS除去フィルター24を通過した水液がSS除去フィ
ルター24と中央電極26間の間隙32を流下した後、該流入
孔31から中空パイプ30の管内に流入して容器外部へ導か
れるようにしている。
The lower part of the central electrode 26 is formed hollow as shown in FIG. 4B, and the inflow hole 31 is opened in the upper side surface of the hollow pipe 30 so that the water liquid passing through the SS removal filter 24 is removed. After flowing down a gap 32 between the central electrode 26 and the central electrode 26, the hollow pipe 30 is introduced from the inflow hole 31 and guided to the outside of the container.

SS除去フィルター24としてはポリプロピレン等を素材
とした網状体形状の誘電体繊維を用いることが誘電率の
高さ及び耐薬品性の観点から好ましいが、他の素材を用
いることも任意である。
It is preferable to use a mesh-shaped dielectric fiber made of polypropylene or the like as the SS removal filter 24 from the viewpoint of high dielectric constant and chemical resistance, but it is also possible to use other materials.

又、SS除去フィルター24の表面は荷電極3と同電位と
なした多孔板電極33で囲繞されており、多孔板電極33の
孔部を通じて分離後の水液をSS除去フィルター24に導入
している。SS除去フィルター表面を荷電極3と同電位と
なすことにより、SS除去フィルター24の表面電荷を高
め、SS粒子のゼーター電位を中和してSS粒子の凝集粗粒
化をはかるとともに、クーロン力と液流の作用により粗
粒化したSS粒子をSS除去フィルター24表面に捕捉し、フ
ィルター表面にSS粒子のケーク層を作るようにしてい
る。そしてこのようにすることで、SS除去フィルターに
濾目の大きなフィルターを用いた場合でもフィルターが
目詰まりをおこすことを防止でき、フィルター寿命の延
長がはかれる。
Further, the surface of the SS removal filter 24 is surrounded by the perforated plate electrode 33 having the same potential as the load electrode 3, and the separated water liquid is introduced into the SS removal filter 24 through the hole of the perforated plate electrode 33. There is. By making the surface of the SS removal filter the same potential as the load electrode 3, the surface charge of the SS removal filter 24 is increased, the zeta potential of the SS particles is neutralized, and the SS particles are agglomerated and coarsened. The SS particles coarsened by the action of the liquid flow are captured on the surface of the SS removal filter 24, and a cake layer of SS particles is formed on the filter surface. And by doing in this way, even if a filter with a large filter is used as the SS removal filter, the filter can be prevented from being clogged, and the filter life can be extended.

又、特に処理対象が工場廃液等である場合はSS除去フ
ィルター24の内面に第5図に示す如く、分離した水液の
BOD値(生物化学的酸素要求量)及びCOD値(化学的酸素
消費量)を改善する為に、水液中の有機物を吸着除去で
きる有機物吸着層34を設けてフィルターを二層構造とす
ることも好ましい。有機物吸着層34を構成する吸着剤と
しては繊維状活性炭、粒状活性炭、ゼオライト、更には
キレート樹脂等を用いることができ、特にキレート樹脂
を用いたときには金属性塵埃に対して優れた吸着能を発
揮できる。
In addition, especially when the treatment target is factory waste liquid, etc., the separated water liquid is put on the inner surface of the SS removal filter 24 as shown in FIG.
In order to improve the BOD value (biochemical oxygen demand) and COD value (chemical oxygen consumption), the organic substance adsorption layer 34 capable of adsorbing and removing the organic substances in the aqueous liquid is provided and the filter has a two-layer structure. Is also preferable. As the adsorbent forming the organic substance adsorption layer 34, fibrous activated carbon, granular activated carbon, zeolite, or a chelate resin can be used, and particularly when a chelate resin is used, it exhibits an excellent adsorption ability for metallic dust. it can.

第6図として示すものは、上記した二層構造のフィル
ターを本体容器A内に装着した状態を示している。本実
施例では、油分除去後の水液中のSS粒子の除去が行える
とともに水液のBOD値及びCOD値の改善も同時に行うこと
ができ、該装置を工場廃液の処理に用いれば工場廃液に
よる環境汚染の防止に貢献できる。
What is shown as FIG. 6 shows a state in which the above-mentioned two-layer structure filter is mounted in the main body container A. In the present embodiment, it is possible to remove SS particles in the water liquid after oil removal and also improve the BOD value and COD value of the water liquid at the same time. It can contribute to the prevention of environmental pollution.

以上、第1図〜第6図として開示した装置は混合液中
の比重の軽い液体を分離回収対象としていたが、第7図
〜第11図として示すものは、分離回収対象が混合液中の
うちの比重の軽いものであっても、又、比重の重たいも
のであっても共に分離回収できる装置を示しており、そ
の構成の特徴は排出口35、36を具備し、且つ内部所定高
さ位置に界面検知センサー39、40を配した分離液収集容
器37、38を本体容器A上下部に別途設けたことである。
以下、第7図〜第11図のそれぞれについて説明する。
As described above, the devices disclosed as FIGS. 1 to 6 target the liquid having a low specific gravity in the mixed liquid as the separation and recovery target, but those shown in FIGS. 7 to 11 show that the separation and recovery target is the liquid in the mixed liquid. It shows a device that can separate and collect both of those with a low specific gravity and those with a high specific gravity, and the features of its configuration are that it is equipped with discharge ports 35 and 36 and has a predetermined internal height. The separated liquid collection containers 37 and 38 having the interface detection sensors 39 and 40 arranged at the positions are separately provided on the upper and lower portions of the main body container A.
Each of FIGS. 7 to 11 will be described below.

第7図として示したものは、外筒電極を兼ねた本体容
器Bの軸心位置に外筒電極101と同電位に設定した管状
電極41を配し、該管状電極41の上端を開口42するととも
に下端を本体容器底部を貫通して本体容器外部へ突設し
てなり、前記外筒電極101と管状電極41との中間に外筒
電極101及び管状電極41に対して電位差を与えた多孔状
荷電極43を配置した構成としている。そして、外筒電極
101と多孔状荷電極43間に形成された混合液通過空間105
内には多電極効果を有する網状等の誘電体112を配し、
且つ多孔状荷電極43内面には管状電極41表面との間に間
隙44を設けた状態でSS除去フィルター124を配置した構
成とするものである。
As shown in FIG. 7, a tubular electrode 41 set to the same potential as the outer tubular electrode 101 is arranged at the axial center position of the main body container B which also serves as the outer tubular electrode, and the upper end of the tubular electrode 41 is opened 42. Along with the lower end protruding through the bottom of the main body container to the outside of the main body container, a porous shape that gives a potential difference to the outer cylinder electrode 101 and the tubular electrode 41 in the middle of the outer cylinder electrode 101 and the tubular electrode 41. The load electrode 43 is arranged. And the outer cylinder electrode
Mixed liquid passage space 105 formed between 101 and the porous charge electrode 43
A dielectric 112 having a net-like shape having a multi-electrode effect is arranged therein,
In addition, the SS removal filter 124 is arranged on the inner surface of the porous charged electrode 43 with a gap 44 provided between the inner surface of the porous charged electrode 43 and the surface of the tubular electrode 41.

本実施例では混合液流入口107から流入した混合液は
混合液通過空間105を上向きに通過すると同時に多孔状
荷電極43の孔部を通ってSS除去用フィルター124内に流
入し、誘電体112の多電極効果により不純物液体粒子を
凝集粗粒化させるとともにSS除去フィルター124により
混合液中のSS粒子の除去を行う。そしてこの過程で混合
液中の比重の軽いものは浮上させて本体容器上部の分離
液収集容器39に集合させ、他方、分離回収対象が混合液
中の比重の重たいものであるときは混合液中の比重の重
い液体を沈降させて容器下部に設けた分離液収集容器40
に集合させるものである。
In this embodiment, the mixed liquid flowing from the mixed liquid inlet 107 passes upward through the mixed liquid passage space 105, and at the same time, flows into the SS removing filter 124 through the holes of the porous load electrode 43, and the dielectric 112. The multi-electrode effect causes the impurity liquid particles to aggregate into coarse particles, and the SS removal filter 124 removes the SS particles in the mixed liquid. And in this process, those with a low specific gravity in the mixed liquid are floated and collected in the separated liquid collection container 39 on the upper part of the main body container, while on the other hand, in the mixed liquid when the object of separation and recovery is a heavy specific gravity in the mixed liquid. A collection container for separated liquid 40 that is provided at the bottom of the container by settling a liquid with a large specific gravity
Are to be assembled in.

尚、混合液中の低比重分離液を回収対象とするとき
は、分離液収集容器39内に設けた界面センサー37の情報
にしたがって、又、高比重の分離液を回収対象とすると
きは、本体容器下部に設けた分離液収集容器40内の界面
センサー38からの情報にしたがって、それぞれの排出口
に設けた自動弁の開閉を行ない分離液の排出回収を行う
ものである。分離液収集容器は分離対象である液体の比
重に対応して、本体容器Bの上部又は下部のいずれか一
方にのみ設けることもできるが、図例の如く本体容器B
の上下部両方に設けておけば、分離対象である液体が軽
比重である場合も、又、高比重である場合であっても何
れに対しても対応することができるのである。
When the low specific gravity separated liquid in the mixed liquid is to be collected, according to the information from the interface sensor 37 provided in the separated liquid collecting container 39, and when the high specific gravity separated liquid is to be collected, According to the information from the interface sensor 38 in the separated liquid collection container 40 provided in the lower part of the main body container, the automatic valve provided in each discharge port is opened and closed to discharge and collect the separated liquid. The separated liquid collection container may be provided only on either the upper part or the lower part of the main body container B in accordance with the specific gravity of the liquid to be separated.
If the liquid to be separated has a light specific gravity or a high specific gravity, it is possible to cope with both if it is provided on both the upper and lower parts.

第8図として示したものは、管状電極として上端が閉
止され、側部に被分離液流入用の流入孔45を形成した管
状電極241を用い、外筒電極201と管状電極241間に両電
極に対して電位差を有する荷電極203を設け、外筒電極2
01と荷電極203間に誘電体212を配設した混合液通過空間
205を形成するとともに荷電極203と管状電極241との間
には両電極との間に間隙を設けた状態で筒状のSS除去フ
ィルター224を配置し、且つ混合液流入口207を本体容器
上部に設けた場合である。この場合、本体容器内に圧入
された混合液は混合液通過空間205を下向流で通過した
後、本体容器底部でその流れを上向きに転じてSS除去フ
ィルター224内を通過して管状電極241上部の流入孔45に
達し、この過程で混合液の二液分離と被分離液の浄化を
行ない、浄化後を被分離液は前記流入孔245を通じて管
状電極241内の被分離液流下空間46を通じて本体容器下
部から容器外部へ排出するようにしている。本実施例で
は混合液の通過流路が長いので混合の処理には時間を要
するものの、精度の高い二液分離と被分離液の浄化が行
える。
The one shown in FIG. 8 uses a tubular electrode 241 having a closed upper end as a tubular electrode and having an inflow hole 45 for inflowing a liquid to be separated formed in a side portion thereof. Both electrodes are provided between the outer cylinder electrode 201 and the tubular electrode 241. The load electrode 203 having a potential difference with respect to
A mixed liquid passage space in which a dielectric 212 is arranged between 01 and the load electrode 203.
A tubular SS removal filter 224 is arranged between the load electrode 203 and the tubular electrode 241 while forming a gap 205 between the electrodes and the tubular electrode 241, and a mixed liquid inlet 207 is provided at the upper part of the main container. It is the case when it is provided in. In this case, the mixed liquid press-fitted into the main body container passes through the mixed liquid passage space 205 in a downward flow, and then the flow is turned upward at the bottom of the main body container to pass through the SS removal filter 224 to pass through the tubular electrode 241. Reaching the upper inflow hole 45, the two liquids of the mixed liquid are separated and the liquid to be separated is purified in this process, and after the liquid is separated, the liquid to be separated is passed through the inflow port 245 through the space 46 to flow down the liquid to be separated in the tubular electrode 241. It is designed to be discharged from the bottom of the main body container to the outside of the container. In this embodiment, since the passage of the mixed liquid is long, it takes time to perform the mixing process, but the two liquids can be separated and the liquid to be separated can be purified with high accuracy.

第9図として示すものは、第8図として開示した装置
において、SS除去フィルター224の表面に荷電極203と同
電位となした多孔板電極47を接触状態で配置した場合で
あり、多孔板電極47を配置することでSS除去フィルター
224の表面電荷を高めて、粗粒化したSS粒子をフィルタ
ー表面に捕捉し、フィルター表面にケーク層が形成され
るように意図した場合である。
What is shown in FIG. 9 is a case where the porous plate electrode 47 having the same potential as the load electrode 203 is arranged in contact with the surface of the SS removal filter 224 in the device disclosed as FIG. SS removal filter by placing 47
In this case, it is intended that the surface charge of 224 is increased to trap the coarsened SS particles on the filter surface and form a cake layer on the filter surface.

以上述べたものは、管状電極を本体容器の中心に配置
し、SS除去フィルターを外筒電極に対して同心円状に配
置した場合であるが、管状電極及びSS除去フィルターや
有機物吸着剤層は第10図及び第11図に示す如く、複数本
の管状電極を本体容器中央を中心として放射状に配置す
ることもできる。
What has been described above is the case where the tubular electrode is arranged in the center of the main body container and the SS removal filter is arranged concentrically with respect to the outer cylinder electrode, but the tubular electrode and the SS removal filter and the organic adsorbent layer are As shown in FIGS. 10 and 11, a plurality of tubular electrodes can be arranged radially around the center of the main body container.

第10図として示すものは、外筒電極301を兼ねた本体
容器Cの内側に一定距離離間した位置に荷電極303を同
心円状に配置し、且つ本体容器の中心に外筒電極301と
同電位となした中央電極48を配置するとともに、荷電極
403と中央電極48間の空間に前記中央電極48を中心とし
て複数の管状電極341を放射状に配置し、且つ各管状電
極341に筒状のSS除去フィルター324を外装した場合であ
る。管状電極341,341…は外筒電極301及び中央電極48と
同電位に設定され、本体容器Cの下部には各管状電極内
空間を流下して管状電極の下端から排出される被分離液
を集合させる為の集合空間49を設けることで、各管状電
極内を通過した被分離液をまとめて容器底部から排出で
きるように構成している。本実施例では複数のSS除去フ
ィルター324,324…が放射状に配置されている為に、SS
除去用フィルターの表面積を大きくすることができ、一
度に大量の混合液の処理を行うことが可能で、極めて処
理効率の良い浄化機能付二液分離装置が提供されるもの
である。
As shown in FIG. 10, a load electrode 303 is concentrically arranged inside the main body container C, which also serves as the outer cylinder electrode 301, at a position separated by a certain distance, and the same potential as the outer cylinder electrode 301 is provided at the center of the main body container. The central electrode 48 and the load electrode
This is a case where a plurality of tubular electrodes 341 are radially arranged around the central electrode 48 in the space between 403 and the central electrode 48, and a tubular SS removal filter 324 is installed on each tubular electrode 341. The tubular electrodes 341, 341 ... Are set to the same potential as the outer cylinder electrode 301 and the central electrode 48, and the liquid to be separated discharged from the lower ends of the tubular electrodes is caused to flow down the inner space of each tubular electrode to the lower portion of the main body container C. By providing the collecting space 49 for this purpose, the liquids to be separated that have passed through the respective tubular electrodes can be collectively discharged from the bottom of the container. In this embodiment, since the plurality of SS removal filters 324, 324 ... Are radially arranged, SS
It is possible to increase the surface area of the removal filter, to treat a large amount of mixed liquid at one time, and to provide a two-liquid separating device with a purifying function with extremely high treatment efficiency.

第11図として示したものは第10図で示した装置におい
て、放射状に配置した各SS除去フィルター324,324…の
それぞれの表面に荷電極303と同電位となした多孔板電
極337を接触状態で配置した場合である。
What is shown as FIG. 11 is, in the apparatus shown in FIG. 10, a perforated plate electrode 337 having the same electric potential as the load electrode 303 is arranged in contact with each surface of the SS removal filters 324, 324, which are radially arranged. That is the case.

以上のように第1図〜第11図で示した二液分離装置
は、油水混合液をはじめフロンと水の混合液、更にはフ
ロンと油との混合液等、比重差を有する二液混合液であ
ればあらゆる二液を分離することが可能である。
As described above, the two-liquid separation device shown in FIGS. 1 to 11 is a two-liquid mixing device having a specific gravity difference such as an oil-water mixed liquid, a mixed liquid of freon and water, and a mixed liquid of freon and oil. Any two liquids can be separated as long as they are liquids.

以上のようにしてなる本発明の二液分離装置は、本体
容器に二液混合液を圧入するだけで、混合液を分離液と
被分離液とに分けることができる。しかも、本装置は、
従来の邪魔板方式等では分離不可能であったエマルジョ
ン化混合液に対しても適用でき、極めて優れた分離能を
発揮できる。
In the two-liquid separating apparatus of the present invention configured as described above, the mixed liquid can be separated into the separated liquid and the liquid to be separated simply by press-fitting the two-liquid mixed liquid into the main body container. Moreover, this device
It can also be applied to an emulsified mixed liquid that cannot be separated by a conventional baffle system or the like, and can exhibit extremely excellent separation ability.

又、被分離液が通過する空間にSS除去フィルター及び
有機物吸着層のいずれか一方若しくは両方を配置したと
きには、不純物液体分離後の被分離液の浄化も同一装置
で行うことができる。
Further, when one or both of the SS removal filter and the organic matter adsorption layer are arranged in the space where the liquid to be separated passes, the liquid to be separated after the separation of the impurity liquid can be purified by the same device.

〔発明の効果〕〔The invention's effect〕

第1請求項記載の二液分離装置は、同電位となした外
筒電極と内筒電極間に両電極に対して電位差を与えた荷
電極を設け、外筒電極と荷電極との間に電気的に絶縁さ
れた荷電極を同心円状に設け、前記各電極間に二液混合
液を上方向に流通させる混合液通過空間を形成するとと
もに、該混合液通過空間の上部には本体容器外部への排
出口を最上部に具備するとともに分離液を一旦溜める容
積を有し且つその空間内には分離液と混合液との界面位
置を監視する界面検知センサーの検知部を設置してなる
分離液収集空間を形成し、前記排出口に連通する排出通
路に前記界面検知センサーの出力信号によって開閉が制
御される自動弁を設け、前記内筒電極の内側には不純物
液体除去後の混合液を下方へ向かって導出する混合液流
下空間を設けてなり、外筒電極及び内筒電極と荷電極間
に混合液中の不純物液体粒子のゼーター電位を中和させ
得る電圧を印加した構成とした。このように本発明装置
によれば分子間引力により凝集粗粒化した不純物液体粒
子を比重差によって浮上させて充分な容積を有する分離
液収集空間にその量が所定量以上となるまで溜め続け、
この間に分離液収集空間内の分離液を対象として比重差
による二液分離を更に続行し、分離液収集用空間内上部
に高純度の低比重分離液を集めるとともに、分離液収集
空間内の分離液の収集量を界面検知センサーによって監
視し続け、その量が所定量以上となれば分離液収集空間
内最上部に開設された排出口に連通する排出通路に設け
た自動弁を開放して分離液を排出することとしたから、
混合液を本体容器に圧入するだけで、手動操作を必要と
することなく高純度な低比重分離液を効率良く得ること
ができ、全自動且つ連続運転可能な二液分離装置を得る
ことができる。そして分離液は分離液収集空間に連通す
る排出通路を通じて排出され、他方、被分離液は本体容
器の下部から容器外部に排出されるので、分離液及び被
分離液の回収も容易である。
In the two-liquid separating apparatus according to the first aspect, a load electrode that gives a potential difference to both electrodes is provided between the outer cylinder electrode and the inner cylinder electrode that have the same potential, and the load electrode is provided between the outer cylinder electrode and the load electrode. Electrically insulated load electrodes are concentrically provided to form a mixed liquid passage space for circulating the two-liquid mixed liquid in an upward direction between the respective electrodes, and an upper portion of the mixed liquid passage space is provided outside the main container. Separation that has a discharge port to the top and has a volume for temporarily storing the separated liquid, and a detection unit of an interface detection sensor that monitors the position of the interface between the separated liquid and the mixed liquid is installed in the space. A liquid collecting space is formed, an automatic valve whose opening and closing is controlled by an output signal of the interface detection sensor is provided in a discharge passage communicating with the discharge port, and the mixed liquid after the impurity liquid is removed is provided inside the inner cylinder electrode. Provide a space for the mixed liquid to flow downward. It has a structure of applying a voltage capable of neutralizing the zeta potential of impurity liquid particles in the mixture between the outer tubular electrode and the inner tube electrode and the load electrode. As described above, according to the device of the present invention, the impurity liquid particles that are aggregated and coarsened by the intermolecular attractive force are levitated by the difference in specific gravity and continue to be stored until the amount becomes a predetermined amount or more in the separated liquid collection space having a sufficient volume,
During this period, the separation liquid in the separated liquid collection space is further targeted for two-liquid separation due to the difference in specific gravity, and the high-purity low-specific-gravity separated liquid is collected in the upper part of the separated liquid collection space, and the separation in the separated liquid collection space is performed. Continue to monitor the collected amount of the liquid by the interface detection sensor, and if the amount exceeds a predetermined amount, separate it by opening the automatic valve provided in the discharge passage that communicates with the discharge port opened at the top of the separated liquid collection space. Since we decided to drain the liquid,
By simply press-fitting the mixed liquid into the main body container, a highly pure low specific gravity separated liquid can be efficiently obtained without the need for manual operation, and a fully automatic and continuously operable two-liquid separating device can be obtained. . The separated liquid is discharged through the discharge passage communicating with the separated liquid collecting space, while the separated liquid is discharged from the lower part of the main body container to the outside of the container, so that the separated liquid and the separated liquid can be easily collected.

第2請求項に記載される如く、本体容器の上部と下部
の一方若しくは両方に分離液収集容器を別途設けたとき
には分離液の回収がより容易となり、特に本体容器の上
下両方に分離液収集容器を設けたときには、分離回収対
象となる液体が二液混合液のうち低比重のものである場
合も、又、高比重のものである場合の何れに対しても適
用できる二液分離装置が提供できる。そしてこの二液分
離装置においては浮上分離液収集用の分離液収集容器か
らの低比重分離液の排出は分離液収集容器内空間の最上
部に設けられた排出口を通じて行い、他方、沈降分離液
収集用の分離液収集容器からの高比重分離液の排出は分
離液収集容器内空間の最下部に設けられた排出口を通じ
て行うので、回収する分離液が高比重である場合も、
又、低比重である場合も共に高純度の分離液が得られ
る。
As described in claim 2, when a separate liquid collecting container is separately provided on one or both of the upper part and the lower part of the main body container, it becomes easier to collect the separated liquid. When the liquid is provided, a two-liquid separation device applicable to both cases where the liquid to be separated and recovered is one having a low specific gravity of the two-liquid mixed solution and one having a high specific gravity is provided. it can. And in this two-liquid separation device, the low specific gravity separated liquid is discharged from the separated liquid collecting container for collecting the floating separated liquid through the outlet provided at the top of the space inside the separated liquid collecting container, while the settling separated liquid is discharged. Since the discharge of the high specific gravity separated liquid from the separated liquid collecting container for collection is performed through the outlet provided at the bottom of the space inside the separated liquid collecting container, even when the separated liquid to be collected has a high specific gravity,
In addition, a high-purity separation liquid can be obtained even when the specific gravity is low.

又、第3請求項に記載されるように、内筒電極の代わ
りに内部に被分離液流下空間を形成した管状電極を用
い、且つ該管状電極を本体容器を中心として放射状に複
数本配設したときには、一度に大量の混合液を処理する
ことが可能となり、処理効率が大幅に向上する。
Further, as described in claim 3, instead of the inner cylindrical electrode, a tubular electrode having a space to flow down the liquid to be separated is used, and a plurality of the tubular electrodes are arranged radially around the main body container. In this case, a large amount of mixed liquid can be processed at one time, and the processing efficiency is significantly improved.

更に、外筒電極と荷電極間に多電極効果を有する網状
等の多孔性誘電体を隙間なく介在させたときには、外筒
電極と荷電極間における各部分の電界強度を高めること
ができ、しかも外筒電極と荷電極を通過する混合液は必
ず前記誘電体内を通過するから、不純物液体粒子の凝集
粗粒化を促進することができる。
Furthermore, when a mesh-like porous dielectric having a multi-electrode effect is interposed between the outer cylinder electrode and the load electrode without a gap, the electric field strength of each portion between the outer cylinder electrode and the load electrode can be increased, and Since the mixed liquid passing through the outer cylinder electrode and the load electrode always passes through the dielectric body, it is possible to promote the aggregation and coarsening of the impurity liquid particles.

又、被分離液流下空間に向かって移動する被分離液が
通過する位置にSS除去層及び有機物吸着層を設けたとき
には、不純物液体粒子を分離した後の被分離液の浄化を
同装置内で行うことが可能となり、本装置から排出され
た分離液をそのまま再利用することができる。
Further, when the SS removal layer and the organic matter adsorption layer are provided at positions where the separated liquid moving toward the separated liquid flowing space passes, purification of the separated liquid after separating the impurity liquid particles is performed in the same apparatus. This makes it possible to reuse the separated liquid discharged from this device.

更に、SS除去層若しくは有機物吸着層表面に荷電極と
同電位となした多孔板電極を接触状態で配置したときに
は、被分離液中の凝集粗粒化したSS粒子をSS除去層若し
くは有機物吸着層表面にクーロン力で引き寄せて捕捉
し、これら表面にSS粒子によるケーク層を形成すること
で、該ケーク層をフィルターとして機能させることがで
きる。したがって、濾過精度が飛躍的に向上するととも
に比較的粗いSS粒子は前記ケーク層で除去される為、フ
ィルター濾目の目詰まりも防止でき、装置の長寿命化が
はかれる。
Furthermore, when a perforated plate electrode having the same potential as the load electrode is placed in contact with the surface of the SS removal layer or the organic matter adsorption layer, the aggregated and coarsened SS particles in the liquid to be separated are removed from the SS removal layer or the organic matter adsorption layer. The cake layer can be made to function as a filter by attracting and capturing the surface by Coulomb force and forming a cake layer of SS particles on these surfaces. Therefore, the filtration accuracy is dramatically improved and the relatively coarse SS particles are removed by the cake layer, so that clogging of the filter mesh can be prevented and the life of the device can be extended.

【図面の簡単な説明】[Brief description of drawings]

第1図(イ)は本発明にかかる二液分離装置の最も基本
的な実施例を示す縦断面図、第1図(ロ)は同実施例に
おける横断面図、第2図は同実施例の使用態様の一例を
示す説明図、第3図(イ)(ロ)は他の実施例を示す説
明図、第4図(イ)(ハ)は同実施例における要部拡大
斜視図、第4図(ロ)は同実施例における要部拡大縦断
面図、第5図は他の実施例の要部拡大縦断面図、第6図
(イ)(ロ)、第7図(イ)(ロ)、第8図(イ)
(ロ)、第9図(イ)(ロ)、第10図(イ)(ロ)、第
11図(イ)(ロ)は他の実施例である。 A:容器本体、 1:外筒電極、2:内筒電極、 3:荷電極、4:保持絶縁体、 5:混合液通過空間、6:被分離液流下空間、 7:混合液流入口、8:被分離液排出口、 9:分離液収容空間、10:分離液排出口、 11:電源装置、12:誘電体、 13:界面検知センサー、 14:残留液排出口、15:蓋、 16:流入管、17:自動弁、 18:上部排出管、19:自動弁、 20:下部排出管、21:液槽、 22:外部空間、23:内部空間、 24:SS除去フィルター、 25:被分離液流下孔、26:中央電極、 27:上部フランジ、28:下部フランジ、 29:押しバネ、30:中空パイプ、 31:流入孔、32:間隙、 33:多孔板電極、34:有機物吸着層、 35:排出口、36:排出口、 37:界面検知センサー、 38:界面検知センサー、 39:分離液収集容器、40:分離液収集容器、 41:管状電極、42:開口、 43:多孔状荷電極、44:間隙、 45:流入孔、46:被分離液流下空間、 47:多孔板電極、48:中央電極、 49:集合空間。
FIG. 1 (a) is a longitudinal sectional view showing the most basic embodiment of the two-liquid separating apparatus according to the present invention, FIG. 1 (b) is a lateral sectional view in the same embodiment, and FIG. 2 is the same embodiment. FIG. 3 (a) (b) is an explanatory view showing another embodiment, FIG. 4 (a) (c) is an enlarged perspective view of an essential part of the same embodiment, FIG. FIG. 4 (B) is an enlarged vertical sectional view of an essential part in the same embodiment, FIG. 5 is an enlarged vertical sectional view of an essential part of another embodiment, FIG. 6 (A) (B), FIG. 7 (A) ( B), Fig. 8 (a)
(B), FIG. 9 (a) (b), FIG. 10 (a) (b),
11 (a) and (b) show another embodiment. A: container body, 1: outer cylinder electrode, 2: inner cylinder electrode, 3: charge electrode, 4: holding insulator, 5: mixed liquid passage space, 6: separated liquid flow-down space, 7: mixed liquid inlet, 8: Separation liquid discharge port, 9: Separation liquid storage space, 10: Separation liquid discharge port, 11: Power supply device, 12: Dielectric material, 13: Interface detection sensor, 14: Residual liquid discharge port, 15: Lid, 16 : Inlet pipe, 17: Automatic valve, 18: Upper discharge pipe, 19: Automatic valve, 20: Lower discharge pipe, 21: Liquid tank, 22: External space, 23: Internal space, 24: SS removal filter, 25: Covered Separated liquid downflow hole, 26: central electrode, 27: upper flange, 28: lower flange, 29: push spring, 30: hollow pipe, 31: inflow hole, 32: gap, 33: perforated plate electrode, 34: organic matter adsorption layer , 35: outlet, 36: outlet, 37: interface detection sensor, 38: interface detection sensor, 39: separated liquid collection container, 40: separated liquid collection container, 41: tubular electrode, 42: opening, 43: porous Load electrode, 44: gap, 45: inflow hole, 46: flow space for liquid to be separated, 47: perforated plate electrode , 48: center electrode, 49: set space.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】本体容器を兼ねた外筒電極と該外筒電極に
対し同心円状に配置され、且つ外筒電極と同電位に設定
された内筒電極の中間に前記外筒電極及び内筒電極と電
気的に絶縁された荷電極を同心円状に設け、前記各電極
間に二液混合液を上方向に流通させる混合液通過空間を
形成するとともに、該混合液通過空間の上部には本体容
器外部への排出口を最上部に具備するとともに分離液を
一旦溜める容積を有し且つその空間内には分離液と混合
液との界面位置を監視する界面検知センサーの検知部を
設置してなる分離液収集空間を形成し、且つ前記排出口
に連通する排出通路に前記界面検知センサーの出力信号
によって開閉が制御される自動弁を設け、前記内筒電極
の内側には不純物液体除去後の混合液を下方へ向かって
導出する混合液流下空間を設けてなり、外筒電極及び内
筒電極と荷電極間に混合液中の不純物液体粒子のゼータ
ー電位を中和させ得る電圧を印加してなる二液分離装
置。
1. An outer cylinder electrode also serving as a main body container, and an inner cylinder electrode arranged concentrically with respect to the outer cylinder electrode and set to the same potential as the outer cylinder electrode, the outer cylinder electrode and the inner cylinder. A load electrode electrically insulated from the electrodes is concentrically provided, and a mixed solution passage space for passing the two-liquid mixed solution upward is formed between the electrodes, and a main body is provided above the mixed solution passage space. It has a discharge port to the outside of the container at the top and has a capacity to temporarily store the separated liquid, and a detection unit of an interface detection sensor for monitoring the interface position between the separated liquid and the mixed liquid is installed in the space. A separated liquid collecting space is formed, and an automatic valve whose opening and closing is controlled by an output signal of the interface detection sensor is provided in a discharge passage communicating with the discharge port, and inside the inner cylinder electrode after the impurity liquid is removed. Liquid mixture flow that draws liquid mixture downward It is provided space, formed by applying a voltage capable of neutralizing the zeta potential of impurity liquid particles in the mixture between the outer tubular electrode and the inner tube electrode and the load electrode two-liquid separator.
【請求項2】本体容器を兼ねた外筒電極の内側に該外筒
電極と同電位とされ、且つ内部に不純物液体除去後の混
合液を流下案内する為の混合液流下通路を形成した管状
電極を同心円状に配置するとともに、前記外筒電極と管
状電極との間に両電極と電気的に絶縁された荷電極を同
心円状に設け、前記各電極間に二液混合液を高さ方向に
流通させる混合液通過空間を形成するとともに本体容器
の上部と下部の一方若しくは両方に浮上又は沈降した分
離液を一旦溜める容積を有し且つその空間内には分離液
と混合液との界面位置を監視する界面検知センサーの検
知部を設置した浮上分離液収集用又は沈降分離液収集用
の分離液収集容器を連設し、且つそれが浮上分離液収集
用の分離液収集容器である場合は当該容器内空間の最上
部に排出口を設け、他方それが沈降分離液用の分離液収
集容器である場合は当該容器内空間の最下部に排出口を
設け、これら排出口に連通する排出通路には分離液収集
容器内に設けた前記界面検知センサーの出力信号によっ
て開閉が制御される自動弁を設け、外筒電極及び管状電
極と荷電極間には混合液中の不純物液体粒子のゼーター
電位を中和させうる電圧を印加してなる二液分離装置。
2. A tubular shape having the same potential as the outer cylinder electrode inside the outer cylinder electrode also serving as the main body container, and having therein a mixed liquid flow-down passage for guiding the mixed liquid after removing the impurity liquid. The electrodes are arranged concentrically, and a load electrode electrically insulated from both electrodes is concentrically provided between the outer cylinder electrode and the tubular electrode, and the two-liquid mixed liquid is placed in the height direction between the electrodes. Has a volume for temporarily storing the separated or floated separated liquid in one or both of the upper part and the lower part of the main body container that forms a mixed liquid passage space to be circulated in the space, and the interface position between the separated liquid and the mixed liquid in the space. If a separation liquid collection container for collecting the floating separation liquid or for collecting the sedimentation separation liquid is installed in series, and if it is a separation liquid collection container for collecting the floating separation liquid, An outlet is provided at the top of the space inside the container. On the other hand, if it is a separation liquid collection container for sedimentation separation liquid, a discharge port is provided at the bottom of the space inside the container, and the interface for detecting the interface provided in the separation liquid collection container in the discharge passage communicating with these discharge ports. An automatic valve whose opening and closing is controlled by the output signal of the sensor is installed, and a voltage that can neutralize the zeta potential of the impurity liquid particles in the mixed liquid is applied between the outer cylinder electrode and the tubular electrode and the load electrode. Separation device.
【請求項3】本体容器を兼ねた外筒電極の内側に該外筒
電極と同電位にされ、且つ内部に不純物液体除去後の混
合液を流下案内する為の混合液流下空間を形成した複数
の管状電極を放射状に配置するとともに、前記外筒電極
と管状電極との中間に両電極と電気的に絶縁された荷電
極を外筒電極に対して同心円状に設け、前記各電極間に
二液混合液を高さ方向に流通させる混合液通過空間を形
成するとともに、本体容器の上部と下部の一方若しくは
両方に浮上又は沈降した分離液を一旦溜める容積を有し
且つその空間内には分離液と混合液との界面位置を監視
する界面検知センサーの検知部を設置した浮上分離液収
集用又は沈降分離液収集用の分離液収集容器を連設し、
且つそれが浮上分離液収集用の分離液収集容器である場
合は当該容器内空間の最上部に排出口を設け、他方それ
が沈降分離液用の分離液収集容器である場合は当該容器
内空間の最下部に排出口を設け、これら排出口に連通す
る排出通路には分離液収集容器内に設けた前記界面検知
センサーの出力信号によって開閉が制御される自動弁を
設け、外筒電極及び管状電極と荷電極間に混合液中の不
純物液体粒子のゼーター電位を中和させうル電圧を印加
してなる二液分離装置。
3. A plurality of mixed liquid flow-down spaces are formed inside the outer cylinder electrode which also serves as the main body container, to have the same potential as the outer cylinder electrode and to guide the mixed liquid after the removal of the impurity liquid in the inside thereof. The tubular electrodes are arranged radially, and a load electrode electrically insulated from both electrodes is provided in the middle of the outer cylinder electrode and the tubular electrode concentrically with respect to the outer cylinder electrode, and two electrodes are provided between the electrodes. It forms a mixed liquid passage space that allows the liquid mixed liquid to flow in the height direction, and has a volume for temporarily storing the separated or floated separated liquid in one or both of the upper part and the lower part of the main container, and the space is separated. A separation liquid collection container for collecting the floating separation liquid or for collecting the sedimentation separation liquid, in which the detection part of the interface detection sensor for monitoring the interface position between the liquid and the mixed liquid is installed,
And, if it is a separation liquid collection container for floating separation liquid collection, an outlet is provided at the top of the interior space of the container, while if it is a separation liquid collection container for sedimentation separation liquid, the interior space of the container. Outlets are provided at the bottom of the outlet, and an automatic valve whose opening and closing is controlled by the output signal of the interface detection sensor provided in the separated liquid collection container is provided in the outlet passage communicating with these outlets. A two-liquid separating apparatus in which a zircon potential of impurity liquid particles in a mixed liquid is applied between an electrode and a load electrode to apply a cell voltage.
【請求項4】荷電電圧として1〜10V/cmの交流電圧を用
い、油水混合液を処理対象としてなる前記特許請求の範
囲第1項、第2項又は第3項記載の二液分離装置。
4. The two-liquid separating apparatus according to claim 1, 2 or 3, wherein an oil-water mixed liquid is used as a processing target, using an alternating voltage of 1 to 10 V / cm as a charging voltage.
【請求項5】荷電電圧として10〜50V/cmの交流電圧を用
い、エマルジョン化した油水混合液を処理対象としてな
る前記特許請求の範囲第1項、第2項又は第3項記載の
二液分離装置。
5. The two liquids as set forth in claim 1, 2 or 3, wherein an emulsified oil-water mixed liquid is used as a treatment target, using an alternating voltage of 10 to 50 V / cm as a charging voltage. Separation device.
【請求項6】荷電電圧として100〜200V/cmの交流若しく
は直流電圧を用い、誘導率の低い混合液を処理対象とし
てなる前記特許請求の範囲第1項、第2項又は第3項記
載の二液分離装置。
6. The method according to claim 1, 2 or 3, wherein an AC or DC voltage of 100 to 200 V / cm is used as a charging voltage, and a mixed liquid having a low induction rate is treated. Two-liquid separator.
【請求項7】外筒電極と荷電極との間に多電極効果を有
する多孔性誘電体を隙間なく介在させてなる前記特許請
求の範囲第1項、第2項又は第3項記載の二液分離装
置。
7. The method according to claim 1, wherein a porous dielectric having a multi-electrode effect is interposed between the outer cylinder electrode and the load electrode without any gap. Liquid separator.
【請求項8】不純物液体除去後の混合液が通過する空間
にSS除去層及び/又は有機物吸着層を設けてなる前記特
許請求の範囲第1項、第2項又は第7項記載の二液分離
装置。
8. The two-part liquid according to claim 1, wherein the SS removal layer and / or the organic substance adsorption layer is provided in the space through which the mixed liquid after the removal of the impurity liquid passes. Separation device.
【請求項9】SS除去層若しくは有機物吸着層の表面に荷
電極と同電位の多孔板電極を接触状態で設けてなる前記
特許請求の範囲第1項、第2項、第7項又は第8項記載
の二液分離装置。
9. The invention according to claim 1, wherein a porous plate electrode having the same potential as the load electrode is provided in contact with the surface of the SS removal layer or the organic substance adsorption layer. The two-liquid separation device according to the item.
JP1213168A 1989-08-18 1989-08-18 Two-liquid separator Expired - Lifetime JPH0832290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1213168A JPH0832290B2 (en) 1989-08-18 1989-08-18 Two-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1213168A JPH0832290B2 (en) 1989-08-18 1989-08-18 Two-liquid separator

Publications (2)

Publication Number Publication Date
JPH0377603A JPH0377603A (en) 1991-04-03
JPH0832290B2 true JPH0832290B2 (en) 1996-03-29

Family

ID=16634687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1213168A Expired - Lifetime JPH0832290B2 (en) 1989-08-18 1989-08-18 Two-liquid separator

Country Status (1)

Country Link
JP (1) JPH0832290B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722651B2 (en) * 1990-06-20 1995-03-15 ゼオテック・エル・アール・シー株式会社 Oil-water separation device and oil-water separation method
JP2014128777A (en) * 2012-12-28 2014-07-10 Yamada Katsuhiko Apparatus and method for flocculating, separating and recovering particle
CN108693187B (en) * 2018-06-21 2023-12-19 上海工程技术大学 Dynamic circulation device for continuous sampling of loose fibers and application method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2177625A (en) * 1985-06-17 1987-01-28 Noboru Inoue Fluid filtering apparatus

Also Published As

Publication number Publication date
JPH0377603A (en) 1991-04-03

Similar Documents

Publication Publication Date Title
EP0206688B1 (en) Electrostatic adsorptive fluid filtering apparatus
US5244550A (en) Two liquid separating methods and apparatuses for implementing them
US6576107B2 (en) Electrostatic filter for dielectric fluid
US6346197B1 (en) Water and wastewater treatment system and process for contaminant removal
JPH07100302A (en) Charge coalescer type oil-water separator
US7258800B1 (en) Electrocoagulation waste water batch tank treatment system
JP3405278B2 (en) Charged aggregation filter coalescer type oil-water separator and system
JP2591495B2 (en) Ultrafine filtration system and ultrafine filtration method using the system
KR890005261B1 (en) A liquid filtering device
US20110163037A1 (en) Filtration of a hydrocarbon from a fluid
US5326469A (en) Method and apparatus for separating oil and water
US4372837A (en) Radial flow electrofilter
JP2005034752A (en) Apparatus for separating and removing oil from water
KR100886621B1 (en) Apparatus for separating oil from water
JPH0832290B2 (en) Two-liquid separator
GB2177625A (en) Fluid filtering apparatus
US5630926A (en) Electrostatic filter
US4302310A (en) Radial flow electrofilter
CN112811667B (en) Sequential oil removing system and method
RU2701833C2 (en) Method of cleaning surface waters from suspended substances, oil products, heavy metals, organic substances
JP2606248Y2 (en) Sewage treatment equipment
RU2156740C1 (en) Method of treating oily waste waters
JP2005199260A (en) Oil separation apparatus
JPH061206Y2 (en) Fluid filtration device
SU860805A1 (en) Apparatus for separating two-immiscible liquids apparatus for dewatering and demineralizing oil

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 14