JPH0467633A - Wiring formation in semiconductor device - Google Patents

Wiring formation in semiconductor device

Info

Publication number
JPH0467633A
JPH0467633A JP18122690A JP18122690A JPH0467633A JP H0467633 A JPH0467633 A JP H0467633A JP 18122690 A JP18122690 A JP 18122690A JP 18122690 A JP18122690 A JP 18122690A JP H0467633 A JPH0467633 A JP H0467633A
Authority
JP
Japan
Prior art keywords
wiring
insulating film
photoresist
conductive layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18122690A
Other languages
Japanese (ja)
Inventor
Masanori Iwahashi
岩橋 正憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18122690A priority Critical patent/JPH0467633A/en
Publication of JPH0467633A publication Critical patent/JPH0467633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To make up the stepped parts between a wiring and an insulating film for improving the reliability upon the wiring by a method wherein a conductive layer is formed on the insulating film on a semiconductor substrate to perform the patterning step for wiring formation using the conductive layer as a mask and then ions are implanted into the patterned region so as to insulate the non-wiring regions. CONSTITUTION:BPSG as an interlayer insulating film is laminated on a semiconductor substrate 6 having a source 1, a drain 8 and a gate 5; the patterning step laminated with a photoresist 7 is performed; a contact hole communicating the source 1 and the drain 8 with each other is made; Al as a metallic layer 4A is formed by sputtering step; furthermore, the photoresist 7 is laminated to perform the wiring pattern step. Next, oxygen is ion-implanted into the parts only not masked with the photoresist 7 so that the parts may be oxidized thereby enabling the parts of the layer 4A to be insulated into non-wiring regions 3. Next, the photoresist 7 is patterned to make another contact hole communicating with the gate 5. Through these procedures, a surface flattened semiconductor device can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置における配線の形成方法に係り、
特に半導体装置の平坦化を向上する配線の形成方法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming wiring in a semiconductor device,
In particular, the present invention relates to a method for forming wiring that improves planarization of a semiconductor device.

〔従来の技術〕[Conventional technology]

従来、半導体装置における配線の形成方法は、半導体基
板の絶縁膜上に配線層を全面に形成し、リソグラフィ技
術により非配線領域を選択してエツチングする方法を採
っていた。このため、配線と絶縁膜との間に生じる断差
が大きいという問題があった。
Conventionally, the method for forming wiring in a semiconductor device has been to form a wiring layer over the entire surface of an insulating film of a semiconductor substrate, and then selectively etching non-wiring areas using lithography technology. For this reason, there was a problem in that the difference between the wiring and the insulating film was large.

特に、多層配線構造を有する半導体装置の場合、前記断
差が生じた下地の上に、さらに配線層を形成することを
繰り返すため、断差が相乗的に大きくなる。このため、
断差部において配線にクラックが発生し易くなり断線の
広れがある、配線層を均一に形成できない等、配線の信
転性を低下するという問題があった。
Particularly, in the case of a semiconductor device having a multilayer wiring structure, the difference increases synergistically because further wiring layers are repeatedly formed on the base where the difference has occurred. For this reason,
There have been problems in that the reliability of the wiring is reduced, such as cracks tending to occur in the wiring at the difference portions, resulting in widening of the disconnection, and the inability to form a wiring layer uniformly.

そこで、半導体装置の平坦化を図るため、絶縁膜上に配
線を形成した後、公知のSOG法等により段差を解消す
る従来例が知られている。
Therefore, in order to planarize a semiconductor device, a conventional example is known in which wiring is formed on an insulating film and then steps are eliminated by a known SOG method or the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記従来例では絶縁膜上に配線を形成し
た後、平坦化のための特別な膜を設ける工程が増えるた
め、生産性が低下し、また、コストも上昇し、特に、多
層配線の場合はその影響が大きいという課題があった。
However, in the conventional example, after the wiring is formed on the insulating film, the process of providing a special film for planarization is increased, which reduces productivity and increases costs, especially in the case of multilayer wiring. The problem was that the impact was large.

このような課題を解決するため本発明は、非配線領域を
エツチング等で除去したり、平坦化のための特別の膜を
設けることなく、半導体装置の平坦化を達成可能な配線
の形成方法を提供することを目的とするものである。
In order to solve these problems, the present invention provides a wiring formation method that can achieve planarization of a semiconductor device without removing non-wiring areas by etching or the like or providing a special film for planarization. The purpose is to provide

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するために本発明は、半導体基板の絶縁
膜上に導電層を形成する工程と、当該導電層をマスクに
より配線形成のパターニングをする工程と、前記パター
ニング領域に前記導電層を絶縁化するイオンを導入し、
非配線領域を絶縁化する工程と、を有することを特徴と
する半導体装置における配線の形成方法を提供するもの
である。
To achieve this object, the present invention includes a step of forming a conductive layer on an insulating film of a semiconductor substrate, a step of patterning the conductive layer using a mask to form wiring, and a step of insulating the conductive layer in the patterning region. Introducing ions that cause
The present invention provides a method for forming wiring in a semiconductor device, the method comprising the step of insulating a non-wiring region.

〔作用〕[Effect]

この発明に係わる半導体装置における配線の形成方法に
よれば、半導体基板の絶縁膜上に導電層を形成する工程
と、当該導電層をマスクにより配線形成のパターニング
をする工程と、前記パターニング領域に前記導電層を絶
縁化するイオンを導入する工程を有することで、同じ配
線層上に、配線領域(導電層)と非配線領域(絶縁化さ
れた層)を連続して形成することができる。この結果、
配線と絶縁膜との間に生じる断差を大幅に低減し、平坦
化のための特別の膜を設けることなく平坦化を図ること
ができる。
According to the method for forming wiring in a semiconductor device according to the present invention, the steps include: forming a conductive layer on an insulating film of a semiconductor substrate; patterning the conductive layer using a mask to form wiring; By including the step of introducing ions that insulate the conductive layer, a wiring region (conductive layer) and a non-wiring region (insulated layer) can be continuously formed on the same wiring layer. As a result,
The difference between the wiring and the insulating film can be significantly reduced, and planarization can be achieved without providing a special film for planarization.

〔実施例〕〔Example〕

次に、本発明の一実施例について、図面に基づいて説明
する。
Next, one embodiment of the present invention will be described based on the drawings.

第1図ないし第6図は、本実施例に係る配線の製造工程
を示す断面図である。本実施例では、MOSFETの製
法を例に取り説明する。
1 to 6 are cross-sectional views showing the manufacturing process of the wiring according to this embodiment. In this embodiment, a method for manufacturing a MOSFET will be explained as an example.

第1図の工程では、ソース1、ドレイン8及びゲート5
を有する半導体基板6上に層間絶縁膜2として、BPS
Gを積層する。
In the process shown in FIG. 1, the source 1, drain 8 and gate 5 are
As an interlayer insulating film 2 on a semiconductor substrate 6 having a BPS
Stack G.

次に、第2図の工程では、第1図の工程で得た眉間絶縁
膜2にリソグラフィ技術によりホトレジストを積層しパ
ターニングを行い、異方性エツチングによりソース1、
ドレイン8に連通ずるコンタクト孔を開ける。
Next, in the step shown in FIG. 2, a photoresist is layered and patterned using lithography technology on the glabellar insulating film 2 obtained in the step shown in FIG. 1, and the source 1,
A contact hole communicating with the drain 8 is made.

その後、第3図の工程では、第2図の工程で得た眉間絶
縁膜2及びコンタクト孔の全面に金属層(導電層)4A
として、Al2を全面スパッタ法にて形成する。次に、
金属層4A上に、ホトレジストマを積層し配線形成のパ
ターニングを行う。
Thereafter, in the step shown in FIG. 3, a metal layer (conductive layer) 4A is applied to the entire surface of the glabella insulating film 2 obtained in the step shown in FIG. 2 and the contact hole.
Then, Al2 is formed by sputtering the entire surface. next,
A photoresist is laminated on the metal layer 4A and patterned to form wiring.

次に、第4図の工程では、第3図の工程で得たホトレジ
スト7上から、金属層4Aを絶縁化するイオンとして酸
素をイオン注入した。この時、酸素は、ホトレジスト7
でマスクされなかった部分(非配線とする領域)にのみ
注入される。
Next, in the step shown in FIG. 4, oxygen ions were implanted into the photoresist 7 obtained in the step shown in FIG. 3 as ions for insulating the metal layer 4A. At this time, oxygen is removed from the photoresist 7.
It is implanted only in the areas that were not masked (non-wiring areas).

次に、第5図に示すように、第4図の工程で酸素がイオ
ン注入された部分がAlから酸化物(Af203)とな
り、金属層4Aの一部をそのまま絶縁化することができ
、この部分が非配線3領域となる。
Next, as shown in FIG. 5, the part into which oxygen was ion-implanted in the step of FIG. The portion becomes 3 non-wiring areas.

次いで、第6図の工程で、リソグラフィ技術にヨリホト
レジストをパターニングしゲート5へ連通ずるコンタク
ト孔を開ける。
Next, in the process shown in FIG. 6, the twisted photoresist is patterned using lithography technology, and a contact hole communicating with the gate 5 is formed.

以上の工程により、平坦化に優れた半導体装置を得た。Through the above steps, a semiconductor device with excellent planarization was obtained.

なお、第6図の半導体装置上に、さらに第1図以降の工
程を繰り返すことで、多層配線を有する半導体装置を得
ることができる。
Note that by further repeating the steps shown in and after FIG. 1 on the semiconductor device shown in FIG. 6, a semiconductor device having multilayer wiring can be obtained.

次に、本実施例に従って、実際のMOSFETを形成し
、得られたMOS F ETでの段差程度を測定した。
Next, an actual MOSFET was formed according to this example, and the level difference in the obtained MOSFET was measured.

この結果を第1表に示す。The results are shown in Table 1.

第1表 従来品では、断差の大きさは配線層膜厚と等しい値(A
l配線層の膜厚の100%の段差が生じる)となるが、
本実施例では、例えば、/l配線層に酸素がイオン注入
され、AfからA 1 z O3となる際に体積がAl
2の1.27〜1.42倍となることから、配線層と非
配線層との間で、Al配線層の膜厚の27%〜42%の
断差が生じる程度であり、従来品に比べて大幅に断差の
低減が可能である。
Table 1 For conventional products, the size of the difference is equal to the wiring layer thickness (A
(100% of the thickness of the wiring layer occurs), but
In this embodiment, for example, oxygen ions are implanted into the /l wiring layer, and when changing from Af to A 1 z O3, the volume changes to Al.
Since the thickness is 1.27 to 1.42 times that of 2, there is a difference of 27% to 42% of the thickness of the Al wiring layer between the wiring layer and the non-wiring layer, which is different from that of conventional products. It is possible to significantly reduce the difference in comparison.

本実施例では、第1図の工程で、眉間絶縁膜2としてB
PSGを用いたが、この他、LTO,PSG、P−3i
n、等各種の絶縁膜を用いることができる。
In this embodiment, B is used as the glabellar insulating film 2 in the process shown in FIG.
PSG was used, but in addition, LTO, PSG, P-3i
Various insulating films such as n, etc. can be used.

また、金属層4AとしてはAfを用いたが、A1−3t
、Cu等、導電性を有し、かつ、絶縁化するイオンを導
入した際、絶縁性の非金属化合物となる金属であれば用
いることができる。そして、本実施例ではスパッタ法で
配線層を形成したが、これに限らずCVD法等で形成す
ることもできる。
Furthermore, although Af was used as the metal layer 4A, A1-3t
Any metal can be used as long as it has conductivity and becomes an insulating nonmetallic compound when an insulating ion is introduced, such as Cu or the like. In this embodiment, the wiring layer is formed by sputtering, but the wiring layer is not limited to this, and may be formed by CVD or the like.

また、第4図の工程でマスク領域以外に絶縁化するイオ
ンを導入する方法としては、イオン注入の他、拡散法等
を用いても良い。そして、第4図の工程では、金属層を
絶縁化するイオンとして酸素を導入し絶縁化したが、窒
素等、金属に導入した際、当該金属が絶縁性の非金属化
合物となるイオンであれば用いることができる。また、
前記の特性を有する2種以上のイオンを導入しても良い
Further, as a method for introducing insulating ions into areas other than the mask region in the step shown in FIG. 4, in addition to ion implantation, a diffusion method or the like may be used. In the process shown in Figure 4, oxygen was introduced as an ion to insulate the metal layer to insulate it, but if nitrogen or other ions are introduced into a metal, the metal becomes an insulating non-metal compound. Can be used. Also,
Two or more types of ions having the above characteristics may be introduced.

導電層を絶縁化するイオンの導入量は、Affiの場合
、被導入層に対して、90〜95重量%が好ましい。
In the case of Affi, the amount of ions introduced to insulate the conductive layer is preferably 90 to 95% by weight based on the layer to be introduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係わる半導体装置における
配線の製造方法によれば、半導体基板の絶縁膜上に導電
層を形成する工程と、当該導電層をマスクにより配線形
成のパターニングをする工程と、前記パターニング領域
に前記導電層を絶縁化するイオンを導入し、非配線領域
を絶縁化する工程と、を有することで、当該導電層の一
部をそのまま絶縁化することができる。このため、同じ
導電層上に、配線領域及び非配線領域を連続して形成す
ることができ、非配線領域をエツチング等で除去したり
、平坦化のための特別の膜を設けることなく、配線と絶
縁膜との間に生じる断差を大幅に低減することができる
。この結果、断差により発生するクランクを防ぎ、また
、配線層を均一に形成することができるため、配線の信
頼性を向上することができる。
As described above, the method for manufacturing wiring in a semiconductor device according to the present invention includes the steps of forming a conductive layer on an insulating film of a semiconductor substrate, patterning the conductive layer using a mask to form wiring, By including the step of introducing ions for insulating the conductive layer into the patterning region and insulating the non-wiring region, it is possible to insulate a part of the conductive layer as it is. Therefore, a wiring area and a non-wiring area can be continuously formed on the same conductive layer, and the wiring area can be formed without removing the non-wiring area by etching or providing a special film for planarization. It is possible to significantly reduce the difference that occurs between the film and the insulating film. As a result, cranks caused by the difference can be prevented, and the wiring layer can be formed uniformly, so that the reliability of the wiring can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第6図は、本発明に係る半導体装置の配線
の製造工程を示す断面図である。 図中、1はソース、2は眉間絶縁膜、3は非配線、4は
配線、4Aは金属層、5はゲート、6は基板、7はホト
レジスト、8はドレインを示す。 二40! ○2 第 2 図 15図 M 6 図 第3図
1 to 6 are cross-sectional views showing the manufacturing process of wiring of a semiconductor device according to the present invention. In the figure, 1 is a source, 2 is an insulating film between the eyebrows, 3 is a non-wiring, 4 is a wiring, 4A is a metal layer, 5 is a gate, 6 is a substrate, 7 is a photoresist, and 8 is a drain. Two forty! ○2 2 Figure 15 Figure M 6 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板の絶縁膜上に導電層を形成する工程と
、当該導電層をマスクにより配線形成のパターニングを
する工程と、前記パターニング領域に前記導電層を絶縁
化するイオンを導入し、非配線領域を絶縁化する工程と
、を有することを特徴とする半導体装置における配線の
形成方法。
(1) A step of forming a conductive layer on an insulating film of a semiconductor substrate, a step of patterning the conductive layer using a mask to form a wiring, and introducing ions to insulate the conductive layer into the patterning region to form a non-conductive layer. 1. A method for forming wiring in a semiconductor device, comprising the step of insulating a wiring region.
JP18122690A 1990-07-09 1990-07-09 Wiring formation in semiconductor device Pending JPH0467633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18122690A JPH0467633A (en) 1990-07-09 1990-07-09 Wiring formation in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18122690A JPH0467633A (en) 1990-07-09 1990-07-09 Wiring formation in semiconductor device

Publications (1)

Publication Number Publication Date
JPH0467633A true JPH0467633A (en) 1992-03-03

Family

ID=16097018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18122690A Pending JPH0467633A (en) 1990-07-09 1990-07-09 Wiring formation in semiconductor device

Country Status (1)

Country Link
JP (1) JPH0467633A (en)

Similar Documents

Publication Publication Date Title
US5055426A (en) Method for forming a multilevel interconnect structure on a semiconductor wafer
US4040891A (en) Etching process utilizing the same positive photoresist layer for two etching steps
US5391521A (en) Method for fabricating low resistance contacts of semiconductor device
US4007103A (en) Planarizing insulative layers by resputtering
KR960001595B1 (en) Diamond-coated sintered body excellent in adhesion and the
JPS58201362A (en) Manufacture of semiconductor device
JPH0467633A (en) Wiring formation in semiconductor device
JP3498190B2 (en) Manufacturing method of thin film laminated electrode
JPH0766178A (en) Fabrication of semiconductor device
JPH0388351A (en) Manufacture of semiconductor device
JPS63258043A (en) Manufacture of semiconductor device
KR100237018B1 (en) Process for forming multilevel interconnector of semiconductor device
KR950002954B1 (en) Manufacturing method of semiconductor device with multi-layer using pillar reverse image planarization
KR20020054863A (en) Method for forming metal line using the dual damascene process
KR100246102B1 (en) Method of forming upper metal line in semiconductor device
JPH01140645A (en) Manufacture of semiconductor integrated circuit device
KR20030002800A (en) Method for forming the resister polysilicon in semiconductor device
KR100450845B1 (en) Fabrication method of semiconductor device
JPS62290148A (en) Manufacture of semiconductor device
KR100529440B1 (en) Method for forming a metal line of semiconductor device
JP3187500B2 (en) Manufacturing method of wiring structure
JPS61244078A (en) Manufacture of superconducting lines
JPH023926A (en) Forming method of wiring
JPH06244180A (en) Semiconductor device and its manufacture
JPH05267297A (en) Manufacture of semiconductor device