JPH046680B2 - - Google Patents

Info

Publication number
JPH046680B2
JPH046680B2 JP11729583A JP11729583A JPH046680B2 JP H046680 B2 JPH046680 B2 JP H046680B2 JP 11729583 A JP11729583 A JP 11729583A JP 11729583 A JP11729583 A JP 11729583A JP H046680 B2 JPH046680 B2 JP H046680B2
Authority
JP
Japan
Prior art keywords
sintered body
bonding
silicon nitride
surface layer
reaction sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11729583A
Other languages
Japanese (ja)
Other versions
JPS6011277A (en
Inventor
Jiro Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP11729583A priority Critical patent/JPS6011277A/en
Publication of JPS6011277A publication Critical patent/JPS6011277A/en
Publication of JPH046680B2 publication Critical patent/JPH046680B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は、窒化珪素反応焼結体の接合に関し、
接合用の窒化珪素反応焼結体、その製造方法およ
びそれを用いた接合方法を包含する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to joining silicon nitride reaction sintered bodies,
It includes a silicon nitride reaction sintered body for bonding, a method for manufacturing the same, and a bonding method using the same.

窒化珪素Si3N4の製品のうち、反応焼結体とよ
ばれるものは、ふつう、Si粉末の成形体または
(Si+Si3N4)粉末混合物の成形体に窒素ガスを
作用させて窒化しつつ焼結することにより製造さ
れている。この種の製品は、耐熱衝撃性、硬度、
高温での電気絶縁性および化学的安定性にすぐれ
ているうえ、反応焼結時の収縮がほとんどなく、
寸法精度が高く得られるという利点があるため、
耐火材料、耐摩耗材料、耐食材料、絶縁材料など
の用途に広く使用されている。
Among silicon nitride Si 3 N 4 products, those called reaction sintered bodies are usually made by applying nitrogen gas to a molded body of Si powder or a molded body of (Si + Si 3 N 4 ) powder mixture while nitriding it. Manufactured by sintering. This kind of product has thermal shock resistance, hardness,
It has excellent electrical insulation and chemical stability at high temperatures, and has almost no shrinkage during reaction sintering.
Because it has the advantage of achieving high dimensional accuracy,
Widely used in applications such as fireproof materials, wear-resistant materials, corrosion-resistant materials, and insulation materials.

しかし、窒化珪素反応焼結体で種々の部材を製
作するとき、これを他の材料たとえば金属と接合
し一体化する必要が、しばしばある。その部材の
全体が窒化珪素反応焼結体であつてもよい場合
や、それが望ましい場合でも、形状が複雑であれ
ば一体に成形することは困難であつて、2個また
は3個以上の窒化珪素反応焼結体の部品を接合し
なければならない。
However, when manufacturing various parts from silicon nitride reaction sintered bodies, it is often necessary to bond and integrate them with other materials, such as metals. Even if it is possible or desirable for the entire member to be a silicon nitride reaction sintered body, if the shape is complex, it is difficult to mold it in one piece, and two or more nitride Parts of silicon reaction sintered body must be joined.

本発明者は、窒化珪素反応焼結体を、相互に、
または金属など他の材料と接合する技術の出現が
望まれている現状にかんがみ、研究を重ねて、接
合用の窒化珪素反応焼結体、その製造方法および
接合方法を確立した。
The present inventor has made a silicon nitride reaction sintered body mutually,
In view of the current situation where there is a desire for technology to join with other materials such as metals, we have conducted repeated research and established a silicon nitride reaction sintered body for bonding, its manufacturing method, and bonding method.

本発明の接合用の窒化珪素反応焼結体は、内部
がち密であつて、表層部が接合材の浸透を可能に
する程度に多孔質なものである。内部がち密で高
密度を有することは、十分な機械的強度を得る上
で重要である。本発明者がすでに発明し開示した
方法によれば、相対密度90%、数値にして2.86
g/cm3を上回る高密度の窒化珪素反応焼結体が得
られる。表層部が多孔質であることは、接合材が
浸透し、焼結体と強固に結合するため必要であ
る。多孔質の度合は、気孔率にして35%以上とす
べきであるが、あまり気孔率の高いものは強度が
低くなるから、適当な範囲は35〜70%である。多
孔質の表層部の厚さは、最低0.1mmくらい必要で
あるが、1mm以内で足りる。
The silicon nitride reaction sintered body for bonding of the present invention has a dense interior and a surface layer that is porous to the extent that the bonding material can penetrate therethrough. Having a dense and high internal density is important for obtaining sufficient mechanical strength. According to the method already invented and disclosed by the present inventor, the relative density is 90%, and the numerical value is 2.86.
A silicon nitride reaction sintered body with a high density exceeding g/cm 3 is obtained. It is necessary for the surface layer to be porous so that the bonding material can penetrate and bond firmly to the sintered body. The degree of porosity should be 35% or more in terms of porosity, but if the porosity is too high, the strength will be low, so a suitable range is 35 to 70%. The thickness of the porous surface layer needs to be at least 0.1 mm, but 1 mm or less is sufficient.

ここで、「接合材」とは、適用時には液状であ
るが、のちに固化して窒化珪素反応焼結体の表層
部と強固に結合し、この反応焼結体をいまひとつ
の反応焼結体と、または他の材料と結合し得るも
のを意味する。二以上の部材を接合する場合は、
広義の接着剤ということができるが、後記する例
にみるとおり接合材自体が構造材料として役立ち
得ることもあるから、接合材は接着剤を包含し、
さらに広い意義を有する。
Here, the "bonding material" is liquid at the time of application, but it solidifies later and firmly bonds with the surface layer of the silicon nitride reaction sintered body, making this reaction sintered body another reaction sintered body. , or something that can be combined with other materials. When joining two or more parts,
Although it can be said to be an adhesive in a broad sense, as shown in the example below, the bonding material itself can serve as a structural material, so the term bonding material includes adhesives.
It has a broader meaning.

容易に理解されるとおり、「多孔質の表層部」
とは、接合用の窒化珪素反応焼結体の全表面にわ
たつて存在する必要はなく、少なくとも接合を行
なう部分に存在すればよく、接合しない部分は、
多孔質の表層部を除去した構造とすることもでき
る。
As is easily understood, "porous surface layer"
It does not need to exist over the entire surface of the silicon nitride reaction sintered body for bonding, it just needs to exist at least in the part where the bonding is performed, and in the non-bonded areas,
It is also possible to have a structure in which the porous surface layer is removed.

接合用の窒化珪素反応焼結体を製造する本発明
の方法は、平均粒径が15μ以下の珪素粉末を成形
し、成形体を1100℃以上であつて珪素の融点より
も低い温度に加熱して予備焼結し、表層部の気孔
率が内部のそれよりも高い予備焼結体を得、この
予備焼結体に1100〜1500℃の温度において窒素を
作用させて窒化することにより内部がち密で表層
部が多孔質である窒化珪素反応焼結体をつくるこ
とからなる。
The method of the present invention for producing a silicon nitride reaction sintered body for bonding involves molding silicon powder with an average particle size of 15μ or less, and heating the molded body to a temperature of 1100°C or higher and lower than the melting point of silicon. The pre-sintered body is pre-sintered to obtain a pre-sintered body in which the porosity of the surface layer is higher than that of the inner part, and this pre-sintered body is nitrided by applying nitrogen at a temperature of 1100 to 1500°C to make the interior dense. The process consists of producing a silicon nitride reaction sintered body whose surface layer is porous.

原料のSi粉末として平均粒径が15μ以下のもの
を使用するのは、内部がち密であつて表層部が多
孔質である反応焼結体を製造する上で必要であ
る。また、通常の窒化珪素反応焼結体の製造には
Siは純度の高い方がよいとされているが、本発明
においては、0.5%以上、好ましくは1%または
もう少し多い量のOを含有するものが、内部と表
層部との間の密度差を生じさせる上で有用であ
る。その理由は十分明らかではないが、前記した
Siの予備焼結に際してSiがSiOとして揮発し去つ
て表層部が多孔質となるらしく、Oの存在はこれ
を助長するものと考えられる。
It is necessary to use a raw material Si powder with an average particle size of 15 μm or less in order to produce a reaction sintered body whose interior is dense and whose surface layer is porous. In addition, for the production of normal silicon nitride reaction sintered bodies,
It is said that the higher the purity of Si, the better, but in the present invention, one containing O of 0.5% or more, preferably 1% or a little more, reduces the density difference between the inside and the surface layer. It is useful for producing The reason is not clear enough, but as mentioned above
During preliminary sintering of Si, Si is volatilized as SiO, making the surface layer porous, and the presence of O is thought to promote this.

上記の製造方法の実施に当つては、本発明者が
協働者とともに、または単独で発明したた技術に
従つて、Siの焼結性を高める物質および窒化を促
進する物質の、一方または両方を添加することが
好ましい。前者の代表はホウ素であり、後者は
Feそのほか多くの金属の効果が知られている。
In implementing the above manufacturing method, one or both of a substance that enhances the sinterability of Si and a substance that promotes nitridation is used according to a technique invented by the present inventor together with collaborators or alone. It is preferable to add. The former is represented by boron, and the latter is
The effects of Fe and many other metals are known.

具体的にいえば、この推奨すべき実施態様は、
原料Si粉末に、ホウ素またはその化合物をBとし
て0.15〜5.0重量%、ならびに(または)Fe、Co、
Ni、Cr、Mo、Mn、W、Ti、Zr、Ta、Nb、V、
Mg、Ca、Cu、ZnおよびSnからえらんだ1種ま
たは2種以上の元素またはその化合物を上記元素
として(2種以上の場合は合計量で)0.05〜2.0
重量%添加して成形し、予備焼結とそれに続く窒
化とを行なうことからなる。
Specifically, this recommended practice:
In the raw Si powder, 0.15 to 5.0% by weight of boron or its compound as B, and (or) Fe, Co,
Ni, Cr, Mo, Mn, W, Ti, Zr, Ta, Nb, V,
One or more elements selected from Mg, Ca, Cu, Zn, and Sn, or their compounds as the above elements (in the case of two or more, the total amount) is 0.05 to 2.0
It consists of adding % by weight, shaping, pre-sintering and subsequent nitriding.

焼結促進または窒化促進の効果をもつ上記諸物
質の含有量の限界とその理由は、さきに開示のと
おりである。すなわち、Bの効果を期待するため
には、少なくとも0.15重量%の含有を必要とす
る。しかしBは窒化工程において窒化ホウ素BN
を生成し、これが多量になると反応焼結を阻害す
る。そのため、5.0重量%以内に止めなければな
らない。
The limits and reasons for the content of the above-mentioned substances that have the effect of promoting sintering or nitriding are as disclosed above. That is, in order to expect the effect of B, it is necessary to contain at least 0.15% by weight. However, B is boron nitride BN in the nitriding process.
is generated, and when it becomes large, it inhibits reaction sintering. Therefore, it must be kept within 5.0% by weight.

Feその他の物質の含有量は、Si粉末に対し0.05
重量%以上ないと効果が得られない。この下限未
満では予備焼結体の密度が高くなることもあつ
て、Siを高度に窒化するのに要する時間が、実用
的といえないほど長くなる。一方、2.0%を超え
る含有は、著しい粒成長を招き、予備焼結におけ
る高密度化を妨げるので、避けなければならな
い。好ましい範囲は使用元素により異なるが、ふ
つう0.1〜0.6重量%である。
The content of Fe and other substances is 0.05 to Si powder.
If the amount is less than % by weight, no effect will be obtained. If it is less than this lower limit, the density of the pre-sintered body may become high, and the time required to nitridize Si to a high degree becomes impractically long. On the other hand, a content exceeding 2.0% causes significant grain growth and prevents high density during preliminary sintering, and must be avoided. The preferred range varies depending on the element used, but is usually 0.1 to 0.6% by weight.

存在形態は、ホウ素の場合、金属ホウ素、非晶
質物、または金属ホウ化物などのいずれであつて
もよく、Feその他は、元素状態であつても、ま
た酸化物などの化合物であつてもよく、それら同
志の化合物は、もちろん好ましいものである。両
者を併用する場合は、ホウ素とこれら元素との化
合物をえらべば、両者を一挙に存在させることが
できて好ましい。
In the case of boron, the existing form may be metallic boron, an amorphous substance, or a metallic boride, and Fe and others may be in an elemental state or in a compound such as an oxide. , and compounds of the same type are of course preferred. When both are used together, it is preferable to select a compound of boron and these elements because both can be present at once.

焼結促進剤および窒化促進剤の諸物質も、Si粉
末の粒度と同等またはそれ以下の微粒子であるこ
とが望ましい。
The sintering accelerator and the nitriding accelerator are also desirably fine particles with a particle size equal to or smaller than that of the Si powder.

粉末成形および予備焼結は、従来既知の技術に
従つて実施すればよい。すなわち、原料粉末また
は粉末混合物の成形は、常用のダイス成形をはじ
めとして、等方圧成形、スリツプキヤスト、射出
成形など任意の手段によることができるのはもち
ろんである。
Powder compaction and preliminary sintering may be performed according to conventionally known techniques. That is, it goes without saying that the raw material powder or powder mixture can be formed by any means such as conventional die forming, isostatic pressing, slip casting, injection molding, and the like.

予備焼結する成形体の密度は、その取り扱いや
加工を容易にするとともに、予備焼結における焼
結性を確保するために、0.82g/cm3(理論密度の
35%)以上にすべきである。これより低い密度で
は、予備焼結により高密度化ができても、内部が
均一でち密な組織を有する反応焼結体を得ること
が困難となる。
The density of the compact to be pre-sintered is 0.82 g/cm 3 (the theoretical density) to facilitate handling and processing and to ensure sinterability during pre-sintering.
35%) or more. If the density is lower than this, even if the density can be increased by pre-sintering, it will be difficult to obtain a reaction sintered body having a uniform and dense structure inside.

予備焼結の方法は、自由焼結のほか、一軸加圧
焼結(いわゆるホツトプレス)、熱間等方圧焼結
などの通常の方法をとることができる。
In addition to free sintering, the preliminary sintering can be carried out by conventional methods such as uniaxial pressure sintering (so-called hot press) and hot isostatic pressure sintering.

予備焼結は、1100℃以上の温度において行な
う。これより低い温度では、微細な粉末を使用し
ても高密度化が期待できない。上限の温度は、も
ちろんSiの融点である。雰囲気は、アルゴンのよ
うな不活性ガスはもちろん使用可能であるが、真
空やH2ガスまたはH2含有不活性ガスの方が、予
備焼結体における内部の表層部との密度差が生じ
やすい傾向が認められ、好ましい。
Pre-sintering is performed at a temperature of 1100°C or higher. At temperatures lower than this, high density cannot be expected even if fine powder is used. The upper limit temperature is, of course, the melting point of Si. Of course, an inert gas such as argon can be used as the atmosphere, but vacuum, H 2 gas, or an inert gas containing H 2 is more likely to cause a density difference with the inner surface layer of the pre-sintered body. This trend is observed and is desirable.

得られる予備焼結体の密度は高いことが望まし
いが、内部まで十分に窒化するためには、あまり
高くすることも利益ではなく、2.05g/cm3までに
止めるのが適当である。表層部の密度は、好適な
気孔率をもつた反応焼結体を得るためには、0.80
〜1.4g/cm3の範囲であることが望ましい。内部
および表層部の密度がこのような値である予備焼
結体をつくるには、原料Si粉末とその添加剤、お
よび温度や雰囲気などの焼結条件を選択する。
Although it is desirable that the density of the obtained pre-sintered body be high, in order to sufficiently nitrid the inside, it is not beneficial to increase the density too much, and it is appropriate to limit the density to 2.05 g/cm 3 or less. The density of the surface layer is 0.80 in order to obtain a reaction sintered body with suitable porosity.
A range of 1.4 g/cm 3 is desirable. In order to produce a pre-sintered body with such density values in the internal and surface layers, the raw Si powder and its additives, as well as the sintering conditions such as temperature and atmosphere, are selected.

Si予備焼結体の窒化は、従来の窒化珪素反応焼
結体の製造に際して行なわれていたところと同じ
ようにして実施できる。すなわち、一般的には大
気圧の窒素ガス雰囲気下で、1100〜1500℃の温度
に加熱する。温度は、1100〜1350℃の低温側から
段階的に昇温してゆくこともできる。反応速度を
調節するためには、窒素の圧力を減圧(最大100
分の1気圧程度まで)から加圧(最高2000気圧)
までの範囲で選択すればよい。なお、純窒素ガス
のほかにも、水素混合窒素ガスやアンモニアも使
用できる。窒化に要する時間は、予備焼結体の密
度、平均粒径、窒化温度および雰囲気条件によ
り、また許容できる残留Si量により大きく異なる
が、数時間から200時間程度である。
The nitriding of the Si pre-sintered body can be carried out in the same manner as in the production of conventional silicon nitride reaction sintered bodies. That is, it is generally heated to a temperature of 1100 to 1500°C under a nitrogen gas atmosphere at atmospheric pressure. The temperature can also be increased stepwise from the low temperature side of 1100 to 1350°C. To adjust the reaction rate, reduce the nitrogen pressure (up to 100
Pressurized (up to 1/2 atm) to pressurized (maximum 2000 atm)
You can choose within the range. In addition to pure nitrogen gas, hydrogen-mixed nitrogen gas and ammonia can also be used. The time required for nitriding varies greatly depending on the density of the preliminary sintered body, average grain size, nitriding temperature, and atmospheric conditions, as well as on the allowable amount of residual Si, but ranges from several hours to about 200 hours.

前記したSi予備焼結体の表層部の多孔質化は、
窒化処理をへても持ち越され、窒化珪素反応焼結
体は表層部が多孔質のものとして得られる。その
厚さは、製造条件によつて差異があるが、少なく
とも0.05mmあり、場合によつては3mmにも達す
る。前記した接合に必要な厚さはこの範囲に包含
されているから、好ましい値となるよう、製造条
件を選択すべきである。
The above-mentioned porous formation of the surface layer of the Si pre-sintered body is
This is carried over even after the nitriding treatment, and the silicon nitride reaction sintered body is obtained with a porous surface layer. The thickness varies depending on manufacturing conditions, but is at least 0.05 mm, and may reach 3 mm in some cases. Since the thickness necessary for the above-mentioned bonding is included in this range, manufacturing conditions should be selected so as to obtain a preferable value.

上記のようにして製造した接合用の窒化珪素反
応焼結体を接合する本発明の方法は、内部がち密
であつて表層部が多孔質である接合用の窒化珪素
反応焼結体の表面に接合材を適用し、その一部を
表層部の気孔内に浸透させて固化する接合手段に
より、接合用の窒化珪素反応焼結体と同様な焼結
体または他の材料とを接合することからなる。
The method of the present invention for joining the silicon nitride reaction sintered body for bonding manufactured as described above has a method of joining the silicon nitride reaction sintered body for bonding which has a dense interior and a porous surface layer. From joining a silicon nitride reaction sintered body for joining with a similar sintered body or other materials by applying a joining material and allowing a part of it to penetrate into the pores of the surface layer and solidify it. Become.

接合材の代表的な例は接着剤であつて、窒化珪
素反応焼結体に耐熱性を期待せず、もつぱら耐摩
耗性を発揮させたいような場合には、エポキシ樹
脂など有機物質の接着剤が使用可能である。反応
焼結体と他の材料とを接着させる場合、接合用の
窒化珪素反応焼結体は多孔質の表層部において任
意の接着剤との接合が可能であるから、他の材料
にとつて好適な接着剤をえらべばよい。
Typical examples of bonding materials are adhesives, and if you do not expect heat resistance from the silicon nitride reaction sintered body and you want it to exhibit wear resistance, organic adhesives such as epoxy resins may be used. is available. When bonding the reactive sintered body and other materials, the silicon nitride reactive sintered body for bonding can be bonded with any adhesive in the porous surface layer, so it is suitable for other materials. Just choose a suitable adhesive.

前記したように、接合材は接着剤に限らず、加
熱により溶融しているか、または少なくとも軟化
状態にあつて、接合用の窒化珪素反応焼結体の表
層部の気孔中に浸透してのち固化し、これと結合
することができるものであれば、金属、または無
機もしくは有機の化合物が使用できる。接合手段
としては、鋳ぐるみ、ロウ付け、溶射など多彩な
技術が利用できるから、窒化珪素反応焼結体で製
作しようとする部品に所望される特性に応じて、
適宜選択する。
As mentioned above, the bonding material is not limited to adhesives, but is melted by heating or is at least in a softened state, penetrates into the pores of the surface layer of the silicon nitride reaction sintered body for bonding, and then solidifies. However, metals, or inorganic or organic compounds can be used as long as they can be combined with this. As a joining method, a variety of techniques such as casting, brazing, and thermal spraying can be used, so depending on the desired characteristics of the parts to be manufactured using silicon nitride reaction sintered bodies,
Select as appropriate.

実施例 平均粒径0.11μ、酸素含有量4.3%のSi粉末を金
型に入れ、500Kg/cm2の圧力でプレスして、幅15
mm×長さ35mm×厚さ5mmの板状に予備成形し、こ
れをさらにラバープレスにより2000Kg/cm2の圧力
を加えて本成形した。
Example Si powder with an average particle size of 0.11μ and an oxygen content of 4.3% was placed in a mold and pressed at a pressure of 500Kg/ cm2 to form a width of 15mm.
It was preformed into a plate shape of mm×length 35mm×thickness 5mm, which was then subjected to main molding by applying a pressure of 2000 kg/cm 2 using a rubber press.

成形体を、1×10-3Torrの真空中で、1270℃
×1時間の加熱により予備焼結をして、密度が内
部で1.82g/cm3(相当密度78.1%)、表層部約1.5
mmのあいだで1.09g/cm3(46.8%)の予備焼結体
を得た。
The molded body was heated to 1270℃ in a vacuum of 1×10 -3 Torr.
Pre-sintered by heating for 1 hour, the internal density is 1.82g/cm 3 (equivalent density 78.1%), and the surface layer is approximately 1.5g/cm 3 (equivalent density 78.1%).
A pre-sintered body of 1.09 g/cm 3 (46.8%) was obtained between mm.

この予備焼結体を、N2気流中で、1370℃×48
時間→1385℃×96時間→1420℃×24時間の加熱に
より窒化(反応焼結)した。得られた反応焼結体
の密度は、内部で2.73g/cm3(85.7%)、表層部
約1.5mmが1.63g/cm3(51.4%)であつた。
This pre-sintered body was heated at 1370°C x 48°C in a N2 stream.
Nitriding (reaction sintering) was carried out by heating for time → 1385°C x 96 hours → 1420°C x 24 hours. The density of the obtained reaction sintered body was 2.73 g/cm 3 (85.7%) in the interior and 1.63 g/cm 3 (51.4%) in the approximately 1.5 mm surface layer.

比較のため、平均粒径17μのSi粉末を用いて、
従来技術に従つて成形および窒化を行ない(窒化
の条件は上記と同じ)、密度がほぼ全体にわたつ
て均一で、2.52g/cm3(79.2%)の反応焼結体を
得た。
For comparison, using Si powder with an average particle size of 17μ,
Molding and nitriding were carried out in accordance with the prior art (the nitriding conditions were the same as above) to obtain a reaction sintered body having a uniform density of 2.52 g/cm 3 (79.2%) almost throughout.

次に、上記のようにして得た、本発明および比
較例の2種の反応焼結体の両者について、下記の
ような接合を行ない、その性能をしらべた。
Next, the two reaction sintered bodies of the present invention and the comparative example obtained as described above were bonded as described below, and their performance was examined.

(1) 両面にエポキシ樹脂接着剤を塗布し、径10mm
のナイロン製丸棒を2本、軸が一直線上にある
ように接着した。丸棒を引張つて接着強度を測
定したところ、接合部で剥離したときの応力
は、それぞれ 本発明 3.5Kg/mm2 比較例 1.7 であつた。
(1) Apply epoxy resin adhesive to both sides and make a diameter of 10mm.
Two nylon round rods were glued together so that their axes were aligned in a straight line. When the adhesive strength was measured by pulling a round bar, the stress at the time of peeling at the joint was 3.5 kg/mm for the present invention and 1.7 kg for the comparative example.

(2) 反応焼結体の6表面のうち最も広いものひと
つを残して、残り5面がおおわれるように、
SUS304スレンレス鋼で鋳ぐるんだ。
(2) Leave the widest one out of the six surfaces of the reaction sintered body and cover the remaining five surfaces.
Cast with SUS304 stainless steel.

反応焼結体が背後から押し出されるような応
力をかける3点曲げ試験を行なつて、つぎの結
果を得た。
A three-point bending test was conducted in which a stress was applied to the reaction sintered body so that it was pushed out from behind, and the following results were obtained.

本発明…破断まで一体であつた。 The present invention was one piece until it broke.

比較例…変位0.09mmで剥離した。 Comparative example...Peeling occurred at a displacement of 0.09 mm.

(3) 反応焼結体の一表面にNi−Cr合金を溶射し
て接合した。
(3) A Ni-Cr alloy was thermally sprayed onto one surface of the reaction sintered body to bond it.

機械加工により、溶射部の厚さを3mmに仕上
げた。3点曲げ試験による評価は、つぎのとお
りである。
By machining, the thickness of the sprayed part was finished to 3mm. The evaluation by the three-point bending test is as follows.

本発明…窒化珪素反応焼結体にクラツクが生じ
たが、剥離はしなかつた。
In the present invention... Cracks occurred in the silicon nitride reaction sintered body, but no peeling occurred.

比較例…焼結体が割れるとともに、金属層との
間が剥離した。
Comparative example: The sintered body cracked and peeled off from the metal layer.

Claims (1)

【特許請求の範囲】 1 内部がち密であつて、表層部が接合材の浸透
を可能にする程度に多孔質である接合用の窒化珪
素反応焼結体。 2 表層部の気孔率が35%以上である特許請求の
範囲第1項の接合用の窒化珪素反応焼結体。 3 平均粒径が15μ以下の珪素粉末を成形し、成
形体を1100℃以上であつて珪素の融点よりも低い
温度に加熱して予備焼結し、表層部の気孔率が内
部のそれよりも高い予備焼結体を得、この予備焼
結体に1100〜1500℃の温度において窒素を作用さ
せて窒化することにより内部がち密で表層部が多
孔質である窒化珪素反応焼結体をつくることから
なる接合用の窒化珪素反応焼結体お製造方法。 4 原料珪素粉末として0:0.5%以上を含有す
るものを使用する特許請求の範囲第3項の製造方
法。 5 原料珪素粉末に、ホウ素またはその化合物を
Bとして0.15〜5.0重量%、ならびに(または)
Fe、Co、Ni、Cr、Mo、Mn、W、Ti、Zr、Ta、
Nb、V、Mg、Ca、Cu、ZnおよびSnからえらん
だ1種または2種以上の元素またはその化合物を
上記元素として(2種以上の場合は合計量で)
0.05〜2.0重量%添加して成形する特許請求の範
囲第3項の製造方法。 6 内部がち密であつて表層部が多孔質である接
合用の窒化珪素反応焼結体の表面に接合材を適用
し、その一部を表層部の気孔内に浸透させて固化
する接合手段により、接合用の窒化珪素反応焼結
体と同様な焼結体または他の材料とを接合するこ
とからなる窒化珪素反応焼結体の接合方法。 7 接合材が接着剤であつて、接合用の窒化珪素
反応焼結体相互、またはこれと他の材料とを接合
する特許請求の範囲第6項の接合方法。 8 接合材が加熱により溶融または少なくとも軟
化状態にある金属、または無機もしくは有機の化
合物であつて、接合手段が鋳ぐるみ、ロウ付けま
たは溶射である接合用の窒化珪素反応焼結体と金
属または無機もしくは有機の化合物の部材とを接
合する特許請求の範囲第6項の接合方法。
[Claims] 1. A silicon nitride reaction sintered body for bonding, which has a dense interior and a surface layer that is porous enough to allow penetration of a bonding material. 2. The silicon nitride reaction sintered body for bonding according to claim 1, wherein the porosity of the surface layer portion is 35% or more. 3 Silicon powder with an average particle size of 15μ or less is molded, and the molded body is pre-sintered by heating to a temperature of 1100°C or higher but lower than the melting point of silicon, so that the porosity of the surface layer is lower than that of the inside. To obtain a high-quality pre-sintered body and to nitride this pre-sintered body with nitrogen at a temperature of 1100 to 1500°C to produce a silicon nitride reaction sintered body with a dense interior and a porous surface layer. A method for manufacturing a silicon nitride reaction sintered body for bonding. 4. The manufacturing method according to claim 3, in which silicon powder containing 0:0.5% or more is used as the raw material silicon powder. 5 0.15 to 5.0% by weight of boron or its compound as B to the raw silicon powder, and (or)
Fe, Co, Ni, Cr, Mo, Mn, W, Ti, Zr, Ta,
The above elements include one or more elements selected from Nb, V, Mg, Ca, Cu, Zn, and Sn, or their compounds (in the case of two or more, the total amount)
The manufacturing method according to claim 3, wherein 0.05 to 2.0% by weight is added and molded. 6 By applying a bonding material to the surface of a silicon nitride reaction sintered body for bonding, which has a dense interior and a porous surface layer, a part of the bonding material penetrates into the pores of the surface layer and solidifies. A method for joining a silicon nitride reaction sintered body, which comprises joining a silicon nitride reaction sintered body for bonding to a similar sintered body or another material. 7. The bonding method according to claim 6, wherein the bonding material is an adhesive, and the silicon nitride reaction sintered bodies for bonding are bonded to each other or to another material. 8 Silicon nitride reaction sintered bodies for bonding, where the bonding material is a metal or inorganic or organic compound that is melted or at least softened by heating, and the bonding method is casting, brazing, or thermal spraying, and a metal or inorganic compound. or a member made of an organic compound.
JP11729583A 1983-06-29 1983-06-29 Method of bonding silicon nitride reaction sintered body Granted JPS6011277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11729583A JPS6011277A (en) 1983-06-29 1983-06-29 Method of bonding silicon nitride reaction sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11729583A JPS6011277A (en) 1983-06-29 1983-06-29 Method of bonding silicon nitride reaction sintered body

Publications (2)

Publication Number Publication Date
JPS6011277A JPS6011277A (en) 1985-01-21
JPH046680B2 true JPH046680B2 (en) 1992-02-06

Family

ID=14708215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11729583A Granted JPS6011277A (en) 1983-06-29 1983-06-29 Method of bonding silicon nitride reaction sintered body

Country Status (1)

Country Link
JP (1) JPS6011277A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7022817B2 (en) * 2018-03-29 2022-02-18 京セラ株式会社 Ceramic structure

Also Published As

Publication number Publication date
JPS6011277A (en) 1985-01-21

Similar Documents

Publication Publication Date Title
JPS6256107B2 (en)
US6613462B2 (en) Method to form dense complex shaped articles
JPH06506187A (en) Method of manufacturing ceramic bodies
EP0504441A1 (en) High strength composite ceramic structure and process for producing the same
JPH046680B2 (en)
JPH01212283A (en) Production of joined body of ceramics and metal
JPS5888171A (en) Manufacture of high density silicon nitride sintered body
JPS6041634B2 (en) Method for manufacturing high-density silicon nitride reaction sintered body
JPS59152271A (en) Manufacture of high density silicon nitride reaction sintered body
JP4976626B2 (en) Sintered alloy material, method for producing the same, and mechanical structural member using the same
JPS59217675A (en) Silicon nitride reaction sintered body composite material and manufacture
JPH0513906B2 (en)
JPH0683890B2 (en) Method for manufacturing wear resistant member for molding machine
JPH05156319A (en) Cylindrical or columnar ceramic-metal composite with functionally gradient layer radially formed and its production
JPH0453829B2 (en)
JPH0513908B2 (en)
JP3405598B2 (en) Injection mold
JPS59207877A (en) Manufacture of high density silicon nitride reaction sintered body
USH1861H (en) Composite production with continuous metal and ceramic phases
JPS62227005A (en) Ceramic molding and its production
JP5582813B2 (en) Manufacturing method of ceramic member for molten metal
JPH10130701A (en) Intermetallic compound composite material and its production
JPH02296777A (en) High-strength ceramics sintered body containing whisker and production thereof
JPH0585506B2 (en)
JPS63260866A (en) Composite sintered body and manufacture