JPS62227005A - Ceramic molding and its production - Google Patents

Ceramic molding and its production

Info

Publication number
JPS62227005A
JPS62227005A JP61071669A JP7166986A JPS62227005A JP S62227005 A JPS62227005 A JP S62227005A JP 61071669 A JP61071669 A JP 61071669A JP 7166986 A JP7166986 A JP 7166986A JP S62227005 A JPS62227005 A JP S62227005A
Authority
JP
Japan
Prior art keywords
powder
metal
periodic table
layer
boride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61071669A
Other languages
Japanese (ja)
Other versions
JPH045722B2 (en
Inventor
Nobuhiro Sata
佐多 延博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61071669A priority Critical patent/JPS62227005A/en
Publication of JPS62227005A publication Critical patent/JPS62227005A/en
Publication of JPH045722B2 publication Critical patent/JPH045722B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily produce a wear-resistant ceramic molding having high strength and high toughness by packing a mixture composed of excess metallic powder and B powder into a casting mold and coating the surface thereof with the B powder of the amt. equiv. to the amt. of the metallic powder, then igniting the bottom of the casting mold. CONSTITUTION:The mixture contg. the metallic powder of the group IVA or VA of periodic table and B powder at the ratio at which the former is stoichiometrically excessive is packed into the casting mold. Said mixture is further coated thereon with the mixture layer contg. the above-mentioned metal and the B powder at the ratio at which the latter is incorporated approximately at the stoichiometric amt. The part near the inside bottom of the casting mold is then ignited to progress an exothermic reaction while pressing from above in a vacuum. The ceramic molding formed with the wear-resistant hard ceramic layer which is integrally bound with the base body and does not exfoliate on the surface of the base body consisting of the boride of the above-mentioned metal and the bond metal or the alloy and having the high strength and high toughness is thus obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は一体的に結合した硬質表面層をもつセラミック
ス成形体及びその製造方法に関するものである。さらに
詳しくいえば、本発明は、切削工具や耐摩耗用材料とし
て好適な、高強度及び高靭性?有するホウ化物−金属複
合材料から成る成形体の表面に、硬質セラミックス層が
一体的に形成された新規な構造体及びこのものを簡単な
装置を用い簡単な手段で製造する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a ceramic molded body having an integrally bonded hard surface layer and a method for producing the same. More specifically, the present invention provides high strength and high toughness materials suitable for cutting tools and wear-resistant materials. The present invention relates to a novel structure in which a hard ceramic layer is integrally formed on the surface of a molded body made of a boride-metal composite material, and a method for producing this structure by simple means using a simple device.

従来の技術 従来、硬質層を表面に有する成形体の製造方法としては
、例えば金属から成る基体の表面に、CVD法、PvD
法、溶射法などによって硬質セラミックス層をコーティ
ングする方法、あるいは浸炭処理や窒化処理などによっ
て、該金属表面を硬質化する方法などが知られている。
BACKGROUND ART Conventionally, as a method for manufacturing a molded body having a hard layer on the surface, for example, CVD, PvD, etc. are applied to the surface of a base made of metal.
A method of coating a hard ceramic layer by a method such as a metal coating method or a thermal spraying method, or a method of hardening the metal surface by a carburizing treatment, a nitriding treatment, etc. are known.

しかしながら、従来のコーティング法による硬質層の形
成方法においては、硬質層と基体金属との熱応力差によ
り、該硬質層が剥離し尋ずいという欠点を伴う。この剥
離を防ぐためには、種類の異なった複数の層から成るコ
ーティングを行う必要があるが、これ?行うには、製造
工程が著しく複雑となる結果、コスト高になるの?免れ
ない。
However, the conventional method of forming a hard layer using a coating method has the disadvantage that the hard layer easily peels off due to the difference in thermal stress between the hard layer and the base metal. In order to prevent this peeling, it is necessary to apply a coating consisting of multiple layers of different types, but this? Will doing so significantly complicate the manufacturing process and result in higher costs? I can't escape it.

一方、浸炭処理や窒化処理によシ金属表面全硬質化する
方法は、前記のコーティング法に比較してコストを低く
することはできるとしても、十分に硬質のものが得られ
ないという欠点がある。
On the other hand, although the method of completely hardening the metal surface by carburizing or nitriding can reduce the cost compared to the coating method described above, it has the disadvantage of not being able to obtain a sufficiently hard material. .

発明が解決しようとする問題点 本発明の目的は、このような従来の硬質層2表面に有す
る成形体がもつ欠点を改良し、切削工具や耐摩耗用材料
として好適な、高強度及び高靭性を備え、しかも表面硬
質層が一体的に基体に結合して剥離することのない新規
なセラミックス成形体を提供することである。
Problems to be Solved by the Invention The purpose of the present invention is to improve the drawbacks of such a conventional molded product on the surface of the hard layer 2, and to create a material with high strength and high toughness suitable for cutting tools and wear-resistant materials. It is an object of the present invention to provide a novel ceramic molded body having a hard surface layer which is integrally bonded to a base and does not peel off.

問題点全解決するための手段 本発明者は、高強度と高靭性とを合わせ有し、かつ剥離
しない硬質層を表面にもつセラミックス成形体を開発す
るために鋭意研究を重ねた結果、ある種の金属ホウ素化
物を金属又は合金で結合した基体の艮面に、硬質セラミ
ックス層を一体的に形成させることによシその目的全達
成しうろこと全見出し、この知見に基づいて本発明全な
すに至った。
Means for Solving All Problems The present inventor has conducted extensive research to develop a ceramic molded body that has both high strength and high toughness and has a hard layer on its surface that does not peel off. The present invention has been based on the discovery that all of the above objects can be achieved by integrally forming a hard ceramic layer on the surface of a substrate made of metal borides bonded with metals or alloys. It's arrived.

すなわち、本発明は、周期表第IVA族及び第VA族か
ら選ばれた少なくとも1種の金属のホウ素化物と結合用
金属又は合金とから成る基体表面に、硬質セラミックス
層?一体的に形成させたセラミックス成形体を提供する
ものである。
That is, the present invention provides a hard ceramic layer on the surface of a substrate consisting of a boride of at least one metal selected from Groups IVA and VA of the periodic table and a bonding metal or alloy. The present invention provides an integrally formed ceramic molded body.

本発明の成形体は、周期表第IVA族及び第VA族に属
する金属、すなわちチタン、ジルコニウム、ハフニウム
、ニオブ、タンタルの中から選ばれた少なくとも1種の
ホウ化物?、結合用金属又は合金で結合したホウ化物−
金属複合材料全基体とし、その表面部分に硬質セラミッ
クス層を設けた組織構造を有している。結合用金属とし
ては、上記のホウ化物の成分として用い九周期表第IV
A族及び第VA族の金属や、ホウ素と反応させたときに
ホウ化物を生成しない周期表第IB族の金属すなわち銅
、金、銀あるいはそれらの合金を用いるのが、その製造
が容易であるという点で有利である。
The molded article of the present invention is made of at least one boride selected from metals belonging to Groups IVA and VA of the periodic table, ie, titanium, zirconium, hafnium, niobium, and tantalum. , borides bonded with bonding metals or alloys.
It has a structure in which the entire base is made of metal composite material and a hard ceramic layer is provided on the surface portion. The bonding metal used as a component of the above-mentioned boride is the metal from the ninth periodic table IV.
It is easier to manufacture using metals from Groups A and VA, or metals from Group IB of the periodic table that do not produce borides when reacted with boron, such as copper, gold, silver, or alloys thereof. It is advantageous in this respect.

この基体における組成としては、金属ホウ素化物50〜
99重量%、結合用金属又は合金50〜1重量%の範囲
が好ましい。
The composition of this substrate is 50 to 50% metal boride.
A range of 99% by weight and 50-1% by weight of the bonding metal or alloy is preferred.

まな、基体表面に設けられる硬質セラミックス層は、硬
質セラミックス例えば金属の窒化物、炭化物、ホウ化物
、酸化物自体でもよいし、あるいは硬質材料の粉末例え
ばこれらの金属化合物、炭化ホウ素、炭化ケイ素、窒化
ホウ素、ダイヤモンドなどの粉末を分散したセラミック
スでもヨイ。
The hard ceramic layer provided on the surface of the substrate may be a hard ceramic such as a metal nitride, carbide, boride, or oxide itself, or a hard material powder such as a metal compound of these metals, boron carbide, silicon carbide, or nitride. Ceramics containing dispersed powders such as boron and diamond are also suitable.

特に好ましいのは、基体の構成成分の金属ホウ化物自体
で構成された層である。
Particularly preferred are layers composed of the metal borides themselves, which are constituents of the substrate.

この硬質セラミックス層は、基体の表面に少なくとも1
rrrlnの厚さで形成させれば十分である。
This hard ceramic layer has at least one layer on the surface of the substrate.
It is sufficient to form it with a thickness of rrrln.

本発明の成形体においては、上記のホウ素化物−金属複
合材料から成る基体と硬質セラミックス層が一体的に結
合していることが必要であるが、このような成形体は例
えば以下の方法によって製造することができる。
In the molded body of the present invention, it is necessary that the substrate made of the above-mentioned boride-metal composite material and the hard ceramic layer are integrally bonded, and such a molded body can be manufactured, for example, by the following method. can do.

すなわち、(A)基体中に存在するホウ化物を生成させ
るのに必要な周期表第IVA族又は第VA族に属する金
属の粉末とホウ素粉末とを、前者が化学量論的に過剰に
なるような割合で混合し、この混合物・と鋳型内に充て
んし、次にこの表面r(B)周期表第IVA族又は第V
A族に属する金属の粉末とホウ素粉末との、化学量論的
量又は後者が過剰になる割合の混合物で被覆したのち、
この鋳型の底部付近で強熱着火させ、発熱反応が上部に
向って漸次伝播するようにしてホウ素化物の生成と金属
の溶融を行わせる。この反応は、ホウ素化物の生成?確
実にし、かつち密化のために、真空下で上方から加圧し
ながら行うことが必要である。
That is, (A) powder of a metal belonging to Group IVA or Group VA of the periodic table and boron powder, which are necessary to generate the boride present in the substrate, are mixed so that the former is in stoichiometric excess. This mixture is mixed in a suitable proportion and filled into a mold, and then the surface r(B) of Group IVA or Group V of the periodic table is mixed.
After coating with a mixture of powder of a metal belonging to group A and boron powder in stoichiometric amounts or in a proportion in which the latter is in excess,
High heat is ignited near the bottom of the mold, and the exothermic reaction gradually propagates toward the top, producing boride and melting the metal. Does this reaction produce boride? In order to be sure and to make it dense, it is necessary to perform it under vacuum while applying pressure from above.

この反応により、基体部分において周期表第IVA族又
は第VA族の金属のホウ素化物が生成するとともに、過
剰の金属が溶融して、このホウ素化物全結合し、ホウ素
化物−金属複合材料?形成する。一方、表面部分には、
同じ金属のホウ素化物のみから成る硬質セラミックス層
が形成され、これは基体部分に一体的に結合される。
As a result of this reaction, a boride of a metal belonging to Group IVA or Group VA of the periodic table is generated in the base portion, and the excess metal is melted and the boride is fully bonded to form a boride-metal composite. Form. On the other hand, on the surface part,
A hard ceramic layer consisting exclusively of borides of the same metal is formed, which is integrally bonded to the base part.

前記の(A)において、周期表第IVA族又は第VA族
の金属を過剰に用いて結合剤とする代りに、その過剰分
?ホウ素と反応しない金属例えば周期表第IB族の金属
又はその合金で置きかえることもできる。また硬質セラ
ミックス層を形成させる原料として、前記の(A)で用
いた混合物に、硬質材料の粉末例えばB4C!、 AA
20.、ZrO□、Tie、Sin。
In the above (A), instead of using an excess of a metal from Group IVA or Group VA of the periodic table as a binder, the excess metal is used as a binder. It is also possible to replace it with a metal that does not react with boron, such as a metal from group IB of the periodic table or an alloy thereof. Further, as a raw material for forming a hard ceramic layer, hard material powder such as B4C! is added to the mixture used in (A) above. , A.A.
20. , ZrO□, Tie, Sin.

立方晶窒化ホウ素、ダイヤモンドなどの粉末を加えたも
のを用いることもできる。この硬質材料の粉末の配合割
合としては10〜95重量%の範囲が適当である。
It is also possible to use powders of cubic boron nitride, diamond, etc. added thereto. The blending ratio of this hard material powder is preferably in the range of 10 to 95% by weight.

この方法は加圧しながら行うのが必要であるが、この加
圧は、バネ圧縮や油圧プレス、静水圧縮など任意の手段
により、少なくとも50 Kg/ caの圧力で行われ
る。この加圧は、発熱反応の進行方向と平行して圧力が
与えられるようにして行うのが好ましい。
It is necessary to carry out this method under pressure, and this pressurization is carried out by any means such as spring compression, hydraulic press, isostatic compression, etc., at a pressure of at least 50 Kg/ca. This pressurization is preferably carried out in such a manner that the pressure is applied parallel to the direction of progress of the exothermic reaction.

次に、反応の開始のための着火は、例えば2本のタング
ステン線の端部に白金線を溶接した着火治具を鋳型の底
部付近に挿入し、電流を通すことによって行うことがで
きる。
Next, ignition for starting the reaction can be performed by inserting an ignition jig, for example, two tungsten wires with platinum wire welded to the ends near the bottom of the mold, and passing an electric current through the jig.

本発明の成形体における硬質セラミックス層のち密化全
いっそう確実にするためには、硬質セラミックス層を形
成嘔せるための原料混合物(B)の表面に金属銅板のよ
うな吸熱板を載置し、反応に際し、吸熱冷却全助長させ
るのが望ましい。
In order to further ensure the densification of the hard ceramic layer in the molded article of the present invention, a heat absorbing plate such as a metal copper plate is placed on the surface of the raw material mixture (B) for forming the hard ceramic layer. During the reaction, it is desirable to fully promote endothermic cooling.

本発明の成形体は、鋳型の形状?適当に選ぶことにより
任意の形状、例えば板状、棒状、円柱状、筒状、ブロッ
ク状などに成形することができる。
Does the molded article of the present invention have the shape of a mold? By selecting an appropriate material, it can be formed into any shape, such as a plate, rod, cylinder, cylinder, or block.

発明の効果 本発明によると、高強度及び高靭性を有するホウ化物−
金属複合材料から成る基体の表面に、硬質セラミックス
層を有するセラミックス成形体音、簡単な装置と操作で
製造することができる。
Effects of the Invention According to the present invention, a boride having high strength and high toughness is produced.
A ceramic molded body having a hard ceramic layer on the surface of a base made of a metal composite material can be manufactured using simple equipment and operations.

本発明のセラミックス成形体は、例えば切削工具や耐摩
耗用材料として好適に用いられる。
The ceramic molded body of the present invention is suitably used as, for example, a cutting tool or a wear-resistant material.

実施例 次に実施例により本発明?さらに詳細に説明する。Example Next, is the present invention based on examples? This will be explained in more detail.

実施例1 減圧可能な容器内に黒鉛で熱遮断した金属製鋳型を設置
し、この鋳型内にチタンとホウ素の粉末全モル比11:
9の割合で十分に混合した混合粉末を充てんし、さらに
、チタンとホウ素の粉末をモル比1:2の割合で十分に
混合した混合粉末を約2閣の厚さで充てんした。
Example 1 A metal mold heat-insulated with graphite was placed in a container that could be depressurized, and the total molar ratio of titanium and boron powders was 11:
The container was filled with a mixed powder thoroughly mixed at a ratio of 9:9, and further filled with a mixed powder where titanium and boron powders were thoroughly mixed at a molar ratio of 1:2 to a thickness of about 2 cm.

次に、前記のチタンとホウ素とのモル比が1:2の混合
粉末層の表面に金属銅板が接するようにして、上下よ!
72001f/dの圧力をかけ、バネを圧縮すると同時
に圧粉を行い、着火治具(2本のタングステン線の端部
に0.2 rrrm径の白金線全溶接したもの)に電流
全瞬時流して、チタンとホウ素とのモル比が11=9の
混合粉末層の端部に着火し、反応を開始させた。
Next, a metallic copper plate is brought into contact with the surface of the mixed powder layer with a molar ratio of titanium and boron of 1:2, and the top and bottom are aligned!
A pressure of 72001 f/d was applied to compress the spring and at the same time compaction was performed, and a current was instantaneously passed through the ignition jig (platinum wire with a diameter of 0.2 rrrm was fully welded to the ends of two tungsten wires). , the end of the mixed powder layer with a molar ratio of titanium and boron of 11=9 was ignited to start a reaction.

反応が圧粉体の端部から進展するに従って、約3000
 Kに加熱された燃焼帯において、ホウ化チタンの合成
反応と過剰量のチタンの溶融が生じ、ち密化が進行し、
反応によって収縮し九分はバネの伸張によって遂次捕わ
れ、ち密化に必要な圧力が連続的に試料に加えられる。
As the reaction progresses from the edge of the green compact, approximately 3000
In the combustion zone heated to K, the synthesis reaction of titanium boride and the melting of an excess amount of titanium occur, and densification progresses.
The contraction caused by the reaction is successively captured by the extension of the spring, and the pressure necessary for densification is continuously applied to the sample.

反応終了後、冷却して成形体を鋳型より取り出したとこ
ろ、: TiB−Ti複合材料から成る基体の表面に、
耐剥離性に優れたニホウ化チタン層?有する成形体が得
られた。
After the reaction was completed, the molded body was cooled and taken out from the mold. On the surface of the substrate made of TiB-Ti composite material,
Titanium diboride layer with excellent peeling resistance? A molded article having the following properties was obtained.

実施例2 基体?形成するための原料組成物として、チタン粉末と
ホウ素粉末と全モル比1:2の割合で含有し、かつ銅粉
末全3重量%含有する混合粉末を用い、硬質層を形成す
るための原料組成物として、前記混合粉末に、B4C粉
末50重量%?配合した混合粉末を用いて、実施例1と
同様な方法で、TiB2− Cu複合材料から成る基体
の表面に、耐剥離性に優れたB4C分散層?有する成形
体?得た。
Example 2 Substrate? As a raw material composition for forming a hard layer, a mixed powder containing titanium powder and boron powder at a total molar ratio of 1:2 and a total of 3% by weight of copper powder was used. As a product, 50% by weight of B4C powder is added to the mixed powder? Using the blended mixed powder, a B4C dispersion layer with excellent peeling resistance was formed on the surface of a substrate made of a TiB2-Cu composite material in the same manner as in Example 1. Molded body with? Obtained.

実施例3 基体?形成するための原料組成物として、ジルコニウム
粉末とホウ素粉末とをモル比1:1の割合で含有する混
合粉末を用い、硬質層を形成するための原料組成物とし
て、ジルコニウム粉末とホウ素粉末とをモル比1:2の
割合で含有する混合粉末を用いて、実施例1と同様な方
法でZrB2−Zr複合材料から成る基体の表面に、耐
剥離性に優れたZrB、硬質層?有する成形体金得た。
Example 3 Substrate? As the raw material composition for forming the hard layer, a mixed powder containing zirconium powder and boron powder at a molar ratio of 1:1 is used, and as the raw material composition for forming the hard layer, zirconium powder and boron powder are used. Using a mixed powder containing a molar ratio of 1:2, a hard layer of ZrB with excellent peeling resistance was applied to the surface of a substrate made of a ZrB2-Zr composite material in the same manner as in Example 1. A molded body with gold was obtained.

実施例4 基体全形成するための原料組成物として、チタン粉末と
ホウ素粉末とをモル比11:9の割合でき有する混合粉
末を用い、硬質層を形成する念めの原料組成物として、
前記粉末にC!BN (立方晶窒化ホウ素)粉末20重
量%ヲ配合した混合粉末?用いて、実施例1と同様な方
法で、TiB−Ti複合材料から成る基体の表面に、耐
剥離性に優れたCBN分散層を有する成形体を得た。
Example 4 A mixed powder containing titanium powder and boron powder at a molar ratio of 11:9 was used as a raw material composition for forming the entire base, and as a raw material composition for forming a hard layer,
C! A mixed powder containing 20% by weight of BN (cubic boron nitride) powder? Using the same method as in Example 1, a molded article having a CBN dispersed layer with excellent peeling resistance on the surface of a substrate made of a TiB-Ti composite material was obtained.

実施例5 基体を形成するための原料組成物として、ニオブ粉末と
ホウ素粉末とをモル比l:2の割合で含有し、かつ銅粉
末全3重量%含有する混合粉末を用い、硬質層を形成す
るための原料組成物として、ニオブ粉末とホウ素粉末の
モル比1:2の混合粉末を用いて、実施例1と同様な方
法で、Nt)B、 −Cu複合材料から成る基体の表面
に、耐剥離性に優れたNbB、層を有する成形体を得た
Example 5 As a raw material composition for forming a substrate, a mixed powder containing niobium powder and boron powder at a molar ratio of 1:2 and a total of 3% by weight of copper powder was used to form a hard layer. Using a mixed powder of niobium powder and boron powder at a molar ratio of 1:2 as a raw material composition for the process, in the same manner as in Example 1, it was applied to the surface of a substrate made of Nt)B, -Cu composite material. A molded article having a NbB layer with excellent peeling resistance was obtained.

実施例6 基体を形成する友めの原料組成物として、タンタル粉末
とホウ素粉末と全モル比3:4の割合で含有し、かつ銅
粉末を3重量%含有する混合粉末?用い、硬質層を形成
するための原料組成物として、タンタル粉末とホウ素粉
末のモル比3:4の混合粉末金層いて、実施例1と同様
な方法で、Ta3B4− Cu複合材料から成る基体の
表面に、耐剥離性に優れたTa、B4層?有する成形体
を得た。
Example 6 A mixed powder containing tantalum powder and boron powder at a total molar ratio of 3:4 and 3% by weight of copper powder was used as a companion raw material composition for forming the base. A mixed powder gold layer with a molar ratio of tantalum powder and boron powder of 3:4 was used as the raw material composition for forming the hard layer, and a substrate made of Ta3B4-Cu composite material was prepared in the same manner as in Example 1. Ta and B4 layers with excellent peeling resistance on the surface? A molded article having the following properties was obtained.

Claims (1)

【特許請求の範囲】 1 周期表第IVA族及び第VA族から選ばれた少なくと
も1種の金属のホウ化物と結合用金属又は合金とから成
る基体表面に、硬質セラミックス層を一体的に形成させ
たセラミックス成形体。 2 鋳型内に、(A)周期表第IVA族及び第VA族から
選ばれた少なくとも1種の金属の粉末とホウ素粉末とを
、金属ホウ化物生成に際し、前者が化学量論的に過剰に
なる割合で含む混合物を充てんし、さらにその上を、(
B)周期表第IVA族及び第VA族から選ばれた少なくと
も1種の金属の粉末とホウ素粉末とを、後者がほぼ化学
量論的量になる割合で含む混合物の層で被覆したのち、
鋳型内底部に着火して真空下上方から加圧しながら発熱
反応を進行させることを特徴とする周期表第IVA族及び
第VA族から選ばれた少なくとも1種の金属のホウ化物
と結合用金属又は合金とから成る基体表面に、硬質セラ
ミック層を一体的に形成させたセラミックス成形体の製
造方法。 3 鋳型内に、(A)周期表第IVA族及び第VA族から
選ばれた少なくとも1種の金属の粉末とホウ素粉末とを
、金属ホウ化物生成に際し、前者が化学量論的に過剰に
なる割合で含む混合物を充てんし、さらにその上を、(
B)(A)に対し硬質セラミックス形成用成分を加えた
混合物の層で被覆したのち、鋳型内底部に着火して真空
下上方から加圧しながら発熱反応を進行させることを特
徴とする周期表第IVA族及び第VA族から選ばれた少な
くとも1種の金属のホウ化物と結合用金属又は合金とか
ら成る基体表面に、硬質セラミックス層を一体的に形成
させたセラミックス成形体の製造方法。 4 鋳型内に、(A)周期表第IVA族及び第VA族から
選ばれた少なくとも1種の金属の粉末と、周期表第 I
B族から選ばれた少なくとも1種の金属の粉末と、ホウ
素粉末とを含む混合物を充てんし、さらにその上を、(
B)周期表第IVA族及び第VA族から選ばれた少なくと
も1種の金属の粉末とホウ素粉末の混合物に硬質セラミ
ックス形成用成分を加えた混合物の層で被覆したのち、
鋳型内底部に着火して真空下上方から加圧しながら発熱
反応を進行させることを特徴とする周期表第IVA族及び
第VA族から選ばれた少なくとも1種の金属のホウ化物
と結合用金属又は合金とから成る基体表面に、硬質セラ
ミックス層を一体的に形成させたセラミックス成形体の
製造方法。
[Claims] 1. A hard ceramic layer is integrally formed on the surface of a substrate consisting of a boride of at least one metal selected from Groups IVA and VA of the periodic table and a bonding metal or alloy. ceramic molded body. 2. In the mold, (A) powder of at least one metal selected from Groups IVA and VA of the periodic table and boron powder are placed in a stoichiometric excess of the former during metal boride production. Fill with a mixture containing the following proportions, and then top it with (
B) after coating with a layer of a mixture containing a powder of at least one metal selected from Groups IVA and VA of the periodic table and boron powder in approximately stoichiometric proportions of the latter;
A boride of at least one metal selected from Groups IVA and VA of the periodic table, and a bonding metal or A method for manufacturing a ceramic molded body in which a hard ceramic layer is integrally formed on the surface of a base made of an alloy. 3. In a mold, (A) powder of at least one metal selected from Groups IVA and VA of the periodic table and boron powder are placed in a stoichiometric excess of the former during metal boride production. Fill with a mixture containing the following proportions, and then top it with (
B) After coating (A) with a layer of a mixture containing a component for forming hard ceramics, the inner bottom of the mold is ignited and an exothermic reaction proceeds while pressurizing from above under vacuum. A method for manufacturing a ceramic molded body, in which a hard ceramic layer is integrally formed on the surface of a substrate made of a boride of at least one metal selected from Group IVA and Group VA and a bonding metal or alloy. 4 In the mold, (A) powder of at least one metal selected from Groups IVA and VA of the periodic table;
A mixture containing powder of at least one metal selected from Group B and boron powder is filled, and the mixture is filled with (
B) After coating with a layer of a mixture of a powder of at least one metal selected from Groups IVA and VA of the periodic table and boron powder and a hard ceramic-forming component added,
A boride of at least one metal selected from Groups IVA and VA of the periodic table, and a bonding metal or A method for manufacturing a ceramic molded body in which a hard ceramic layer is integrally formed on the surface of a base made of an alloy.
JP61071669A 1986-03-28 1986-03-28 Ceramic molding and its production Granted JPS62227005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61071669A JPS62227005A (en) 1986-03-28 1986-03-28 Ceramic molding and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61071669A JPS62227005A (en) 1986-03-28 1986-03-28 Ceramic molding and its production

Publications (2)

Publication Number Publication Date
JPS62227005A true JPS62227005A (en) 1987-10-06
JPH045722B2 JPH045722B2 (en) 1992-02-03

Family

ID=13467230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61071669A Granted JPS62227005A (en) 1986-03-28 1986-03-28 Ceramic molding and its production

Country Status (1)

Country Link
JP (1) JPS62227005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179006A (en) * 1987-01-20 1988-07-23 Agency Of Ind Science & Technol Composite ceramic molding and its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518615A (en) * 1974-07-10 1976-01-23 Yoshinobu Myaji TOJOCHUKEI JABARA
JPS6123705A (en) * 1984-07-10 1986-02-01 Tatsuro Kuratomi Diamond tool material and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518615A (en) * 1974-07-10 1976-01-23 Yoshinobu Myaji TOJOCHUKEI JABARA
JPS6123705A (en) * 1984-07-10 1986-02-01 Tatsuro Kuratomi Diamond tool material and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179006A (en) * 1987-01-20 1988-07-23 Agency Of Ind Science & Technol Composite ceramic molding and its production
JPH0356284B2 (en) * 1987-01-20 1991-08-27

Also Published As

Publication number Publication date
JPH045722B2 (en) 1992-02-03

Similar Documents

Publication Publication Date Title
US5326380A (en) Synthesis of polycrystalline cubic boron nitride
JPS6012991B2 (en) Manufacturing method of sintered body for high hardness tools
CA2127490A1 (en) Method of manufacturing a shaped article from a powdered precursor
CA1253674A (en) Reaction bonded carbide, nitride, boride, silicide or sulfide bodies
JPH06506187A (en) Method of manufacturing ceramic bodies
JPS62227005A (en) Ceramic molding and its production
EP0731186B1 (en) Composite material and process for producing the same
JP4362582B2 (en) Method for producing sintered metal ceramic titanium silicon carbide
JP2717541B2 (en) Method of forming ceramic layer on metal body
JPS63179006A (en) Composite ceramic molding and its production
US5302340A (en) Method of forming ceramic layer on metallic body
JPS6033336A (en) Crystal boron nitride sintered body and preparation thereof
JPS6357389B2 (en)
JPH0711041B2 (en) Ceramic particle reinforced titanium composite material
JP4566296B2 (en) Method for producing titanium nitride sintered body
JP2927149B2 (en) Method for producing boron nitride-containing inorganic material
JPS6332750B2 (en)
JPS63179031A (en) Metal-ceramics composite formed body and its production
JP2782524B2 (en) High density phase boron nitride based reaction sintered body and method for producing the same
JPS6353150B2 (en)
JPH10101433A (en) Titanium boride-silicon carbide-based complex ceramic
JPH0243809B2 (en)
JPH046680B2 (en)
JPH0463030B2 (en)
JPH02116676A (en) Production of molded silicon carbide body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term