JPH0513906B2 - - Google Patents

Info

Publication number
JPH0513906B2
JPH0513906B2 JP58081250A JP8125083A JPH0513906B2 JP H0513906 B2 JPH0513906 B2 JP H0513906B2 JP 58081250 A JP58081250 A JP 58081250A JP 8125083 A JP8125083 A JP 8125083A JP H0513906 B2 JPH0513906 B2 JP H0513906B2
Authority
JP
Japan
Prior art keywords
silicon
silicon nitride
surface layer
sintered body
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58081250A
Other languages
Japanese (ja)
Other versions
JPS59207874A (en
Inventor
Katsuji Kusaka
Jiro Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP58081250A priority Critical patent/JPS59207874A/en
Publication of JPS59207874A publication Critical patent/JPS59207874A/en
Publication of JPH0513906B2 publication Critical patent/JPH0513906B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は、窒化珪素の中空体の製造方法に関す
る。ここで中空体とは、筒状体をはじめとする、
外部に通じる部分を有する形状をいう。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a silicon nitride hollow body. Here, hollow bodies include cylindrical bodies,
A shape that has a part that leads to the outside.

窒化珪素Si3N4の製品のうち、反応焼結体とよ
ばれるものは、ふつう、Si粉末の成形体または
(Si+Si3N4)粉末混合物の成形体に窒素ガスを
作用させて窒化しつつ焼結することにより製造さ
れている。この種の製品は、耐熱衝撃性、硬度、
高温での電気絶縁性および化学的安定性にすぐれ
ているうえ、反応焼結時の収縮がほとんどなく、
寸法精度が高く得られるという利点があるため、
耐火材料、耐摩耗材料、耐食材料、絶縁材料など
の用途に広く使用されている。
Among silicon nitride Si 3 N 4 products, those called reaction sintered bodies are usually made by applying nitrogen gas to a molded body of Si powder or a molded body of (Si + Si 3 N 4 ) powder mixture while nitriding it. Manufactured by sintering. This kind of product has thermal shock resistance, hardness,
It has excellent electrical insulation and chemical stability at high temperatures, and has almost no shrinkage during reaction sintering.
Because it has the advantage of achieving high dimensional accuracy,
Widely used in applications such as fireproof materials, wear-resistant materials, corrosion-resistant materials, and insulation materials.

セラミツクスに共通のことであるが、耐摩耗
性、あるいは耐熱性、断熱性などを要求される用
途に向けるものは、中実である必要がない場合が
あり、むしろ軽量化の要請からは中空の方が好ま
しいことが少なくない。
As is common with ceramics, materials for applications that require wear resistance, heat resistance, heat insulation, etc. may not need to be solid; rather, hollow materials may be used in order to reduce weight. In many cases, it is preferable.

しかし、中空のセラミツクス成形体としては、
これまでわずかにガラスやアルミナの中空球(バ
ルーン)が知られている程度で、しかもその形状
は限定されており、任意の構造部品に使用できる
わでなはい。窒化珪素に関しては、中空体は知ら
れていないし、その製造も試みられたことがなか
つた。
However, as a hollow ceramic molded body,
Until now, only a few hollow spheres (balloons) of glass or aluminium have been known, and their shapes are limited, so they cannot be used for any structural parts. With respect to silicon nitride, hollow bodies are not known and their manufacture has never been attempted.

本発明者は、窒化珪素が耐熱、断熱、耐摩耗、
および耐食性を利用した多くの用途を有するこ
と、およびそれらの用途に向ける部品は多くの場
合に中空体でよいことに着目し、窒化珪素中空体
を提供する意図の下に研究し、本発明に至つた。
The inventor discovered that silicon nitride has heat resistance, heat insulation, wear resistance,
Focusing on the fact that silicon nitride has many uses that take advantage of its corrosion resistance, and that parts for these uses can often be hollow bodies, we conducted research with the intention of providing silicon nitride hollow bodies, and developed the present invention. I've reached it.

窒化珪素中空体は、表層部が窒化珪素反応焼結
体からなり、内部は中空である構造を有する。こ
の構造は、表面の形状および特性だけが問題であ
る用途にとつては、何ら支障なく、ときには好ま
しいものである。
The silicon nitride hollow body has a structure in which the surface layer portion is made of a silicon nitride reaction sintered body and the interior is hollow. This structure is acceptable, and sometimes preferred, for applications where only surface shape and properties are of concern.

このような構造を有する窒化珪素中空体を製造
するには、微細な珪素粉末からなる成形体を焼結
すると表層部の気孔率が内部より高いという現象
を利用する。
In order to manufacture a silicon nitride hollow body having such a structure, the phenomenon that when a molded body made of fine silicon powder is sintered, the porosity of the surface layer is higher than that of the inside is utilized.

すなわち、本発明の窒化珪素中空体の製造方法
は、平均粒径が15μ以下である珪素粉末を成形
し、成形体を予備焼結して内部にくらべ表層部の
気孔率が高い予備焼結体をつくり、予備焼結体に
1100℃以上であつて珪素の融点によりは低い温度
で窒素を作用させて窒化し表層部を窒化珪素に転
化し、ついで珪素の融点以上の温度に加熱して内
部に残存する未反応の珪素を溶融流出させること
からなる。
That is, the method for producing a silicon nitride hollow body of the present invention involves molding silicon powder with an average particle size of 15 μm or less, and pre-sintering the molded body to produce a pre-sintered body with a higher porosity in the surface layer than in the interior. and make it into a pre-sintered body.
Nitrogen is applied at a temperature of 1100°C or higher, but lower depending on the melting point of silicon, to convert the surface layer into silicon nitride by nitriding, and then heated to a temperature higher than the melting point of silicon to remove any unreacted silicon remaining inside. Consists of melting and draining.

より具体的にいえば、表層部の密度が93%以下
であつて内部のそれが95%以上である珪素粉末の
予備焼結体を窒化すれば、表層部はほぼ完全に窒
化珪素に転化するのに対し、内部は窒素ガスが侵
入し難いため、ほとんどSiのまま残る。
More specifically, if a pre-sintered body of silicon powder with a surface layer density of 93% or less and an internal density of 95% or more is nitrided, the surface layer will almost completely convert to silicon nitride. On the other hand, the interior remains mostly Si because it is difficult for nitrogen gas to penetrate.

Si粉末の平均粒度が15μ以下であることは、表
層部と内部の気孔率が明らかに異なる予備焼結体
を得るために必要である。
It is necessary that the average particle size of the Si powder be 15 μm or less in order to obtain a pre-sintered body in which the porosity of the surface layer portion and the interior portion are clearly different.

本発明の実施に当つては、さきに本発明者が協
働者とともに発明し開示した技術、またはその後
の本発明者の研究成果に従つて、焼結を促進し、
または窒化を促進する物質のいずれか一方、好ま
しくは両方を、原料Si粉末に適量転化することが
推奨される。
In carrying out the present invention, sintering is promoted according to the technology previously invented and disclosed by the present inventor together with collaborators, or the present inventor's subsequent research results,
It is recommended that an appropriate amount of either one, preferably both, of the substance that promotes nitriding be converted into the raw material Si powder.

焼結を促進する物質は、炭素、ホウ素およびア
ルミニウムであつて、とくにホウ素が効果的であ
る。ホウ素は元素または化合物の形でSi粉末に対
しBとして0.15〜5.0重量%添加する。
Substances that promote sintering include carbon, boron, and aluminum, and boron is particularly effective. Boron is added as an element or a compound in an amount of 0.15 to 5.0% by weight to the Si powder.

窒化を促進すう物質であつて焼結性の向上にも
寄与するものは、Fe,Co,Ni,Cr,Mo,Mn,
W,Ti,Zr,Ta,Nb,V,Mg,Ca,Cu,Zn
およびSnであつて、これらからえらんだ1種ま
たは2種以上の元素またはその化合物を、上記元
素として(2種以上の場合は合計量で)0.05〜
2.0重量%添加する。
Substances that promote nitriding and also contribute to improving sinterability are Fe, Co, Ni, Cr, Mo, Mn,
W, Ti, Zr, Ta, Nb, V, Mg, Ca, Cu, Zn
and Sn, one or more elements selected from these or their compounds as the above elements (in the case of two or more types, the total amount) 0.05 ~
Add 2.0% by weight.

予備焼結の雰囲気は、通常行なわれるように不
活性ガスでもよいが、真空中またはH2雰囲気の
方が、表層部に密度の低い層ができやすい傾向が
ある。
The atmosphere for preliminary sintering may be an inert gas as is commonly used, but a vacuum or H 2 atmosphere tends to more easily form a layer with a lower density on the surface layer.

焼結の温度と時間とは、前述したような、内部
が95%以上であつて表層部が93%以下の密度とな
るようにえらぶ。具体的な条件は、Si粉末の粒度
の大小などによる焼結性の差や、添加剤による焼
結促進効果によつて異なるので、それぞれの場合
に応じて実験的に定めればよい。
The sintering temperature and time are selected so that the density is 95% or more in the interior and 93% or less in the surface layer, as described above. The specific conditions may vary depending on the difference in sinterability due to the particle size of the Si powder and the sintering promotion effect of additives, so they may be determined experimentally depending on each case.

Si予備焼結体の窒化は、本発明においても、従
来の窒化珪素反応焼結体の製造に際して行なわれ
ていたところと同じようにして実施できる。
In the present invention, the nitriding of the Si pre-sintered body can be carried out in the same manner as in the production of conventional silicon nitride reaction sintered bodies.

すなわち、一般的には大気圧の窒素ガス雰囲気下
で、1100〜1500℃の温度に加熱する。雰囲気ガス
が、N2のほかにNH3、またはN2やNH3のN2
たは不活性ガスとの混合ガスも使用できる。圧力
は、加圧〜大気圧〜減圧のいずれかの領域でもよ
いが、やや減圧にした方が窒化が速やかに進む傾
向がみられる。
That is, it is generally heated to a temperature of 1100 to 1500°C under a nitrogen gas atmosphere at atmospheric pressure. As the atmospheric gas, in addition to N 2 , NH 3 or a mixed gas of N 2 or NH 3 with N 2 or an inert gas can be used. The pressure may be in any range from increased pressure to atmospheric pressure to reduced pressure, but nitriding tends to proceed more quickly when the pressure is slightly reduced.

窒化反応焼結体の内部に未反応のまま残存する
Siは、その融点すなわち1414℃以上に加熱するこ
とにより溶融し、流出する。表層部に生成した
Si3N4は、通常10〜20%の気孔を有するので、と
くに孔を設けなくても、溶融したSiを流出させる
ことができる。もちろん、目的に応じて孔をあ
け、流出を速やかにしてもよい。
Remains unreacted inside the nitrided sintered body
Si melts and flows out by heating it above its melting point, ie, 1414°C. generated on the surface layer
Since Si 3 N 4 usually has 10 to 20% pores, molten Si can flow out even without providing any pores. Of course, depending on the purpose, holes may be made to speed up the outflow.

このときの雰囲気は、酸化性ガス、不活性ガ
ス、N2、H2の雰囲気でも、あるいはまた真空下
でもよい。酸化雰囲気の方が、SiとSi3N4との濡
れが悪く、孔を通つての流出が容易であることが
経験された。表層のSi3N4層を通してSiを流出さ
せようとする場合は、これと逆に酸化性雰囲気を
避けてSiとSi3N4との濡れをよくし、流出をはか
る方がよい。
The atmosphere at this time may be an atmosphere of oxidizing gas, inert gas, N2 , H2 , or under vacuum. It has been experienced that an oxidizing atmosphere results in poorer wetting of Si and Si 3 N 4 and easier outflow through the pores. When trying to cause Si to flow out through the surface Si 3 N 4 layer, it is better to avoid an oxidizing atmosphere and improve wetting of Si and Si 3 N 4 to facilitate the flow.

本発明によれば、中空の窒化珪素反応焼結体が
直接製造できる。従来は、中空の成形体を用意し
てそれを焼結法および窒化するか、場合によつて
は二以上の部分に分割して製造したものを接合す
るといつた面倒な方法によらざるを得なかつた
が、こうした問題がすべてに解決する。
According to the present invention, a hollow silicon nitride reaction sintered body can be directly produced. Conventionally, it has been necessary to use tedious methods such as preparing a hollow molded body and sintering and nitriding it, or in some cases, manufacturing it in two or more parts and joining them together. However, all these problems will be resolved.

中空体は、必要により内部に他の材料たとえ
ば、種々の金属、無機化合物あるいは、有機化合
物とくに合成樹脂などを充填して、強度を高めた
り、別の性質をもたせたりした複合体として使用
することもできる。
If necessary, the hollow body can be filled with other materials such as various metals, inorganic compounds, or organic compounds, especially synthetic resins, etc., to increase its strength or give it other properties and use it as a composite body. You can also do it.

実施例 平均粒径0.11μのSi微粉末を金型に入れ、500
Kg/cm2の圧力でプレスし、直径30mm×高さ30mmの
円柱に予備成形し、これをさらにラバープレスに
より、2000Kg/cm2の圧力をかけて本成形した。
Example: Put Si fine powder with an average particle size of 0.11μ into a mold, and
It was pressed at a pressure of Kg/cm 2 to preform into a cylinder with a diameter of 30 mm and a height of 30 mm, and this was further formed into a cylinder using a rubber press under a pressure of 2000 Kg/cm 2 .

成形体を、1×10-3Torrの真空中で1375℃×
2時間の加熱により、予備焼結した。
The molded body was heated at 1375℃ in a vacuum of 1×10 -3 Torr.
Preliminary sintering was performed by heating for 2 hours.

予備焼結体は、表層部の厚さ2.5〜3.0mmが密度
約70%であり、その内部はほとんど空孔のない高
密度のものであつた。
The pre-sintered body had a density of approximately 70% in the surface layer with a thickness of 2.5 to 3.0 mm, and the interior was highly dense with almost no pores.

(N2+5%H2)ガス中で、この予備焼結体
を、1350℃×20時間→1380℃×60時間→1410℃×
20時間の加熱により窒化した。
In (N 2 + 5% H 2 ) gas, this pre-sintered body was heated at 1350°C x 20 hours → 1380°C x 60 hours → 1410°C x
It was nitrided by heating for 20 hours.

表層部がSi3N4、内部が未反応Siの焼結体を、
Ar雰囲気中で1500℃に5時間加熱し、内部のSi
を溶融させ、表層部を通つて流出させた。
A sintered body with Si 3 N 4 on the surface and unreacted Si on the inside,
Heated to 1500℃ for 5 hours in Ar atmosphere to remove the internal Si.
was melted and allowed to flow through the surface layer.

得られた中空の窒化珪素反応焼結体は、直径約
24mm×高さ25mmの中空円柱で、Si3N4層の厚さは
2.5〜3.0mmであり、その密度は77%であつた。
The resulting hollow silicon nitride reaction sintered body has a diameter of approximately
It is a hollow cylinder of 24 mm x height 25 mm, and the thickness of the 4 Si 3 N layers is
The diameter was 2.5 to 3.0 mm, and the density was 77%.

実施例 2 平均粒径0.18μのSi微粉末に、Fe2O3粉末1.0%
とB0.5%とを混合し、実施例1と同様に成形し
て、Ar雰囲気中で1385℃×3時間の予備焼結を
行なつた。
Example 2 Fe 2 O 3 powder 1.0% in Si fine powder with an average particle size of 0.18μ
and 0.5% B were mixed, molded in the same manner as in Example 1, and pre-sintered at 1385° C. for 3 hours in an Ar atmosphere.

この焼結体を実施例1と同じ条件で窒化した
後、大気中で1500℃×5時間の加熱をして、未反
応Siを完全に溶融流出させた。
This sintered body was nitrided under the same conditions as in Example 1, and then heated in the air at 1500° C. for 5 hours to completely melt and flow out unreacted Si.

厚さ1.5〜2.0mmの壁で構成された、外形寸法が
直径約24mm×高さ25mmの中空円柱が得られた。
A hollow cylinder with external dimensions of approximately 24 mm in diameter and 25 mm in height was obtained, consisting of walls of 1.5-2.0 mm thickness.

Claims (1)

【特許請求の範囲】 1 平均粒径が15μ以下である珪素粉末を成形
し、成形体を予備焼結して内部にくらべ表層部の
気孔率が高い予備焼結体をつくり、予備焼結体に
1100℃以上であつて珪素の融点よりは低い温度で
窒素を作用させて窒化することにより表層部を窒
化珪素に転化し、ついで珪素の融点以上の温度に
加熱して内部に残存する未反応の珪素を溶融流出
させることからなる窒化珪素中空体の製造方法。 2 原料珪素粉末に、焼結を促進する物質および
(または)窒化を促進する物質を添加して実施す
る特許請求の範囲第1項の製造方法。
[Scope of Claims] 1. Molding silicon powder with an average particle size of 15μ or less, pre-sintering the molded body to create a pre-sintered body with a higher porosity in the surface layer than the inside, and producing a pre-sintered body. to
The surface layer is converted to silicon nitride by nitriding with nitrogen at a temperature of 1100°C or higher but lower than the melting point of silicon, and then heated to a temperature higher than the melting point of silicon to remove any unreacted material remaining inside. A method for manufacturing a silicon nitride hollow body, which comprises melting and flowing silicon. 2. The manufacturing method according to claim 1, which is carried out by adding a substance that promotes sintering and/or a substance that promotes nitriding to the raw silicon powder.
JP58081250A 1983-05-10 1983-05-10 Silicon nitride hollow body and manufacture Granted JPS59207874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58081250A JPS59207874A (en) 1983-05-10 1983-05-10 Silicon nitride hollow body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58081250A JPS59207874A (en) 1983-05-10 1983-05-10 Silicon nitride hollow body and manufacture

Publications (2)

Publication Number Publication Date
JPS59207874A JPS59207874A (en) 1984-11-26
JPH0513906B2 true JPH0513906B2 (en) 1993-02-23

Family

ID=13741141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58081250A Granted JPS59207874A (en) 1983-05-10 1983-05-10 Silicon nitride hollow body and manufacture

Country Status (1)

Country Link
JP (1) JPS59207874A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943401A (en) * 1987-12-21 1990-07-24 Eaton Corporation Process for making silicon nitride articles
JP2021046333A (en) 2019-09-18 2021-03-25 株式会社東芝 Structure and circuit board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621749A (en) * 1979-07-26 1981-02-28 Mitsubishi Electric Corp Detector for abnormality of tool
JPS57200269A (en) * 1981-06-05 1982-12-08 Daido Steel Co Ltd Manufacture of silicon nitrogen reaction sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621749A (en) * 1979-07-26 1981-02-28 Mitsubishi Electric Corp Detector for abnormality of tool
JPS57200269A (en) * 1981-06-05 1982-12-08 Daido Steel Co Ltd Manufacture of silicon nitrogen reaction sintered body

Also Published As

Publication number Publication date
JPS59207874A (en) 1984-11-26

Similar Documents

Publication Publication Date Title
JPS5830264B2 (en) Golden croaker
US20010033038A1 (en) Method of producing metal/ceramic composite, and method of producing porous ceramic body
JPH0513906B2 (en)
US5071685A (en) Ceramic articles, methods and apparatus for their manufacture
JP5117085B2 (en) Metal-ceramic composite material and manufacturing method thereof
CA1125447A (en) Ceramic cement and method of making composite ceramic articles
JP3830733B2 (en) Particle-dispersed silicon material and manufacturing method thereof
JPS60171269A (en) Manufacture of complicated shape silicon nitride sintered body
JPS6212663A (en) Method of sintering b4c base fine body
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
CA1077969A (en) Method for producing a composite consisting of continuous silicon carbide fibers and metallic silicon
JPS6117466A (en) Ceramic sintered body and manufacture
JPH0256307B2 (en)
JPS59217675A (en) Silicon nitride reaction sintered body composite material and manufacture
JPH034514B2 (en)
JPH0497976A (en) Silicon carbide-based composite body and its production
JPH046680B2 (en)
JPH0585506B2 (en)
JPS5910979B2 (en) Method for manufacturing heat-resistant composite sintered body
JPH0571541B2 (en)
JPS6235995B2 (en)
JPS6369757A (en) Composite ceramics and manufacture
JP2916934B2 (en) Method for producing sialon-based sintered body
JPH11302078A (en) Composite material and its production
JPH0568428B2 (en)