JPH0465824A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH0465824A JPH0465824A JP17980190A JP17980190A JPH0465824A JP H0465824 A JPH0465824 A JP H0465824A JP 17980190 A JP17980190 A JP 17980190A JP 17980190 A JP17980190 A JP 17980190A JP H0465824 A JPH0465824 A JP H0465824A
- Authority
- JP
- Japan
- Prior art keywords
- film
- barrier layer
- atmosphere
- layer
- mixed gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000004065 semiconductor Substances 0.000 title claims description 10
- 238000009792 diffusion process Methods 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 230000004888 barrier function Effects 0.000 claims abstract description 22
- 239000012298 atmosphere Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000001301 oxygen Substances 0.000 claims abstract description 17
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 17
- 238000004544 sputter deposition Methods 0.000 claims abstract description 17
- 238000002844 melting Methods 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 14
- 230000008018 melting Effects 0.000 claims abstract description 13
- 239000007789 gas Substances 0.000 claims abstract description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- 239000010703 silicon Substances 0.000 claims abstract description 9
- 150000004767 nitrides Chemical class 0.000 claims abstract description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims 4
- 229910052786 argon Inorganic materials 0.000 claims 3
- 239000001569 carbon dioxide Substances 0.000 claims 2
- 229910002092 carbon dioxide Inorganic materials 0.000 claims 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract description 22
- 229910052782 aluminium Inorganic materials 0.000 abstract description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 9
- 229910018182 Al—Cu Inorganic materials 0.000 abstract description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 7
- 230000002265 prevention Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
半導体装置の製造方法に係り、特に、シリコン基板と配
線層との間に介在させる拡散バリア層を該基板上に形成
する方法に関し、
拡散バリア層の形成の際に酸素が添加され、然も添加さ
れた酸素が外部に拡散し難い状態となるようにすること
を目的とし、
拡散バリア層の形成をスパッタリングによって行い、そ
のスパッタリングで用いるターゲットを高融点金属の窒
化物にし、雰囲気をArとCO2の混合ガスにするよう
に構成し、または、そのターゲットを高融点金属の炭化
物にし、雰囲気をArとN2と02の混合ガスにするよ
うに構成する。[Detailed Description of the Invention] [Summary] This invention relates to a method for manufacturing a semiconductor device, and in particular to a method for forming a diffusion barrier layer interposed between a silicon substrate and a wiring layer on the substrate. Oxygen is added during the process, and the purpose is to make it difficult for the added oxygen to diffuse outside.The diffusion barrier layer is formed by sputtering, and the target used for the sputtering is a high-melting point metal. nitride and the atmosphere is a mixed gas of Ar and CO2, or the target is a carbide of a high melting point metal and the atmosphere is a mixed gas of Ar, N2, and O2.
本発明は、半導体装置の製造方法に係り、特に、シリコ
ン基板と配線層との間に介在させる拡散バリア層を該基
板上に形成する方法に関する。The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of forming a diffusion barrier layer interposed between a silicon substrate and a wiring layer on the substrate.
上記拡散バリア層は、シリコン基板とアルミニラム配線
との間の相互拡散を防止するものであり、十分な拡散防
止効果をもたせ且つシリコン基板やアルミニウム配線に
悪影響を及ぼさないように形成することが望まれる。The above-mentioned diffusion barrier layer prevents mutual diffusion between the silicon substrate and the aluminum wiring, and is desirably formed in such a way that it has a sufficient diffusion prevention effect and does not adversely affect the silicon substrate or the aluminum wiring. .
LSIのシリコン基板上に配設されるアルミニウム配線
の材料には、現在AL−3i(Si :1%)が用いら
れている。しかしこの材料では、配線形成及びそれ以降
の工程の際にかかる加熱の繰り返しにより、基板Siと
アルミニウム配線のコンタクト部分にAl中の過飽和S
iが析出することが知られている。このことは、基板S
iとアルミニウム配線の間のコンタクト抵抗を増大させ
、素子の微細化が進むに従ってその増大を顕著にさせる
。Currently, AL-3i (Si: 1%) is used as a material for aluminum wiring arranged on a silicon substrate of an LSI. However, with this material, due to repeated heating during wiring formation and subsequent steps, the contact area between the substrate Si and the aluminum wiring is exposed to supersaturated S in Al.
It is known that i precipitates. This means that the substrate S
The contact resistance between the i and the aluminum wiring is increased, and the increase becomes more noticeable as the device becomes finer.
そこで、最近の微細化が進んだ構造では、アルミニウム
配線の材料としてSiを含まない純AIやAl−Cu(
Cu:2%)が用いられる。その場合、基板Siとの相
互拡散を防止するために例えばTiN膜などからなる拡
散バリア層を介在させている。そして、その拡散バリア
層の形成は、ターゲットを高融点金属にし雰囲気をAr
とN2の混合カスにしたスパッタリング法、または、タ
ーゲットを高融点金属の窒化物にし雰囲気をArにした
スパッタリングによっている。Therefore, in recent structures with advanced miniaturization, pure AI or Al-Cu (Si-free) is used as the material for aluminum wiring.
Cu: 2%) is used. In that case, a diffusion barrier layer made of, for example, a TiN film is interposed to prevent mutual diffusion with the Si substrate. To form the diffusion barrier layer, the target is a high melting point metal and the atmosphere is Ar.
A sputtering method using a mixture of scum and N2, or a sputtering method using a nitride of a high melting point metal as a target and an Ar atmosphere.
ところで、このようにして形成したTiN膜は拡散防止
効果が十分でない。However, the TiN film formed in this manner does not have a sufficient diffusion prevention effect.
そこで拡散防止効果を向上させるために、TiN膜形成
後に一旦大気中に取り出して電気炉に入れ、窒素の雰囲
気の下で450〜500℃の熱処理を加える方法が取ら
れている。この熱処理はTiN膜の表面を酸化するもの
である。Therefore, in order to improve the diffusion prevention effect, a method has been adopted in which after the TiN film is formed, it is taken out into the atmosphere, placed in an electric furnace, and then heat treated at 450 to 500° C. in a nitrogen atmosphere. This heat treatment oxidizes the surface of the TiN film.
しかしながらTiN膜に対する酸素添加を上記電気炉を
用いて行う方法は、工程が増加し、基板のハンドリング
が煩わしくなり、然も基板上に塵埃が付着するなどとい
った幾つかの問題が生じ、生産効率及び半導体装置の信
頼性を著しく低下させる。However, the method of adding oxygen to the TiN film using an electric furnace increases the number of steps, makes handling of the substrate cumbersome, and causes problems such as dust adhesion on the substrate, which reduces production efficiency. This significantly reduces the reliability of semiconductor devices.
そこで、上記酸素添加をTiN膜の形成と同時に行う方
法として、本発明の出願人は、TiN膜を形成するスパ
ッタリングの際(ご、基板を高温に保持し雰囲気に酸素
を加えることを提案した(特願昭63−185005号
)。表面の分析結果から雰囲気中の酸素量の増加につれ
てTiN膜中に酸化物が形成されてい(ことがわかり、
それによりTiN膜の拡散防止効果が向上することを確
認した。Therefore, as a method for adding oxygen at the same time as the formation of the TiN film, the applicant of the present invention has proposed a method in which the substrate is held at a high temperature and oxygen is added to the atmosphere during sputtering to form the TiN film. (Japanese Patent Application No. 63-185005).The surface analysis results showed that oxides were formed in the TiN film as the amount of oxygen in the atmosphere increased.
It was confirmed that this improved the diffusion prevention effect of the TiN film.
ところが、配線形成以降の工程を済ませた後に、加熱を
繰り返す加速劣化試験を行ったところ、コンタクト抵抗
が大きく増大するものがでてきた。However, when we conducted an accelerated deterioration test in which heating was repeated after completing the steps after wiring formation, we found that the contact resistance increased significantly in some cases.
これは、TiN膜中の酸素が外部に拡散して下層または
上層(配線層)の界面が酸化したためであることが判っ
た。It was found that this was because oxygen in the TiN film was diffused to the outside and the interface of the lower or upper layer (wiring layer) was oxidized.
以上のことから本発明は、半導体装置の製造方法に係り
、特に、シリコン基板と配線層との間に介在させる拡散
バリア層を該基板上に形成する方法に関し、拡散バリア
層の形成の際に酸素が添加され、然も添加された酸素が
外部に拡散し難い状態となるようにすることを目的とす
る。In view of the above, the present invention relates to a method of manufacturing a semiconductor device, and particularly relates to a method of forming a diffusion barrier layer interposed between a silicon substrate and a wiring layer on the substrate. The purpose is to add oxygen and to create a state in which the added oxygen is difficult to diffuse to the outside.
上記目的を達成するために、本発明の製造方法は、拡散
バリア層の形成をスパッタリングによって行い、そのス
パッタリングで用いるターゲットを高融点金属の窒化物
にし、雰囲気をArとCotの混合ガスにすることを特
徴としている。In order to achieve the above object, the manufacturing method of the present invention involves forming a diffusion barrier layer by sputtering, using a high melting point metal nitride as a target for the sputtering, and using a mixed gas of Ar and Cot as the atmosphere. It is characterized by
または、上記ターゲットを高融点金属の炭化物にし、上
記雰囲気をArとN2と02の混合ガスにすることを特
徴としている。Alternatively, the target is a carbide of a high melting point metal, and the atmosphere is a mixed gas of Ar, N2, and O2.
上記のターゲットと雰囲気の組合せにより、形成される
拡散バリア層は、高融点金属の窒化物からなりそれに酸
素と炭素が添加されたものとなる。Due to the combination of the target and atmosphere described above, the diffusion barrier layer formed is made of a high melting point metal nitride to which oxygen and carbon are added.
そして、膜中の酸素原子は、高融点金属と窒素以外に炭
素原子とも結合している。2原子分子間の結合エネルギ
について見ると、C−0は256.7Kcal/mol
、 N−0は149.7Kcal/molであること
から、酸素は炭素と結合することでより安定になり加熱
されても拡散し難い状態となっている。The oxygen atoms in the film are bonded not only to high melting point metals and nitrogen but also to carbon atoms. Looking at the bond energy between diatomic molecules, C-0 is 256.7 Kcal/mol
, N-0 is 149.7 Kcal/mol, so oxygen becomes more stable by bonding with carbon and becomes difficult to diffuse even when heated.
従って、本発明の方法によれば、良好な拡散防止効果と
安定なコンタクト抵抗を実現させる拡散バリア層の形成
ができる。Therefore, according to the method of the present invention, it is possible to form a diffusion barrier layer that achieves a good diffusion prevention effect and stable contact resistance.
以下本発明の実施例について第1図の基板断面図を用い
て説明する。Embodiments of the present invention will be described below with reference to a cross-sectional view of a substrate in FIG.
同図において、この実施例は、N型拡散層2が形成され
その上にコンタクトホール4を有する5iCh膜3が設
けられたP型Si基板lの上に、拡散層2とオーミック
コンタクトをとるためのTi膜5、本発明による拡散バ
リア層となるTiN膜6、アルミニウム配線用とするた
めのAI−Cu(Cu:2%)膜7を順次形成するもの
である。5iCh膜3の厚さは1.0μm、コンタクト
ホール4の大きさは1.2μmφ、Ti膜5の厚さは2
00人、TiN膜6の厚さは1000人、Al−Cu膜
7の厚さは1.0.czmである。In this figure, in this embodiment, an N-type diffusion layer 2 is formed on a P-type Si substrate 1 on which a 5iCh film 3 having a contact hole 4 is provided, in order to make ohmic contact with the diffusion layer 2. A Ti film 5, a TiN film 6 serving as a diffusion barrier layer according to the present invention, and an AI-Cu (Cu: 2%) film 7 for use as an aluminum wiring are successively formed. The thickness of the 5iCh film 3 is 1.0 μm, the size of the contact hole 4 is 1.2 μmφ, and the thickness of the Ti film 5 is 2 μm.
00 people, the thickness of the TiN film 6 is 1000 people, and the thickness of the Al-Cu film 7 is 1.0. It is czm.
拡散層2,5iCh膜3.コンタクトホール4は、通常
の方法で形成したものである。Diffusion layer 2, 5iCh film 3. Contact hole 4 is formed by a normal method.
Ti膜5の形成に先立ち、コンタクトホール4内の自然
酸化膜を弗酸系のウェット処理により除去する。Prior to forming the Ti film 5, the natural oxide film within the contact hole 4 is removed by hydrofluoric acid wet treatment.
Ti膜5の形成は、ターゲットをTiにし雰囲気をAr
にしたスパッタリング法によって行い、その条件は次の
ようである。To form the Ti film 5, the target is Ti and the atmosphere is Ar.
The sputtering method was used under the following conditions.
Ar流量 : 80 secm圧力
・2.0 mTorr
DCパワー :500W
TiN膜6の形成は方法が二つあり、その−は、ターゲ
ットをTiNにし雰囲気をArとCO2の混合ガスにし
たスパッタリング法によって行い、条件は次のようであ
る。Ar flow rate: 80 secm pressure
・2.0 mTorr DC power: 500 W There are two methods for forming the TiN film 6. The second method is a sputtering method using a TiN target and a mixed gas of Ar and CO2 in the atmosphere, and the conditions are as follows. be.
Ar流量 : 100 secmC02流
量 : 20 secm圧力 ・2.0
mTorr
DCパワー : 5 KWまた、TiN膜
6形成のその二は、ターゲットをTiCにし雰囲気をA
rとN2と02の混合ガスにしたスパッタリング法によ
って行い、条件は次のようである。Ar flow rate: 100 secmC02 flow rate: 20 secmPressure ・2.0
mTorr DC power: 5 KW Also, in the second step of forming the TiN film 6, the target is TiC and the atmosphere is A.
The sputtering method was performed using a mixed gas of r, N2, and 02 under the following conditions.
Ar流量 : 20 secmN2流量
: 80 secmO□流量 : 2
0 secm圧力 ・2.0 mTorr
DCパワー : 5 KWこのようにし
て形成されたTiN膜6は、先に述べたように、酸素と
炭素が添加されたものとなり、膜中の酸素原子は、高融
点金属と窒素以外に炭素原子とも結合していて加熱され
ても拡散し難い状態となっている。Ar flow rate: 20 secmN2 flow rate
: 80 secmO□Flow rate: 2
0 secm pressure ・2.0 mTorr DC power: 5 KW As mentioned above, the TiN film 6 formed in this way is doped with oxygen and carbon, and the oxygen atoms in the film are In addition to the melting point metal and nitrogen, it is also bonded to carbon atoms, making it difficult to diffuse even when heated.
その後のAl−Cu膜7の形成は、従来と同じスパッタ
リング法によって行う。The subsequent formation of the Al--Cu film 7 is performed by the same sputtering method as the conventional method.
上述したTi膜5からAl−Cu膜7までの形成は、そ
れぞれのスパッタリング装置を連結した真空搬送連続処
理装置を用いることにより、基板lを大気に曝すことな
く連続して行うことができるので、TiN膜への酸素添
加に電気炉を用いる場合のような生産効率低下及び信頼
性低下を招(ことがない。The formation of the Ti film 5 to the Al-Cu film 7 described above can be performed continuously without exposing the substrate 1 to the atmosphere by using a vacuum transfer continuous processing device in which the respective sputtering devices are connected. This method does not cause a decrease in production efficiency or reliability, which occurs when an electric furnace is used to add oxygen to the TiN film.
そして、配線形成以降の工程を済ませた後に、先に述べ
た加熱を繰り返す加速劣化試験を行ってコンタクト抵抗
を確認したところ、その抵抗が大きく増大するものは皆
無であった。Then, after completing the steps after wiring formation, the contact resistance was checked by performing the accelerated deterioration test described above by repeating heating, and there was no case where the resistance increased significantly.
上述の実施例は、拡散バリア層の形成に用いるターゲッ
トをTiNまたはTiCにした場合を例にとって説明し
たが、そのターゲットを他の高融点金属例えばジルコニ
ウムやハフニウムなどの窒化物または炭化物にしても同
様の結果が得られる。The above embodiments have been explained using TiN or TiC as the target used to form the diffusion barrier layer, but the same effect can be achieved even if the target is a nitride or carbide of other high melting point metals such as zirconium or hafnium. The result is obtained.
以上説明したように本発明によれば、半導体装置の製造
方法に係り、特に、シリコン基板と配線層との間に介在
させる拡散バリア層を該基板上に形成する方法に関し、
拡散バリア層の形成の際に酸素が添加され、然も添加さ
れた酸素が外部に拡散し難い状態となるようにすること
ができて、半導体装置の信頼性向上及び生産効率向上を
可能にさせる効果がある。As explained above, the present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of forming a diffusion barrier layer interposed between a silicon substrate and a wiring layer on the substrate.
Oxygen is added when forming the diffusion barrier layer, and the added oxygen is difficult to diffuse to the outside, making it possible to improve the reliability and production efficiency of semiconductor devices. effective.
第1図は実施例の基板断面図、 である。 図において、 lはP型Si基板、 2はN型拡散層、 3は5iOz膜、 4はコンタクトホール、 5はTi膜、 6は拡散バリア層となるTiN膜、 7はアルミニウム配線用のAl−Cu である。 膜、 実ガ回4列の基板「片面図 第 1 図 FIG. 1 is a cross-sectional view of the substrate of the embodiment. It is. In the figure, l is a P-type Si substrate, 2 is an N-type diffusion layer, 3 is a 5iOz film, 4 is a contact hole, 5 is a Ti film, 6 is a TiN film serving as a diffusion barrier layer; 7 is Al-Cu for aluminum wiring It is. film, Actual 4-row board "single-sided view" Figure 1
Claims (1)
介在させる拡散バリア層を該基板上に形成するに際して
、 前記拡散バリア層の形成は、スパッタリングによって行
い、該スパッタリングで用いるターゲットを高融点金属
の窒化物にし、雰囲気をアルゴンと二酸化炭素の混合ガ
スにすることを特徴とする半導体装置の製造方法。 2)請求項1に記載の製造方法において、 高融点金属の窒化物に代えて高融点金属の炭化物にし、
且つ、アルゴンと二酸化炭素の混合ガスに代えてアルゴ
ンと窒素と酸素の混合ガスにすることを特徴とする半導
体装置の製造方法。[Claims] 1) When forming a diffusion barrier layer interposed between a silicon substrate and a wiring layer in a semiconductor device on the substrate, the formation of the diffusion barrier layer is performed by sputtering, and the diffusion barrier layer is formed by sputtering. A method for manufacturing a semiconductor device, characterized in that the target is a high melting point metal nitride, and the atmosphere is a mixed gas of argon and carbon dioxide. 2) In the manufacturing method according to claim 1, a carbide of a high melting point metal is used instead of a nitride of a high melting point metal,
A method for manufacturing a semiconductor device, characterized in that a mixed gas of argon, nitrogen, and oxygen is used instead of a mixed gas of argon and carbon dioxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17980190A JPH0465824A (en) | 1990-07-06 | 1990-07-06 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17980190A JPH0465824A (en) | 1990-07-06 | 1990-07-06 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0465824A true JPH0465824A (en) | 1992-03-02 |
Family
ID=16072136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17980190A Pending JPH0465824A (en) | 1990-07-06 | 1990-07-06 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0465824A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0640816A1 (en) * | 1993-08-26 | 1995-03-01 | SIEMENS MATSUSHITA COMPONENTS GmbH & CO. KG | Hybrid thermistor temperature sensor |
KR100310468B1 (en) * | 1994-07-07 | 2001-12-15 | 박종섭 | Method for forming metal barrier film of semiconductor device |
WO2001096483A1 (en) | 2000-06-07 | 2001-12-20 | Seiko Epson Corporation | Ink-jet recording ink, ink-jet recording ink set, recording method, print, and ink-jet recording apparatus |
KR100459947B1 (en) * | 1997-12-30 | 2005-02-03 | 주식회사 하이닉스반도체 | Method of forming a metal line of semiconductor device |
US7522333B2 (en) | 2005-04-19 | 2009-04-21 | Seiko Epson Corporation | Method of producing an electrophoretic particle, electrophoretic device, and electric apparatus |
US8088486B2 (en) | 2005-04-20 | 2012-01-03 | Seiko Epson Corporation | Microencapsulated particulate metal material, method for producing the same, and aqueous dispersion and ink jet ink using the same |
-
1990
- 1990-07-06 JP JP17980190A patent/JPH0465824A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0640816A1 (en) * | 1993-08-26 | 1995-03-01 | SIEMENS MATSUSHITA COMPONENTS GmbH & CO. KG | Hybrid thermistor temperature sensor |
KR100310468B1 (en) * | 1994-07-07 | 2001-12-15 | 박종섭 | Method for forming metal barrier film of semiconductor device |
KR100459947B1 (en) * | 1997-12-30 | 2005-02-03 | 주식회사 하이닉스반도체 | Method of forming a metal line of semiconductor device |
WO2001096483A1 (en) | 2000-06-07 | 2001-12-20 | Seiko Epson Corporation | Ink-jet recording ink, ink-jet recording ink set, recording method, print, and ink-jet recording apparatus |
US7522333B2 (en) | 2005-04-19 | 2009-04-21 | Seiko Epson Corporation | Method of producing an electrophoretic particle, electrophoretic device, and electric apparatus |
US8088486B2 (en) | 2005-04-20 | 2012-01-03 | Seiko Epson Corporation | Microencapsulated particulate metal material, method for producing the same, and aqueous dispersion and ink jet ink using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0465824A (en) | Manufacture of semiconductor device | |
JPS5846631A (en) | Semiconductor device and manufacture thereof | |
JPH01251611A (en) | Manufacture of semiconductor device | |
JPH01261283A (en) | Method for bonding copper plate to substrate made of electric insulating material | |
JPH07130854A (en) | Wiring structure body and its forming method | |
JPS5910271A (en) | Semiconductor device | |
JPS6384024A (en) | Manufacture of semiconductor device | |
JP3283965B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH0442528A (en) | Manufacture of semiconductor device | |
JP2605686B2 (en) | Method for manufacturing semiconductor device | |
JPH0817926A (en) | Manufacture of semiconductor device | |
JPS5943549A (en) | Method of forming aluminum wiring layer | |
JPS6327846B2 (en) | ||
JPH04364759A (en) | Semiconductor device and manufacture thereof | |
JPH03154332A (en) | Manufacture of semiconductor device | |
JPH0377661B2 (en) | ||
JPH07263447A (en) | Semiconductor device and its manufacture | |
TW442937B (en) | Method for forming interconnections in semiconductor devices | |
JPH0232537A (en) | Manufacture of semiconductor device | |
JPH01109727A (en) | Semiconductor device and manufacture thereof | |
JPH04216622A (en) | Manufacture of semiconductor device | |
JPH04334020A (en) | Manufacture of semiconductor device | |
JPH03165515A (en) | Contact forming method | |
JPH05234936A (en) | Manufacture of semiconductor device | |
JPH0311732A (en) | Wiring formation of semiconductor device |