JPH0465615A - Optical surface roughness measuring instrument - Google Patents

Optical surface roughness measuring instrument

Info

Publication number
JPH0465615A
JPH0465615A JP17777590A JP17777590A JPH0465615A JP H0465615 A JPH0465615 A JP H0465615A JP 17777590 A JP17777590 A JP 17777590A JP 17777590 A JP17777590 A JP 17777590A JP H0465615 A JPH0465615 A JP H0465615A
Authority
JP
Japan
Prior art keywords
light
measurement
measured
optical axis
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17777590A
Other languages
Japanese (ja)
Inventor
Motohito Hino
元人 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP17777590A priority Critical patent/JPH0465615A/en
Publication of JPH0465615A publication Critical patent/JPH0465615A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To cancel the influence due to disturbance such as vibration, and to measure the ruggedness of the surface of a body to be measured with high accuracy by measuring the ruggedness of the surface according to the difference between a displacement quantity measured with reference light and a displacement quantity measured with photometric light. CONSTITUTION:The differential signal (e) between measurement signals Sa and Sb corresponds to a displacement quantity DM, i.e. a displacement quantity (d+d') which is the sum of a displacement quantity d' due to the vibration, etc., of a body 28 to be measured and a displacement quantity (d) due to the ruggedness of the surface 30 and the differential signal Re between reference signals SRa and SRb corresponds to a displacement quantity DR, i.e. a displacement quantity d' due to the vibration, etc., of the body 28, so the difference between those differential signals (e) and Re corresponds to the displacement quantity (d) only due to the ruggedness of the surface 30 of the body 28 and the influence of the vibration, etc., is canceled to measured the ruggedness of the surface 30 with high accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光学式の表面粗さ測定装置に係り、詳しくは、
光の反射位置が表面の凹凸に応じて変化するのに伴って
反射光の収束発散状態が変化することを利用して表面の
凹凸を測定する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical surface roughness measuring device, and in detail:
The present invention relates to a device that measures the unevenness of a surface by utilizing the fact that the convergence/divergence state of reflected light changes as the position of light reflection changes in accordance with the unevenness of the surface.

従来の技術 被測定物の表面粗さや微細な凹凸形状等を測定する光学
式表面粗さ測定装置の一種に、光軸に対して交差する方
向へ相対移動させられる被測定物の表面にビームウェス
トが略位置する状態でその表面の微小範囲に計測光を集
光させるとともに、その表面で反射された計測光の収束
発散状態の変化を検出することにより、その表面の凹凸
による計測光の反射位置の変位量を測定する形式のもの
がある。そして、上記収束発散状態の変化を検出する一
つの手段として、光波分割プリズムと2−分割光センサ
により集光位置のずれを検出するフーコー法が知られて
いる。
Conventional technology A type of optical surface roughness measuring device that measures the surface roughness and minute irregularities of the object to be measured. By concentrating the measurement light on a minute area of the surface while the surface is approximately located, and detecting changes in the convergence/divergence state of the measurement light reflected on the surface, the position of reflection of the measurement light due to the unevenness of the surface can be determined. There is a type that measures the amount of displacement. As one means for detecting a change in the convergence/divergence state, the Foucault method is known, which detects a shift in a light focusing position using a light wave splitting prism and a two-split optical sensor.

かかるフーコー法について第2図を参照しつつ具体的に
説明すると、B点が対物レンズ10の焦点位置にあれば
、B点からの光線は対物レンズ10を通過した後に平行
光線となり、集光レンズ22によって収束光とされた後
、光軸上に頂点が位置するように配置された三角柱形状
の分割プリズムI2により、光軸と直交する頂点の稜線
を境として互いに反対側の方向へ屈折させられて交差す
る一対の光束り、、L2に分割される。一方の光束り、
は、図において光軸から上方に離隔した位置にある2分
割光センサ14上の中心に集光させられ、他方の光束L
2は、光軸から下方に離隔した位置にある2分割光セン
サ16上の中心に集光させられる。このとき、2分割光
センサ14および16のそれぞれの中心を境に図におけ
る上下に一対ずつ配置された受光部15a、15b、お
よび受光部17a、17bからのそれぞれの出力の差動
信号は零となる。
To explain the Foucault method in detail with reference to FIG. 2, if point B is at the focal point of the objective lens 10, the ray from point B becomes a parallel ray after passing through the objective lens 10, After the light is converged by 22, the light is refracted in opposite directions using the ridgeline of the apex perpendicular to the optical axis as a boundary by the triangular prism-shaped splitting prism I2 arranged so that the apex is located on the optical axis. The light beam is divided into a pair of light beams, L2, which intersect with each other. One beam of light,
is focused on the center of the two-split optical sensor 14 located upwardly away from the optical axis in the figure, and the other light beam L
2 is focused on the center of the two-split optical sensor 16 located at a position spaced downward from the optical axis. At this time, the differential signals of the respective outputs from the light receiving sections 15a, 15b and the light receiving sections 17a, 17b, which are arranged in pairs above and below in the figure with the center of each of the two-split optical sensors 14 and 16 as the border, are zero. Become.

ところが、出射点がA点側に移動すると対物レンズ10
を出た光線は発散光となるため、分割プリズム12によ
り屈折して分割された一対の光束り、、L、の集光位置
(ビームウェスト)が、出射点がB点である場合に比べ
てそれぞれ遠くなる。
However, when the emission point moves toward point A, the objective lens 10
Since the light rays exiting from the splitting prism 12 become divergent lights, the convergence position (beam waist) of the pair of light beams, L, refracted and split by the splitting prism 12 is smaller than when the exit point is the point B. Each becomes far away.

このため、一対の光束L+ 、Lzは主に一対の2分割
光センサ14.16の内側部分、すなわち受光部15a
、17aに照射されることになり、このときの受光部1
5a、15b、17a  17bの出力差動信号は負と
なる。逆に、出射点が0点側に移動すると対物レンズ1
0を出た光線は収束光となるため、分割プリズム12を
出た一対の光束り、、L2の集光位置が、出射点がB点
である場合に比べてそれぞれ近くなる。このため、一対
の光束L1.L2は主に一対の2分割光センサ14.1
6の外側部分、すなわち受光部15b、17bに照射さ
れることになり、このときの受光部15a、15b、1
7a、17bの出力差動信号は正となる。したがって、
この差動信号の正負によって出射点の移動状態を検知す
ることができ′るのである。
Therefore, the pair of luminous fluxes L+ and Lz are mainly transmitted to the inner part of the pair of two-split optical sensors 14.16, that is, the light receiving section 15a.
, 17a, and at this time the light receiving section 1
The output differential signals of 5a, 15b, 17a and 17b are negative. Conversely, when the exit point moves toward the 0 point side, objective lens 1
Since the light beam that exits 0 becomes convergent light, the condensing positions of the pair of light beams, . Therefore, the pair of light beams L1. L2 mainly consists of a pair of two-split optical sensors 14.1
6, that is, the light receiving parts 15b and 17b, and at this time the light receiving parts 15a, 15b, 1
The output differential signals of 7a and 17b are positive. therefore,
The moving state of the emission point can be detected based on the positive and negative values of this differential signal.

フーコー法は、このように光の収束発散状態の変化から
光の出射位置を検出する方法であり、第3図はこのフー
コー法を利用して表面の凹凸を測定する装置の一例を示
す骨子図である。ががる第3図において、レーザ発振器
18から出射された直線偏光レーザ光りは、光軸上に配
置されたビームエキスパンダ20によりビーム径が拡大
されて円形平行光とされた後、偏光ビームスプリンタ2
4に入射させられる。レーザ発振器18の姿勢は、レー
ザ光りの偏波面(電気ベクトルの振動面)が紙面と直角
となるように設定されており、入射面が紙面と平行にな
るように配置された偏光ビームスプリッタ24によりレ
ーザ光りは下方へ反射される。反射されたレーザ光りは
、ス波長板26を通過したあと前記対物レンズ10によ
って被測定物28の表面30に照射される。
The Foucault method is a method of detecting the light emitting position from changes in the convergence/divergence state of light, and Figure 3 is a schematic diagram showing an example of a device that uses the Foucault method to measure surface irregularities. It is. In FIG. 3, the linearly polarized laser beam emitted from the laser oscillator 18 is expanded in beam diameter by a beam expander 20 placed on the optical axis to become a circular parallel beam, and then sent to a polarized beam splinter. 2
4. The attitude of the laser oscillator 18 is set so that the plane of polarization of the laser beam (the plane of vibration of the electric vector) is perpendicular to the plane of the paper, and the polarization beam splitter 24 is arranged so that the plane of incidence is parallel to the plane of the paper. The laser beam is reflected downward. After passing through the wavelength plate 26, the reflected laser light is irradiated onto the surface 30 of the object to be measured 28 by the objective lens 10.

上記被測定物28は、偏光ビームスプリッタ24によっ
て反射されたレーザ光りの光軸上において、表面30が
対物レンズ10によって集光させられるレーザ光りのビ
ームウェストと略一致する位置に配置されているととも
に、駆動装置32によってレーザ光りの光軸と直角な平
面内を移動させられる移動テーブル34上に載置されて
いる。
The object to be measured 28 is located on the optical axis of the laser beam reflected by the polarizing beam splitter 24 at a position where the surface 30 substantially coincides with the beam waist of the laser beam focused by the objective lens 10. , is placed on a moving table 34 that is moved by a drive device 32 in a plane perpendicular to the optical axis of the laser beam.

したがって、レーザ光りは表面30の微小範囲に照射さ
れることとなり、被測定物28が移動テーブル34と共
に光軸と直角な方向へ移動させられることにより、その
表面30上におけるレーザ光りの反射位置は表面30の
凹凸に対応じて光軸方向へ変位させられる。レーザ光り
は計測光に相当する。
Therefore, the laser beam is irradiated onto a minute area of the surface 30, and by moving the object to be measured 28 together with the moving table 34 in a direction perpendicular to the optical axis, the reflection position of the laser beam on the surface 30 is It is displaced in the optical axis direction in accordance with the unevenness of the surface 30. Laser light corresponds to measurement light.

表面30で反射されたレーザ光りは、対物レンズ10を
経て区波長板26を再び通過させられることにより、往
路に比較して偏波面の向きが90゜回転させられ、偏光
ビームスプリッタ24を透過して集光レンズ22によっ
て収束光とされたあと、分割プリズム12により屈折さ
せられて一対の光束L+、Lxに分割される。そして、
それら一対の光束り、、L、は、光軸から離隔してそれ
ぞれ配置された2分割光センサ14および16の受光部
15a、15b、および受光部17a、17bにそれぞ
れ受光される。かかる受光部15a、15b、および受
光部17a、17bの受光量は、表面30の凹凸による
レーザ光りの反射位置の変位に伴って、前記第2図に示
されている原理に従って増減させられるため、その受光
量に対応する出力信号Sa、Sbが供給される測定回路
36においては、それ等の信号Sa、SbO差を求め、
その差動信号の正負の値から例えばデータマツプ等によ
り表面30の凹凸を求める。
The laser beam reflected by the surface 30 passes through the objective lens 10 and the wave plate 26 again, so that the direction of the plane of polarization is rotated by 90 degrees compared to the outward path, and the laser beam is transmitted through the polarizing beam splitter 24. After the light is converged by the condenser lens 22, it is refracted by the splitting prism 12 and split into a pair of light beams L+ and Lx. and,
The pair of light beams, L, are received by the light receiving sections 15a, 15b and the light receiving sections 17a, 17b of the two-split photosensors 14 and 16, respectively, which are arranged apart from the optical axis. The amount of light received by the light receiving sections 15a, 15b and the light receiving sections 17a, 17b is increased or decreased according to the principle shown in FIG. In the measurement circuit 36 to which the output signals Sa and Sb corresponding to the amount of received light are supplied, the difference between those signals Sa and SbO is determined,
From the positive and negative values of the differential signal, the unevenness of the surface 30 is determined using, for example, a data map.

発明が解決しようとする課題 しかしながら、かかる従来の測定方法においては、被測
定物を相対移動させる際の振動その他の外乱によりその
被測定物が計測光の光軸方向に変位させられると、その
変位量を含んで表面粗さが測定されるため、必ずしも充
分な測定精度が得られないという問題があった。
Problems to be Solved by the Invention However, in such conventional measurement methods, when the measured object is displaced in the optical axis direction of the measurement light due to vibration or other disturbance when the measured object is moved relative to the measured object, the displacement Since the surface roughness is measured including the amount, there is a problem that sufficient measurement accuracy cannot necessarily be obtained.

本発明は以上の事情を背景として為されたもので、その
目的とするところは、被測定物の振動等による影響を排
除して測定精度を向上させることにある。
The present invention has been made against the background of the above circumstances, and its purpose is to improve measurement accuracy by eliminating the influence of vibrations of the object to be measured.

課題を解決するための手段 かかる目的を達成するために、本発明の要旨とするとこ
ろは、光軸に対して交差する方向へ相対移動させられる
被測定物の表面にビームウェストが略位置する状態でそ
の表面の微小範囲に計測光を集光させるとともに、その
表面で反射された計測光の収束発散状態の変化を検出す
ることにより、その表面の凹凸による計測光の反射位置
の変位量を測定する方式の光学式表面粗さ測定装置であ
って、(a)光軸が同じで偏波面が互いに直交する2種
類の偏光成分を含む光を出射する光源装置と、(b)前
記2種類の偏光成分をそれぞれ独立に集光し、その2種
類の偏光成分の一方を計測光として、そのビームウェス
トが前記被測定物の表面と略一致するようにその表面の
微小範囲に照射するとともに、上記2種類の偏光成分の
他方を参照光として上記被測定物の表面の比較的広い範
囲に照射する対物レンズと、(C)前記表面で反射され
且つ前記対物レンズを通過させられた前記計測光および
参照光を分離する偏光ビームスプリンタと、(d)その
偏光ビームスプリッタによって分離された前記計測光の
光軸と直交する一直線を境とする少なくとも半分を屈折
させるとともに、上記光軸を含み且つ上記一直線に垂直
な平面上における光軸から離隔した位置に集光させるこ
とにより、前記表面における計測光の反射位置の変位に
応じてその計測光の収束発散状態が変化させられるのに
伴って、前記屈折させた計測光の集光位置をその進行方
向の前後に移動させる計測用光学素子と、(e)その計
測用光学素子により屈折させられた前記計測光の進行方
向の両側に配設され、その計測光の集光位置の移動に対
応じて相反的に増減するその計測光の光量をそれぞれ検
出する計測用光センサと、げ)前記偏光ビームスプリッ
タによって分離された前記参照光の光軸と直交する一直
線を境とする少なくとも半分を屈折させるとともに、上
記光軸を含み且つ上記一直線に垂直な平面上における光
軸から離隔した位置に集光させることにより、前記表面
における参照光の反射位置の変位に応じてその参照光の
収束発散状態が変化させられるのに伴って、前記屈折さ
せた参照光の集光位置をその進行方向の前後に移動させ
る参照用光学素子と、((イ)その参照用光学素子によ
り屈折させられた前記参照光の進行方向の両側に配設さ
れ、その参照光の集光位置の移動に対応じて相反的に増
減する参照光の光量をそれぞれ検出する参照用光センサ
と、(h)前記計測用光センサから出力される計測信号
の差動をとるとともに、前記参照用光センサから出力さ
れる参照信号の差動をとり、それ等の差動信号の差に基
づいて前記表面の凹凸を測定する測定手段とを有するこ
とにある。
Means for Solving the Problems In order to achieve the object, the gist of the present invention is to provide a state in which the beam waist is approximately located on the surface of the object to be measured that is relatively moved in a direction intersecting the optical axis. By focusing the measurement light on a minute area of the surface and detecting changes in the convergence/divergence state of the measurement light reflected from the surface, the amount of displacement of the reflection position of the measurement light due to the unevenness of the surface is measured. This is an optical surface roughness measurement device that includes (a) a light source device that emits light containing two types of polarized components whose optical axes are the same and whose polarization planes are orthogonal to each other; and (b) the two types of The polarized light components are each independently focused, and one of the two types of polarized light components is used as measurement light to irradiate a minute range of the surface of the object to be measured such that the beam waist substantially coincides with the surface of the object to be measured, and (C) an objective lens that uses the other of the two types of polarized light components as reference light to irradiate a relatively wide range of the surface of the object to be measured; (C) the measurement light that is reflected on the surface and passed through the objective lens; (d) a polarizing beam splitter that separates the reference beam; (d) refracting at least half of the measuring beam separated by the polarizing beam splitter along a straight line perpendicular to the optical axis; By condensing the light at a position distant from the optical axis on a plane perpendicular to (e) a measuring optical element that moves the condensing position of the measured measuring light back and forth in its traveling direction; (a) a measurement optical sensor that detects the amount of measurement light that reciprocally increases or decreases in response to movement of the focusing position of the measurement light; Displacement of the reflection position of the reference light on the surface by refracting at least half of the line bordering the line and focusing the light at a position away from the optical axis on a plane that includes the optical axis and is perpendicular to the straight line. a reference optical element that moves the condensing position of the refracted reference light back and forth in its traveling direction as the convergence/divergence state of the reference light is changed according to the reference light; reference lights that are disposed on both sides of the reference light refracted by the reference optical element in the traveling direction and detect the amount of the reference light that reciprocally increases or decreases in accordance with the movement of the focal point of the reference light; and (h) taking the difference between the measurement signals output from the measurement optical sensor, and also taking the difference between the reference signals output from the reference optical sensor, and calculating the difference between these differential signals. and measuring means for measuring the unevenness of the surface based on the surface roughness.

作用 このような光学式表面粗さ測定装置においては、光軸が
同じで偏波面が互いに直交する2種類の偏光成分を含む
光が光源装置から出射され、対物レンズによって、上記
2種類の偏光成分の一方が計測光として被測定物の表面
の微小範囲に集光させられるとともに、2種類の偏光成
分の他方が参照光として被測定物の表面の比較的広い範
囲に集光させられる。そして、その表面で反射された計
測光および参照光は、上記対物レンズを通過させられた
あと偏光ビームスプリフタによって分離され、それぞれ
計測用光学素子および参照用光学素子に入射させられる
Function In such an optical surface roughness measuring device, light containing two types of polarized light components with the same optical axis and mutually orthogonal polarization planes is emitted from the light source device, and the two types of polarized light components are separated by the objective lens. One of the two types of polarized light components is focused as a measurement light on a small area on the surface of the object to be measured, and the other of the two types of polarized light components is focused as a reference light on a relatively wide area on the surface of the object to be measured. The measurement light and reference light reflected by the surface are separated by a polarizing beam splitter after passing through the objective lens, and are made to enter the measurement optical element and the reference optical element, respectively.

計測用光学素子に入射して少なくとも半分が屈折させら
れるとともに光軸から離隔した位置に集光させられる計
測光は、被測定物の表面における反射位置の変位に応じ
て収束発散状態が変化させられるのに伴って、その集光
位置が進行方向の前後に移動させられ、その集光位置の
移動に対応じて相反的に増減する進行方向の両側におけ
る計測光の光量が計測用光センサによってそれぞれ検出
される。また、参照用光学素子に入射して少なくとも半
分が屈折させられるとともに光軸から離隔した位置に集
光させられる参照先は、被測定物の表面における反射位
置の変位に応じて収束発散状態が変化させられるのに伴
って、その集光位置が進行方向の前後に移動させられ、
その集光位置の移動に対応じて相反的に増減する進行方
向の両側における参照光の光量が参照用光センサによっ
てそれぞれ検出される。そして、測定手段によりそれら
計測用光センサおよび参照用光センサから出力される信
号の差動をそれぞれとるとともに、それ等の差動信号の
差から被測定物の表面の凹凸が測定される。
The measurement light, which is incident on the measurement optical element and at least half of it is refracted and focused at a position away from the optical axis, has its convergence/divergence state changed according to the displacement of the reflection position on the surface of the object to be measured. As the light condensing position moves forward and backward in the traveling direction, the light intensity of the measurement light on both sides of the traveling direction, which increases and decreases reciprocally in accordance with the movement of the light condensing position, is measured by the measuring optical sensor. Detected. In addition, for the reference target, which is incident on the reference optical element, at least half of which is refracted and focused at a position distant from the optical axis, the convergence/divergence state changes depending on the displacement of the reflection position on the surface of the measured object. As the light is moved, the light focusing position is moved back and forth in the direction of travel,
The amounts of reference light on both sides of the traveling direction, which reciprocally increase and decrease in accordance with the movement of the light condensing position, are respectively detected by the reference optical sensors. Then, the measurement means calculates the difference between the signals output from the measurement optical sensor and the reference optical sensor, and the unevenness of the surface of the object to be measured is measured from the difference between these differential signals.

このとき、参照用光センサから出力される参照信号の差
動は、参照光が照射された部分の変位量Do+に相当す
るが、参照光が被測定物の表面の比較的広い範囲に照射
されることにより表面の凹凸による影響が平均化される
ため、その変位量Dz+は、振動等による被測定物全体
の変位量d°に対応する。また、・計測用光センサから
出力される計11J信号の差動は、計測光が照射された
部分の変位量DMに相当するが、計測光が被測定物の表
面の微小範囲に照射されることから、この変位量DHは
、上記被測定物全9体の変位量d“と表面の凹凸による
変位量dとを合わせた変位量(d士d”)に対応する。
At this time, the difference in the reference signals output from the reference optical sensor corresponds to the amount of displacement Do+ of the part irradiated with the reference light, but the reference light is irradiated onto a relatively wide range of the surface of the object to be measured. As a result, the influence of surface irregularities is averaged out, so that the amount of displacement Dz+ corresponds to the amount of displacement d° of the entire object to be measured due to vibration or the like. In addition, the difference in the total of 11 J signals output from the measurement optical sensor corresponds to the displacement DM of the part irradiated with the measurement light, but the measurement light is irradiated onto a minute range on the surface of the object to be measured. Therefore, this displacement amount DH corresponds to the displacement amount (d - d'') that is the sum of the displacement amount d'' of all nine objects to be measured and the displacement amount d due to surface irregularities.

したがって、それ等の差動信号の差、すなわち変位量D
I+ (−d”)と変位量り。(=d+(1“)との差
は、被測定物の表面の凹凸のみによる変位量dに相当し
、振動等の外乱による影響が相殺されて表面の凹凸が高
い精度で測定される。
Therefore, the difference between those differential signals, that is, the amount of displacement D
The difference between I+ (-d") and displacement measurement (=d+(1") corresponds to the amount of displacement d due only to the unevenness of the surface of the object to be measured, and the influence of external disturbances such as vibrations is canceled out and the difference between Irregularities can be measured with high accuracy.

なお、上記変位量DR,DMは必ずしも長さ寸法として
求められる必要はなく、差動信号の差から表面の凹凸が
最終的に長さ寸法として求められれば良く、例えば、計
測光および参照先によるそれぞれの差動信号の何れか一
方が零となるように対物レンズと被測定物とを光軸方向
へ相対移動させて、他方の差動信号から直接表面の凹凸
を求めるようにすることもできる。
Note that the displacement amounts DR and DM do not necessarily need to be determined as length dimensions, and it is sufficient that the surface irregularities can be finally determined as length dimensions from the difference in differential signals, for example, due to measurement light and reference target. It is also possible to move the objective lens and the object to be measured relative to each other in the optical axis direction so that one of the differential signals becomes zero, and then directly determine the surface unevenness from the other differential signal. .

発明の効果 このように、本発明の光学式表面粗さ測定装置によれば
、計測光による表面粗さ測定とは別に、被測定物表面の
比較的広い範囲に照射された参照先により被測定物表面
全体の変位量が求められ、この参照先によって測定され
た変位量と計測光によって求められた変位量との差に基
づいて表面の凹凸が測定されることにより、振動等の外
乱による影響が相殺されて被測定物の表面の凹凸が高い
精度で測定されるのである。
Effects of the Invention As described above, according to the optical surface roughness measuring device of the present invention, in addition to surface roughness measurement using measurement light, the surface roughness of the object to be measured is measured using a reference target irradiated over a relatively wide range of the surface of the object to be measured. The amount of displacement of the entire surface of the object is determined, and the unevenness of the surface is measured based on the difference between the amount of displacement measured by this reference and the amount of displacement determined by the measurement light, thereby eliminating the influence of external disturbances such as vibration. are canceled out, and the unevenness on the surface of the object to be measured can be measured with high accuracy.

また、本発明によれば、被測定物の表面における反射位
置の変位によって光量が相反的に増減させられる屈折後
の光の進行方向の両側においてその光量を検出するとと
もに、それ等の差動をとるようになっているため、光源
装置の出力変動等に起因するノイズが除去される利点が
ある。
Further, according to the present invention, the amount of light is detected on both sides of the traveling direction of the refracted light, in which the amount of light is reciprocally increased or decreased depending on the displacement of the reflection position on the surface of the object to be measured, and the difference between the two is detected. This has the advantage that noise caused by fluctuations in the output of the light source device, etc., can be removed.

実施例 以下、本発明の一実施例を図面に基づいて詳細に説明す
る。なお、以下の実施例において前記第3図の従来例と
共通する部分には同一の符号を付して詳しい説明を省略
する。
EXAMPLE Hereinafter, an example of the present invention will be described in detail based on the drawings. In the following embodiments, parts common to those of the conventional example shown in FIG. 3 are given the same reference numerals and detailed explanations will be omitted.

第1図において、レーザ発振器18の姿勢はレーザ光り
の偏波面が紙面に対して45゛傾斜するように設定され
ており、ごのレーザ発振器18から出射されたレーザ光
りは、ビームエキスパンダ20によりビーム径が拡大さ
れて円形平行光とされた後、無偏光ビームスプリッタ4
0によって下方へ反射され、二重焦点レンズ42に入射
させられる。二重焦点レンズ42は、光学ガラスと複屈
折性材料とを含んで構成されており、入射する光線の偏
波面の方向によって屈折率が異なる特性を備えている。
In FIG. 1, the attitude of the laser oscillator 18 is set so that the plane of polarization of the laser beam is inclined at 45 degrees with respect to the plane of the paper, and the laser beam emitted from the laser oscillator 18 is transmitted by the beam expander 20. After the beam diameter is expanded and made into circular parallel light, the non-polarizing beam splitter 4
0 and is reflected downward by the beam, and is incident on the bifocal lens 42 . The bifocal lens 42 includes optical glass and a birefringent material, and has a characteristic that the refractive index varies depending on the direction of the polarization plane of the incident light beam.

具体的には、レーザ光りのうち偏波面が紙面と平行なP
偏光成分のレーザ光LPについては、前記被測定物28
の表面3.0上にビームウェストが略位置して表面30
の微小範囲に照射されるように集光する一方、偏波面が
紙面に直角なS偏光成分のレーザ光り、については、ビ
ームウェストが表面30よりも下方となって表面30の
比較的広い範囲に照射されるように集光するようになっ
ている。
Specifically, P of the laser light whose polarization plane is parallel to the plane of the paper
Regarding the polarized laser beam LP, the object to be measured 28
The beam waist is approximately located on the surface 3.0 of the surface 3.0.
On the other hand, for the S-polarized laser beam whose polarization plane is perpendicular to the plane of the paper, the beam waist is below the surface 30 and is focused on a relatively wide area of the surface 30. It is designed to condense light so that it is irradiated.

本実施例においては、上記レーザ発振器18゜ビームエ
キスパンダ20.およヒ無偏光ヒームスブリッタ40に
よって光源装置44が構成されており、二重焦点レンズ
42は対物レンズに相当する。また、レーザ光LP、L
Sはそれぞれ計測光参照光に相当する。
In this embodiment, the laser oscillator 18° beam expander 20. A light source device 44 is constituted by a non-polarized beam splitter 40, and a bifocal lens 42 corresponds to an objective lens. In addition, laser beams LP, L
S corresponds to measurement light and reference light, respectively.

上記レーザ光LPは表面30の微小範囲に照射されるこ
とから、被測定物28が移動テーブル34と共に光軸j
と直角方向へ移動させられることにより、その反射位置
が表面30の凹凸に応じて光軸j方向へ変位させられる
とともに、移動テーブル34の振動などにより被測定物
28が上下に移動した場合にも反射位置は光軸j方向へ
変位する。一方、レーザ光り、は表面30の比較的広い
範囲に照射されることから、被測定物28の上下移動に
応じてその反射位置は変位させられるものの、表面30
の凹凸による影響は平均化されて反射位置の変位には殆
ど影響しない。すなわち、レーザ光Lpの表面30にお
ける反射位置の変位量り、は、その表面30の凹凸によ
る変位量dと被測定物28全体の振動等による変位置d
°とを合わせた変位量(a十d”)となり、レーザ光り
Since the laser beam LP is irradiated onto a minute range of the surface 30, the object to be measured 28 along with the moving table 34 is aligned with the optical axis j.
By being moved in the direction perpendicular to the surface 30, the reflection position is displaced in the direction of the optical axis j according to the unevenness of the surface 30, and even when the object to be measured 28 is moved up and down due to vibrations of the moving table 34, etc. The reflection position is displaced in the direction of the optical axis j. On the other hand, since the laser beam is irradiated over a relatively wide range of the surface 30, its reflection position is displaced as the object to be measured 28 moves up and down.
The influence of the unevenness is averaged out and has almost no effect on the displacement of the reflection position. That is, the displacement of the reflection position of the laser beam Lp on the surface 30 is the displacement d due to the unevenness of the surface 30 and the displacement d due to the vibration of the entire object to be measured 28, etc.
The total displacement amount (a + d") is the laser beam.

の表面30における反射位置の変位量DRは、振動等に
よる被測定物28全体の変位量d°となるのである。
The amount of displacement DR of the reflection position on the surface 30 is the amount of displacement d° of the entire object to be measured 28 due to vibration or the like.

表面30で反射されたレーザ光り、およびり。Laser light reflected from surface 30 and beams.

は、二重焦点レンズ42を逆に通過して無偏光ビームス
プリンタ40を透過させられ、偏光ビームスプリンタ4
6に入射させられる。偏光ビームスプリッタ46の入射
面は紙面と平行で、偏波面が紙面と平行なレーザ光LP
はその偏光ビームスプリッタ46を透過させられる一方
、偏波面が紙面と直′角なレーザ光り、はその偏光ビー
ムスプリッタ46により右方へ反射される。
is passed through the bifocal lens 42 in reverse and transmitted through the non-polarized beam splinter 40, and is then transmitted through the polarized beam splinter 4.
6. The plane of incidence of the polarizing beam splitter 46 is parallel to the plane of the paper, and the plane of polarization is parallel to the plane of the paper.
is transmitted through the polarizing beam splitter 46, while laser light whose plane of polarization is perpendicular to the paper plane is reflected to the right by the polarizing beam splitter 46.

そして、偏光ビームスプリンタ46を透過したレーザ光
り、は、前記集光レンズ22によって収束光とされたあ
と前記分割プリズム12に入射させられる。この分割プ
リズム12は、その一対の屈折面がなす稜線13が光軸
jと直交して紙面に対して垂直となる状態に配設されて
おり、第1図において光軸jに対するレーザ光LPの右
半分および左半分の光束をそれぞれ光軸jの反対側の方
向に屈折させることにより、互いに交差する2つのレー
ザ光LP1.  LP2に分割する。本実施例において
は、上記分割プリズム12および集光レンズ22が計測
用光学素子に相当し、上記稜線13が計測光の光軸と直
交する一直線に相当する。
The laser light transmitted through the polarization beam splinter 46 is made into convergent light by the condenser lens 22, and then is made incident on the splitting prism 12. This splitting prism 12 is arranged such that the ridgeline 13 formed by its pair of refracting surfaces is perpendicular to the optical axis j and perpendicular to the plane of the paper, and in FIG. By refracting the right half and left half light beams in directions opposite to the optical axis j, two laser beams LP1. Divide into LP2. In this embodiment, the dividing prism 12 and the condensing lens 22 correspond to a measurement optical element, and the ridgeline 13 corresponds to a straight line orthogonal to the optical axis of the measurement light.

一方の光束LFIは、光軸jから左方に離隔した位置に
配設された2分割光センサ14上の中心に集光させられ
、また、他方の光束LP2は、光軸jから右方に離隔し
た位置に配設された2分割光センサ16上の中心に集光
させられる。これら2分割光センサ14および16と前
記集光レンズ22との距離は、集光レンズ22に入射す
るレーザ光り、が平行光であるとき、すなわち、前記被
測定物28に照射されるレーザ光LPのビームウェスト
が表面30と略一致している状態のときに、上記レーザ
光LPII  L;zの集光位置がそれぞれ2分割光セ
ンサ14および16上の中心に一致するように設定され
ている。
One of the light beams LFI is focused on the center of the two-split optical sensor 14 located at a position spaced to the left from the optical axis j, and the other light beam LP2 is focused to the right from the optical axis j. The light is focused on the center of the two-split optical sensor 16 arranged at a distance. The distance between these two-split optical sensors 14 and 16 and the condensing lens 22 is such that when the laser light incident on the condensing lens 22 is parallel light, that is, the distance between the laser beam LP irradiated onto the object to be measured 28 is When the beam waist of the laser beam substantially coincides with the surface 30, the focusing positions of the laser beams LPII L;z are set to coincide with the centers on the two-split optical sensors 14 and 16, respectively.

2分割光センサ14は、上記レーザ光LPIの進行方向
の両側、すなわち第1図における直線mを含んで紙面に
垂直な平面を境界とする右側および左側の両方に跨がっ
て配設されており、その双方の側におけるレーザ光LP
Iの光量をそれぞれ検出する一対の受光部15a、15
bを備えている。
The two-split optical sensor 14 is disposed straddling both sides of the traveling direction of the laser beam LPI, that is, both the right side and the left side of the plane that includes the straight line m in FIG. 1 and is perpendicular to the paper surface. and the laser beam LP on both sides
A pair of light receiving sections 15a, 15 that respectively detect the amount of light of I
It is equipped with b.

また、2分割光センサ16は、上記レーザ光LP2の進
行方向の両側、すなわち第1図における直線nを含んで
紙面に垂直な平面を境界とする左側および右側の両方に
跨がって配設されており、その双方の側におけるレーザ
光LP2の光量をそれぞれ検出する一対の受光部17a
、17bを備えている。そして、それらレーザ光L p
 + 、  L p 2の集光位置がそれぞれ2分割光
センサ14および16上の中心に一致しているときには
、上記受光部15a15bの受光量の検出出力、および
受光部17a17bの受光量の検出出力がそれぞれ略等
しくなるように調整されている。上記2分割光センサ1
4および16は計測用光センサに相当する。
Furthermore, the two-split optical sensor 16 is disposed straddling both sides of the traveling direction of the laser beam LP2, that is, both the left and right sides of the plane including straight line n in FIG. 1 and perpendicular to the paper surface. and a pair of light receiving sections 17a that respectively detect the light intensity of the laser beam LP2 on both sides thereof.
, 17b. And those laser beams L p
+ and L p 2 coincide with the centers on the two-split optical sensors 14 and 16, respectively, the detection output of the amount of light received by the light receiving section 15a15b and the detection output of the amount of light received by the light receiving section 17a17b are They are adjusted so that they are approximately equal. The above two-split optical sensor 1
4 and 16 correspond to measurement optical sensors.

ここで、表面30の凸状に変位した微小範囲部分で反射
されたレーザ光り、は、二重焦点レンズ42を通過した
後に発散状態となり、集光レンズ22および分割プリズ
ム12によって集光させられるレーザ光L□、Lp□の
集光位置が2分割光センサ14,16上の中心位置より
もそれぞれ遠くなるため、レーザ光LPI+  LZが
主に光軸jに近い内側にそれぞれ照射されて、受光部1
5a、17aの検出出力を加算した計測信号Saは大き
くなる一方、受光部15b、17bの検出出力を加算し
た計測信号sbは小さくなる。このときの受光量の差は
、上記表面30上の凸形状による上方への変位量に対応
じている。
Here, the laser beam reflected by the convexly displaced minute range portion of the surface 30 becomes a divergent state after passing through the bifocal lens 42, and the laser beam is condensed by the condensing lens 22 and the splitting prism 12. Since the condensing positions of the lights L□ and Lp□ are far from the center positions on the two-split optical sensors 14 and 16, respectively, the laser beams LPI+LZ are mainly irradiated on the inner side near the optical axis j, and the light receiving portion 1
The measurement signal Sa obtained by adding the detection outputs of the light receiving sections 15b and 17b becomes large, while the measurement signal sb obtained by adding the detection outputs of the light receiving sections 15b and 17b becomes small. The difference in the amount of light received at this time corresponds to the amount of upward displacement due to the convex shape on the surface 30.

逆に、表面30の凹状に変位した微小範囲部分で反射さ
れたレーザ光り、pは、二重焦点レンズ42を通過した
後に収束状態となり、集光レンズ22および分割プリズ
ム12によって集光させられるレーザ光LPII  L
P2の集光位置が2分割光センサ14,16上の位置よ
りもそれぞれ近くなるため、レーザ光LPI+  LP
2が主に光軸Jから遠い外側にそれぞれ照射されて、受
光部15a、17aの検出出力を加算した計測信号Sa
は小さくなる一方、受光部15b、17bの検8出力を
加算した計測信号sbは大きくなる。このときの受光量
の差は、上記表面30上の凹形状による下方への変位量
に対応じている。
On the other hand, the laser beam p reflected by the concavely displaced minute range of the surface 30 becomes convergent after passing through the bifocal lens 42, and the laser beam is condensed by the condenser lens 22 and the splitting prism 12. Hikari LPII L
Since the condensing position of P2 is closer to the position on the two-split optical sensor 14, 16, the laser beam LPI+LP
2 is mainly irradiated on the outside far from the optical axis J, and the measurement signal Sa is obtained by adding the detection outputs of the light receiving sections 15a and 17a.
becomes small, while the measurement signal sb, which is the sum of the detection outputs of the light receiving sections 15b and 17b, becomes large. The difference in the amount of light received at this time corresponds to the amount of downward displacement due to the concave shape on the surface 30.

一方、偏光ビームスプリンタ46によって反射されたレ
ーザ光り、は、前記集光レンズ22と同様の集光レンズ
58によって収束光とされたあと、前記分割プリズム1
2と同様の分割プリズム48に入射させられる。この分
割プリズム48は、その一対の屈折面がなす稜線49が
光軸にと直交して紙面に対して垂直となる状態に配設さ
れており、第1図において光軸kに対するレーザ光り、
の下半分および上半分の光束をそれぞれ光軸・kの反対
側の方向に屈折させることにより、互いに交差する2つ
のレーザ光Ls++Ls□に分割する。本実施例におい
ては、上記分割プリズム48および集光レンズ58は参
照用光学素子に相当し、上記稜線49が参照光の光軸と
直交する一直線に相当する。
On the other hand, the laser beam reflected by the polarizing beam splinter 46 is converged by a condensing lens 58 similar to the condensing lens 22, and is then converged by the dividing prism 1.
The light is made incident on a splitting prism 48 similar to 2. This splitting prism 48 is disposed such that a ridgeline 49 formed by its pair of refracting surfaces is orthogonal to the optical axis and perpendicular to the plane of the paper, and the laser beam with respect to the optical axis k in FIG.
By refracting the lower and upper halves of the light beams in directions opposite to the optical axis/k, they are divided into two laser beams Ls++Ls□ that intersect with each other. In this embodiment, the dividing prism 48 and the condensing lens 58 correspond to a reference optical element, and the ridge line 49 corresponds to a straight line perpendicular to the optical axis of the reference light.

一方の光束しいは、光軸kから上方に離隔した位置に配
設された2分割光センサ50上の中心に集光させられ、
また、他方の光束り、□は、光軸kから下方に離隔した
位置に配設された2分割光センサ52上の中心に集光さ
せられる。これら2分割光センサ50および52と前記
集光レンズ58との距離は、集光レンズ58に入射する
レーザ光L’sが平行光であるとき、すなわち、前記被
測定、物28に照射されるレーザ光り、のビームウェス
、トが表面30と略一致している状態のときに上記レー
ザ光L□、L、の集光位置がそれぞれ2分割光センサ5
0および52上の中心に一致するように設定されている
One of the light beams is focused on the center on a two-split optical sensor 50 disposed at a position spaced upward from the optical axis k,
The other beam, □, is focused on the center of the two-split optical sensor 52, which is disposed at a position spaced downward from the optical axis k. The distance between these two-split optical sensors 50 and 52 and the condensing lens 58 is such that when the laser beam L's incident on the condensing lens 58 is parallel light, that is, when the laser beam L's incident on the condensing lens 58 is irradiated onto the object to be measured 28, When the beam width and width of the laser beam are substantially aligned with the surface 30, the convergence positions of the laser beams L□ and L are divided into two, respectively, by the optical sensor 5.
It is set to match the center on 0 and 52.

2分割光センサ50は、上記レーザ光LSIの進行方向
の両側、すなわち第1図における直線tを含んで紙面に
垂直な平面を境界とする下側および上側の両方に跨がっ
て配設されており、その双方の側におけるレーザ光L 
stの光量をそれぞれ検出する一対の受光部51a、5
1bを備えている。
The two-split optical sensor 50 is disposed straddling both sides in the traveling direction of the laser beam LSI, that is, both the lower side and the upper side of the plane that includes the straight line t in FIG. 1 and is perpendicular to the paper surface. and the laser beam L on both sides
A pair of light receiving sections 51a and 5 that respectively detect the light amount of st.
1b.

また、2分割光センサ52は、上記レーザ光L8□の進
行方向の両側、すなわち第1図における直線Uを含んで
紙面に垂直な平面を境界とする上側および下側の両方に
跨がって配設されており、その双方の側におけるレーザ
光り、□の光量をそれぞれ検出する一対の受光部53a
、53bを備えている。
Further, the two-split optical sensor 52 straddles both sides of the traveling direction of the laser beam L8□, that is, both the upper side and the lower side including the straight line U in FIG. A pair of light receiving sections 53a are arranged and detect the amount of laser light and light on both sides thereof, respectively.
, 53b.

レーザ光り、は二重焦点レンズ42によるビームウェス
トが表面30よりも下方に位置しているため、その表面
30で反射されて二重焦点レンズ42を逆方向に通過し
た光は発散光となり、レーザ光L ’lI+  L12
の直線t、uの上側および下側におけるそれぞれの受光
量に差を生じるため、上記受光部51a、51bおよび
受光部53a、53bには予めこの光量差に対応するバ
イアスがかけられており、前記レーザ光LPのビームウ
ェストが表面30と略一致させられた状態において、そ
れらの検出出力の差が零になるように設定されている。
Since the beam waist of the laser beam by the bifocal lens 42 is located below the surface 30, the light reflected from the surface 30 and passing through the bifocal lens 42 in the opposite direction becomes diverging light, and the laser beam is emitted from the bifocal lens 42. Light L'lI+ L12
Since there is a difference in the amount of light received above and below the straight lines t and u, a bias corresponding to this difference in light amount is applied to the light receiving sections 51a, 51b and the light receiving sections 53a, 53b in advance. The difference between the detection outputs is set to zero when the beam waist of the laser beam LP is substantially aligned with the surface 30.

上記2分割光センサ50および52は参照用光センサに
相当する。
The two-split optical sensors 50 and 52 correspond to reference optical sensors.

ここで、表面30が全体的に上方向に変位した際番こそ
の表面30の比較的広い範囲で反射されたレーザ光り、
は、その発散状態が上記変位に対応じて拡大され、集光
レンズ58および分割プリズム48によって集光させら
れるレーザ光り、、;  L、tの集光位置がそれ以前
よりもそれぞれ遠くなるため、光軸kに近い内側におけ
る照射量と光軸kから遠い外側における照射量との差が
それ以前よりも大きくなる。このときにおける受光部5
1a。
Here, when the surface 30 is entirely displaced upward, the laser light is reflected from a relatively wide range of the surface 30,
The divergence state is expanded in accordance with the above displacement, and the laser beam is focused by the condensing lens 58 and the splitting prism 48; Since the converging positions of L and t are each farther away than before, The difference between the irradiation amount on the inside near the optical axis k and the irradiation amount on the outside far from the optical axis k becomes larger than before. Light receiving section 5 at this time
1a.

53aの検出出力を加算した参照信号SRaと受光部5
1b、53bの検出出力を加算した参照信号SRbとの
差の増加分は、上記表面30全体の上方への変位量に対
応じている。
The reference signal SRa obtained by adding the detection output of 53a and the light receiving section 5
The increase in the difference from the reference signal SRb obtained by adding the detection outputs of 1b and 53b corresponds to the amount of upward displacement of the entire surface 30.

逆に、表面30が全体的に下方向に変位した際にその表
面30の比較的広い範囲で反射されたレーザ光り、は、
その発散状態が上記変位に対応じて縮小され、集光レン
ズ58および分割プリズム48によって集光させられる
集光位置がそれ以前よりも近く4るため、光軸kに近い
内側における照射量と光軸kから遠い外側における照射
量との差がそれ以前よりも小さくなる。このときにおけ
る受光部5.1a、53aの検出出力を加算した参照信
号SRaと受光部51b、53bの検出出力を加算した
参照信号SRbとの差の減少分は、上記表面30全体の
下方への変位量に対応じている。
Conversely, when the surface 30 is entirely displaced downward, the laser light reflected from a relatively wide range of the surface 30 is
The divergence state is reduced in accordance with the above displacement, and the light condensing position where the light is condensed by the condenser lens 58 and the splitting prism 48 is closer than before, so that the irradiation amount and the light inside near the optical axis k are The difference with the irradiation amount on the outside far from the axis k becomes smaller than before. At this time, the decrease in the difference between the reference signal SRa, which is the addition of the detection outputs of the light receiving sections 5.1a and 53a, and the reference signal SRb, which is the summation of the detection outputs of the light receiving sections 51b and 53b, is due to the decrease in the downward direction of the entire surface 30. It corresponds to the amount of displacement.

そして、前記計測信号Sa、Sb、および上記参照信号
SRa、、SRbは、測定回路54に供給される。測定
回路54は、例えばマイクロコンピュータを備えて構成
され、予め定められたプログラムに従って信号処理を行
うことにより、計測信号Sa、Sbの差動をとるととも
に参照信号SRa、SRbの差動をとり、それ等の差動
信号eとReとの差から、予め記憶されたデータマツプ
や演算式等により表面30の凹凸を求める。このデータ
マツプや演算式は、レーザ光り、、Lsの反射位置と差
動信号e、Reとの関係を実験等により求めて定められ
る。この測定回路54は測定手段に相当する。
Then, the measurement signals Sa, Sb and the reference signals SRa, SRb are supplied to the measurement circuit 54. The measurement circuit 54 is configured with, for example, a microcomputer, and performs signal processing according to a predetermined program to take the difference between the measurement signals Sa and Sb and the difference between the reference signals SRa and SRb. From the difference between the differential signals e and Re, the unevenness of the surface 30 is determined using a data map or an arithmetic expression stored in advance. This data map and calculation formula are determined by determining the relationship between the reflection position of the laser beam, Ls, and the differential signals e and Re through experiments and the like. This measuring circuit 54 corresponds to measuring means.

ここで、上記計測信号Saとsbとの差動信号eは前記
変位量り、4すなわち被測定物28全体の振動等による
変位量d゛と表面30の凹凸による変位量dとを合わせ
た変位量〜(d+d’)に対応し、参照信号SRaとS
Rbとの差動信号Reは前記変位量D1すなわち被測定
物28全体の振動等による変位置d°に対応するため、
それ等の差動信号eとReとの差は、被測定物28の表
面30の凹凸のみによる変位量dに対応し、振動等の外
乱による影響が相殺されて表面30の凹凸が高い精度で
測定される。
Here, the differential signal e between the measurement signals Sa and sb is the displacement amount 4, which is the sum of the displacement amount d' due to vibration of the entire object to be measured 28 and the displacement amount d due to the unevenness of the surface 30. ~(d+d'), and the reference signals SRa and S
Since the differential signal Re with respect to Rb corresponds to the displacement D1, that is, the displacement position d° due to vibration of the entire object to be measured 28,
The difference between these differential signals e and Re corresponds to the amount of displacement d due only to the unevenness of the surface 30 of the object to be measured 28, and the influence of external disturbances such as vibrations is canceled out, so that the unevenness of the surface 30 can be detected with high accuracy. be measured.

また、本実施例の測定装置では2分割光センサ14.1
6、および50.52が用いられ、表面30で反射され
たレーザ光り、、L、を集光レンズ22.58により集
光するとともに分割プリズム12.48により屈折させ
て分割した後、表面30における反射位置の変位に伴っ
てそれぞれの集光位置が前後に移動させられるのに対応
じてそれぞれの光量が相反的に増減させられるレーザ光
LPI、  LP2およびL SI+  Ls2の進行
方向の両側においてその光量をそれぞれ受光検出し、そ
れらを部分加算した出力の差動をとるようになっている
ため、光源装置44の出力変動等に起因するノイズが除
去される利点がある。
In addition, in the measuring device of this embodiment, the two-split optical sensor 14.1
6 and 50.52 are used, and the laser beam, L, reflected on the surface 30 is focused by the condensing lens 22.58 and refracted and divided by the splitting prism 12.48. The light intensity of the laser beams LPI, LP2, and LSI+ Ls2 is increased or decreased reciprocally in accordance with the movement of the respective condensing positions back and forth as the reflection position is displaced. Since the received light is detected respectively, and the differential output of the partial summation of these is obtained, there is an advantage that noise caused by fluctuations in the output of the light source device 44, etc. can be removed.

以上、本発明の一実施例を図面に基づいて詳細に説明し
たが、本発明は他の態様で実施することもできる。
Although one embodiment of the present invention has been described above in detail based on the drawings, the present invention can also be implemented in other embodiments.

例えば、前記実施例では差動信号eとReとの差から表
面30の凹凸を測定するようになっているが、例えば二
重焦点レンズ42と被測定物28とを相対的に上下方向
へ接近離間させる駆動装置を設け、差動信号eおよびR
eの何れか一方が零となるように上記駆動装置をフィー
ドバック制御して、差動信号Re、eの他方のみから表
面30の凹凸を求めるようにすることもできる。
For example, in the embodiment described above, the unevenness of the surface 30 is measured from the difference between the differential signals e and Re. A driving device is provided to separate the differential signals e and R.
It is also possible to feedback-control the driving device so that one of e becomes zero, and to determine the unevenness of the surface 30 only from the other of the differential signals Re and e.

また、差動信号eの変化が零となるように集光レンズ2
2と2分割光センサ14,16とを光軸j方向へ相対移
動させるとともに、差動信号Reの変化が零となるよう
に集光レンズ58と2分割光センサ50,52とを光軸
に方向へ相対移動させ、それらの移動量の差に基づいて
表面30の凹凸を測定することも可能である。
Also, the condenser lens 2 is adjusted so that the change in the differential signal e becomes zero.
2 and the two-split optical sensors 14 and 16 are moved relative to each other in the direction of the optical axis j, and the condenser lens 58 and the two-split optical sensors 50 and 52 are moved along the optical axis so that the change in the differential signal Re becomes zero. It is also possible to make relative movements in the directions and measure the unevenness of the surface 30 based on the difference in the amount of movement.

また、前記実施例ではレーザ光り、が常に発散光の状態
で集光レンズ58に入射させられるとともに、集光レン
ズ58と2分割光センサ50,52との距離が集光レン
ズ58の焦点距離に一致させられていたが、レーザ光り
、のビームウェストが表面30と略一致している状態に
おいて、集光レンズ58により集光させられるレーザ光
り、の集光位置と略一致する位置に2分割光センサ50
゜52を配置したり、或いは、集光レンズ58に入射さ
せられる前のレーザ光り、を平行光とするために、偏光
ビームスプリンタ46と集光レンズ58との間に他の集
光レンズを配設したりしてもよく、この場合には、2分
割光センサ50および52の受光部51a、51b、お
よび53a、53bに予め所定のバイアスをかける必要
がなくなる。
Further, in the embodiment described above, the laser beam is always incident on the condensing lens 58 in a diverging state, and the distance between the condensing lens 58 and the two-split optical sensors 50 and 52 is equal to the focal length of the condensing lens 58. However, in a state where the beam waist of the laser beam substantially coincides with the surface 30, the two-split beam is focused by the condensing lens 58 at a position that substantially coincides with the condensing position of the laser beam. sensor 50
52, or another condensing lens may be arranged between the polarizing beam splinter 46 and the condensing lens 58 in order to make the laser beam parallel to the beam before it enters the condensing lens 58. In this case, there is no need to apply a predetermined bias to the light receiving sections 51a, 51b, and 53a, 53b of the two-split optical sensors 50 and 52.

また、前記実施例ではビームエキスパンダ20を出て横
断面が円形の平行光とされたレーザ光りが二重焦点レン
ズ42に入射させられるようになっているが、収束光若
しくは発散光の状態でレーザ光りを二重焦点レンズ42
に入射させるようにしても良い。その場合には、表面3
0で反射されたレーザ光LP、LSが平行光となるよう
に偏光ビームスプリンタ46と集光レンズ22.58と
の間に他のレンズをそれぞれ設けたり、収束光若しくは
発散光が集光レンズ22.58により集光させられる集
光位置に2分割光センサ14,16および50.52を
それぞれ配置したりするなどすれば良い。
Furthermore, in the embodiment described above, the laser beam that exits the beam expander 20 and becomes a parallel beam with a circular cross section is made incident on the bifocal lens 42, but it is configured such that the laser beam is in the form of convergent light or diverging light. Laser light with bifocal lens 42
It is also possible to make the light incident on . In that case, surface 3
Other lenses may be provided between the polarizing beam splinter 46 and the condensing lens 22 and 58 so that the laser beams LP and LS reflected at The two-split optical sensors 14, 16 and 50.52 may be respectively arranged at the light focusing positions where the light is focused by .58.

また、前記実施例では対物レンズとして二重焦点レンズ
42が用いられているが、偏波面の向きに応じて屈折作
用を為す複数のレンズを組み合わせて用いることもでき
る。
Further, although the bifocal lens 42 is used as the objective lens in the above embodiment, a combination of a plurality of lenses that perform a refractive action depending on the direction of the plane of polarization can also be used.

また、焦点距離が異なる複数の二重焦点レンズを回転式
のレボルバ等に取り付け、二重焦点レンズを交換するこ
とによって測定倍率を変化させたり、二重焦点レンズと
被測定物28との間に別の対物レンズを入れてそれ等の
組合せにより表面30上に大小のスポットを形成したり
、レーザ発振器18と無偏光ビームスプリッタ40との
間に光アイソレータを入れたりすることもできる。
In addition, by attaching multiple bifocal lenses with different focal lengths to a rotary revolver, etc., and changing the measurement magnification by replacing the bifocal lenses, it is possible to It is also possible to insert another objective lens and use a combination thereof to form large and small spots on the surface 30, or to insert an optical isolator between the laser oscillator 18 and the non-polarizing beam splitter 40.

また、前記実施例においては、分割プリズム12および
48によりそれぞれ屈折させられて分割された一対ずつ
のレーザ光LPII  LP□およびL S I +L
5□の光量がそれぞれ2分割光センサ14.16、およ
び50.52によって検出されていたが、レーザ光Lp
およびり、それぞれの少なくとも半分の光束について屈
折集光させることによりそれぞれの光量変化が検出され
ればよく、必ずしも分割プリズム12.48を用いたり
、一対ずつの2分割光センサ14,16、および50.
52を設ける必要はない。
Furthermore, in the embodiment, each pair of laser beams LPII LP□ and L S I +L are refracted and split by the splitting prisms 12 and 48, respectively.
The light intensity of 5□ was detected by the two-split optical sensors 14.16 and 50.52, respectively, but the laser beam Lp
It is only necessary to detect the change in the amount of light by refracting and focusing at least half of each luminous flux, and it is not necessary to use a splitting prism 12.48 or a pair of two-split optical sensors 14, 16, and 50. ..
52 is not necessary.

また、前記実施例においては、測定用光学素子および参
照用光学素子として分割プリズム12と集光レンズ22
、および分割プリズム48と集光レンズ58が用いられ
ていたが、凹面鏡などの他の光学部品を利用して測定用
光学素子や参照用光学素子を構成することも可能である
Further, in the embodiment, the splitting prism 12 and the condensing lens 22 are used as the measuring optical element and the reference optical element.
, the splitting prism 48, and the condensing lens 58 have been used, but it is also possible to configure the measuring optical element and the reference optical element using other optical components such as a concave mirror.

その他−々例示はしないが、本発明は当業者の知識に基
づいて種々の変更、改良を加えた態様で実施することが
できる。
Although other examples are not provided, the present invention can be implemented with various modifications and improvements based on the knowledge of those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である光学式表面粗さ測定装
置の構成を説明する骨子図である。第2図は分割プリズ
ムと集光レンズを用いて光の収束発散状態の変化を検出
する原理を説明する図である。第3図は分割プリズムと
集光レンズを利用した従来の光学式表面粗さ測定装置の
一例を説明する骨子図である。 13 : 14゜ 28 = 42 : 44 : 稜線(一直線) 16:2分割光センサ(計測用光センサ)被測定物  
  30:表面 二重焦点レンズ(対物レンズ) 光源装置 46:偏光ビームスプリンタ 111all1 49:稜!(一直線) 50.52:2分割光センサ(参照用光センサ)54:
測定回路(測定手段)
FIG. 1 is a schematic diagram illustrating the configuration of an optical surface roughness measuring device that is an embodiment of the present invention. FIG. 2 is a diagram illustrating the principle of detecting changes in the convergence/divergence state of light using a splitting prism and a condensing lens. FIG. 3 is a schematic diagram illustrating an example of a conventional optical surface roughness measuring device using a splitting prism and a condensing lens. 13: 14°28 = 42: 44: Ridge line (straight line) 16: 2-split optical sensor (measurement optical sensor) object to be measured
30: Surface bifocal lens (objective lens) Light source device 46: Polarizing beam splinter 111all1 49: Edge! (straight line) 50.52: 2-split optical sensor (reference optical sensor) 54:
Measuring circuit (measuring means)

Claims (1)

【特許請求の範囲】 光軸に対して交差する方向へ相対移動させられる被測定
物の表面にビームウェストが略位置する状態で該表面の
微小範囲に計測光を集光させるとともに、該表面で反射
された該計測光の収束発散状態の変化を検出することに
より、該表面の凹凸による該計測光の反射位置の変位量
を測定する方式の光学式表面粗さ測定装置であって、 光軸が同じで偏波面が互いに直交する2種類の偏光成分
を含む光を出射する光源装置と、前記2種類の偏光成分
をそれぞれ独立に集光し、該2種類の偏光成分の一方を
計測光として、そのビームウェストが前記被測定物の表
面と略一致するように該表面の微小範囲に照射するとと
もに、該2種類の偏光成分の他方を参照光として該被測
定物の表面の比較的広い範囲に照射する対物レンズと、 前記表面で反射され且つ前記対物レンズを通過させられ
た前記計測光および参照光を分離する偏光ビームスプリ
ッタと、 該偏光ビームスプリッタによって分離された前記計測光
の光軸と直交する一直線を境とする少なくとも半分を屈
折させるとともに、該光軸を含み且つ該一直線に垂直な
平面上における該光軸から離隔した位置に集光させるこ
とにより、前記表面における該計測光の反射位置の変位
に応じて該計測光の収束発散状態が変化させられるのに
伴って、前記屈折させた計測光の集光位置をその進行方
向の前後に移動させる計測用光学素子と、 該計測用光学素子により屈折させられた前記計測光の進
行方向の両側に配設され、該計測光の集光位置の移動に
対応して相反的に増減する該計測光の光量をそれぞれ検
出する計測用光センサと、前記偏光ビームスプリッタに
よって分離された前記参照光の光軸と直交する一直線を
境とする少なくとも半分を屈折させるとともに、該光軸
を含み且つ該一直線に垂直な平面上における該光軸から
離隔した位置に集光させることにより、前記表面におけ
る該参照光の反射位置の変位に応じて該参照光の収束発
散状態が変化させられるのに伴って、前記屈折させた参
照光の集光位置をその進行方向の前後に移動させる参照
用光学素子と、該参照用光学素子により屈折させられた
前記参照光の進行方向の両側に配設され、該参照光の集
光位置の移動に対応して相反的に増減する該参照光の光
量をそれぞれ検出する参照用光センサと、前記計測用光
センサから出力される計測信号の差動をとるとともに、
前記参照用光センサから出力される参照信号の差動をと
り、それ等の差動信号の差に基づいて前記表面の凹凸を
測定する測定手段と を有することを特徴とする光学式表面粗さ測定装置。
[Claims] The beam waist is approximately located on the surface of the object to be measured, which is relatively moved in a direction intersecting the optical axis, and the measurement light is focused on a minute range of the surface. An optical surface roughness measurement device that measures the amount of displacement of the reflection position of the measurement light due to the unevenness of the surface by detecting a change in the convergence/divergence state of the reflected measurement light, the optical axis a light source device that emits light containing two types of polarized light components whose polarization planes are the same and whose planes of polarization are orthogonal to each other; and a light source device that emits light containing two types of polarized light components whose planes of polarization are the same and whose planes of polarization are orthogonal to each other; , irradiates a minute range of the surface of the object to be measured so that its beam waist substantially coincides with the surface of the object to be measured, and uses the other of the two types of polarized light components as a reference beam to irradiate a relatively wide area of the surface of the object to be measured. a polarizing beam splitter that separates the measurement light and reference light reflected by the surface and passed through the objective lens; and an optical axis of the measurement light separated by the polarization beam splitter. Reflection of the measurement light on the surface by refracting at least half of the line bordering the orthogonal line and condensing the light at a position away from the optical axis on a plane that includes the optical axis and is perpendicular to the line. a measurement optical element that moves the convergence position of the refracted measurement light back and forth in its traveling direction as the convergence/divergence state of the measurement light is changed according to positional displacement; Measuring lights that are disposed on both sides of the measurement light refracted by the optical element in the traveling direction and detect the amount of the measurement light that reciprocally increases or decreases in response to movement of the focusing position of the measurement light. refract at least half of the reference light separated by the sensor and the polarizing beam splitter, with a straight line perpendicular to the optical axis, and from the optical axis on a plane that includes the optical axis and is perpendicular to the straight line; By condensing the light at separate positions, the convergence/divergence state of the reference light is changed according to the displacement of the reflection position of the reference light on the surface, and the convergence position of the refracted reference light changes. a reference optical element that moves the reference light back and forth in its traveling direction; a reference light sensor that detects the amount of light of the reference light that increases and decreases reciprocally, and a measurement signal output from the measurement light sensor;
An optical surface roughness measurement method characterized by having a measuring means for taking a differential of the reference signals output from the reference optical sensor and measuring the unevenness of the surface based on the difference between the differential signals. measuring device.
JP17777590A 1990-07-05 1990-07-05 Optical surface roughness measuring instrument Pending JPH0465615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17777590A JPH0465615A (en) 1990-07-05 1990-07-05 Optical surface roughness measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17777590A JPH0465615A (en) 1990-07-05 1990-07-05 Optical surface roughness measuring instrument

Publications (1)

Publication Number Publication Date
JPH0465615A true JPH0465615A (en) 1992-03-02

Family

ID=16036898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17777590A Pending JPH0465615A (en) 1990-07-05 1990-07-05 Optical surface roughness measuring instrument

Country Status (1)

Country Link
JP (1) JPH0465615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231741A (en) * 2007-02-26 2013-11-14 Corning Inc Distortion measurement imaging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231741A (en) * 2007-02-26 2013-11-14 Corning Inc Distortion measurement imaging system

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
KR870004423A (en) Optical head
JPH063125A (en) Optical type displacement meter
JPS629211A (en) Optical measuring instrument
JPH0465615A (en) Optical surface roughness measuring instrument
TWI658289B (en) Focusing and leveling device
US9062967B2 (en) Measurement apparatus for measuring a surface shape of an object based on an interference signal
JPH0718963Y2 (en) Optical surface roughness measuring device
JPH0465614A (en) Optical surface roughness measuring instrument
JPH07294231A (en) Optical surface roughness sensor
JPH0465612A (en) Optical method and instrument for measuring surface roughness
JPS5897140A (en) Reproducer for optical information signal
US5636189A (en) Astigmatic method for detecting a focussing error in an optical pickup system
JPH0465613A (en) Optical surface roughness measuring instrument
JP2002005617A (en) Optical measurement device
JPS6331858B2 (en)
JPS6227613A (en) Position detector
JP3004631B1 (en) Laser interferometer
JPS63148106A (en) Body position measuring instrument
JPS63204182A (en) Method and apparatus for measuring laser doppler speed
JP2808713B2 (en) Optical micro displacement measuring device
JPS6370110A (en) Distance measuring apparatus
JPS61105408A (en) Optical measuring instrument
JP2002213928A (en) Instrument and method for measuring surface shape, and projection lens with optical element assembled therein of which the surface shape is measured using the instrument and the method
JPS6117907A (en) Three-dimensional shape measuring instrument