JPS61105408A - Optical measuring instrument - Google Patents

Optical measuring instrument

Info

Publication number
JPS61105408A
JPS61105408A JP59228114A JP22811484A JPS61105408A JP S61105408 A JPS61105408 A JP S61105408A JP 59228114 A JP59228114 A JP 59228114A JP 22811484 A JP22811484 A JP 22811484A JP S61105408 A JPS61105408 A JP S61105408A
Authority
JP
Japan
Prior art keywords
light
measured
objective lens
measurement
measurement light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59228114A
Other languages
Japanese (ja)
Other versions
JPH0255722B2 (en
Inventor
Keiichi Yoshizumi
恵一 吉住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59228114A priority Critical patent/JPS61105408A/en
Publication of JPS61105408A publication Critical patent/JPS61105408A/en
Publication of JPH0255722B2 publication Critical patent/JPH0255722B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02003Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using beat frequencies

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure a surface with high precision by holding the distance between the object surface and an object constant and returning the reflected light of measurement light to the same position in the same direction by an optical heterodyne interference length measuring method. CONSTITUTION:Measurement light F1 and reference light F2 from a Zeeman laser 1 which differ in frequency are separated by a prism 4. Then, the measurement light F1 is polarized by a prism 5 and converged on the object surface 9 through a mirror 7 and the objective 8. Its reflected light has a frequency F1+DELTA by a Doppler shift. Its reflected light illuminates a detector 13. Further, part of the reflected light illuminates a detector 11 to detect the inclination of the object surface. Further, the reference light F3 is converted on a mirror 17 and its reflected light is projected on the detector 13 to detect the frequency of beats between the measurement light and reference light, measuring the object surface. Further, tables 29 and 40 are so moved that the objective 8 and object surface 9 at constant distance. Thus, the thickness of the object surface is measured so that the reflected light of the measurement light returns to the same position, so the surface shape is measured with high precision.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、一般的な自由曲面のほか、非球面レンズや非
球面ミラー等の表面形状を高精度に非接触で光学的に測
定する2次元乃至3次元測定装置に関するもので、レー
ザ光を対物レンズで被測定物体面上に集光し、その反射
光の周波数の被測定物体面の移動によって生ずるドプラ
ーシフトを検出して面形状を測定する光学測定装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a two-dimensional or non-contact method for optically measuring the surface shape of general free-form surfaces as well as aspherical lenses and aspherical mirrors with high precision. This relates to three-dimensional measurement equipment, and is an optical system that focuses a laser beam onto the surface of the object to be measured using an objective lens, and measures the surface shape by detecting the Doppler shift of the frequency of the reflected light caused by the movement of the surface of the object to be measured. This relates to a measuring device.

従来の技術 2波長のレーザ光をそれぞれ測定光と参照光とし、それ
ぞれ異なる反射面から反射させ、再び、それらの光を同
一光検出器上に導びき、ビート周波数を検出し、反射面
の動きによって生ずる反射光の周波数のドプラーシフト
の量から、反射面の動き量を検出する装置は光ヘテロダ
イン法によるレーザ測長機として知らねており、商品化
されている(例えばHP5526人)。これは、ダイナ
ミックレンジが広く、最も精度の高い測長器として知ら
れている。これを3次元移動台に取付けた3次元測定機
が市販されている。このような従来装置では、移動台に
コーナキューブやミラーを取付け、移動台の動きをレー
ザ測長機で測定している。被測定物の形状を測定する為
には、何らかの測定プローブを具え、被測定物の面形状
に沿って、測定プローブをほぼ一定圧力で接触するよう
に移動台を移動させ、−動台の移動量から、被測定物の
位置の3次元座標を測定している。
Conventional technology Laser beams with two wavelengths are used as measurement beam and reference beam, respectively, and are reflected from different reflecting surfaces.The beams are guided onto the same photodetector again, the beat frequency is detected, and the movement of the reflecting surface is detected. A device that detects the amount of movement of the reflecting surface from the amount of Doppler shift in the frequency of the reflected light caused by this is known as a laser length measuring machine using the optical heterodyne method, and has been commercialized (for example, HP5526). This is known as the most accurate length measuring device with a wide dynamic range. A three-dimensional measuring machine in which this is attached to a three-dimensional moving table is commercially available. In such a conventional device, a corner cube or a mirror is attached to a movable table, and the movement of the movable table is measured using a laser length measuring device. In order to measure the shape of an object to be measured, a measuring probe of some kind is provided, and a moving table is moved along the surface shape of the object to be measured so that the measuring probe comes into contact with almost constant pressure. The three-dimensional coordinates of the position of the object to be measured are measured from the amount.

上述の°3次元測定機は、測定プローブを介して被測定
物の3次元座標を測定する構成である為、レーザ測長機
自体がいくら高精度であっても、測定プローブの精度、
接触圧力の変化、機構的バックラッシュ等で測定精度は
落ちてしまう。数値的には、レーザ測長機の測定精度は
、±o、01μm程度得られるが、測定プローブを介し
た3次元測定機の測定精度は、せいぜい二0.2μm程
度であるb そこで、測定プローブを介せず、直接レーザ光を被測定
物表面に照射し、この反射光から光ヘテロダイン法によ
るレーザ測長法で表面形状を測定しようとする装置とし
て、本出願人による出願特許、特願昭57−18976
1号に記載された装置がある。この装置は、測定光を対
物レンズで被測定物体面上に集光し、対物レンズと被測
定物体面との距離を一定に保つ為のフォーカスサーボ、
被測定面が傾いた場合でも入射光と反射光がほぼ同一光
路をとるように、対物レンズ又は、入射光の光路を光軸
に垂直な方向に動かす傾き補正サーボを備えることによ
って、測定グローブを介せず、直接レーザ光を被測定物
表面に照射し、この反射光から光ヘテロダイン法によっ
て表面形状が測定できる。
The above-mentioned 3D measuring machine is configured to measure the 3D coordinates of the object to be measured via a measurement probe, so no matter how accurate the laser length measuring machine itself is, the accuracy of the measurement probe
Measurement accuracy deteriorates due to changes in contact pressure, mechanical backlash, etc. Numerically, the measurement accuracy of a laser length measuring machine is about ±0.01 μm, but the measurement precision of a three-dimensional measuring machine using a measurement probe is at most about 20.2 μm. The present applicant has filed a patent application and patent application for a device that directly irradiates the surface of the object to be measured with laser light and measures the surface shape using the laser length measurement method based on the optical heterodyne method using the reflected light. 57-18976
There is a device described in No. 1. This device focuses measurement light onto the surface of the object to be measured using an objective lens, and uses a focus servo to maintain a constant distance between the objective lens and the surface of the object to be measured.
The measuring glove is equipped with an objective lens or a tilt correction servo that moves the optical path of the incident light in a direction perpendicular to the optical axis so that the incident light and reflected light take almost the same optical path even if the surface to be measured is tilted. The surface shape of the object can be measured using the optical heterodyne method by directly irradiating a laser beam onto the surface of the object to be measured without using the laser beam.

又、本出願人による出願特許、特願昭68−62444
号には、測定光を対物レンズの開ロ一杯に入射させ、被
測定面から反射した測定光の一部を分離し分離された光
を凸レンズを介してノ・−フばラーで分離し、集光点前
後にピンホールを置き、ピンホールを通過するそれぞれ
の光の強度の差からフォーカス誤差信号を検出する方法
と、測定位置のX!座標を光学的に測定する方法が記さ
れている。
In addition, the applicant has filed a patent application and patent application No. 68-62444.
In this issue, the measurement light is incident on the objective lens at its full aperture, a part of the measurement light reflected from the surface to be measured is separated, and the separated light is separated by a nozzle roller through a convex lens. A method in which a pinhole is placed before and after the focal point and a focus error signal is detected from the difference in intensity of each light passing through the pinhole, and the X! A method for optically measuring coordinates is described.

発明が解決しようとする問題点 上述の特願昭57−189761の明細書に記載された
方式では、測定光の一部から非点収差法によ−てフォー
カス誤差信号をij)でいる。この方式には、以下のよ
うな問題点があった。即ち、被測定面の傾きが大きい場
合でも測定可能とする為には、対物レンズの入射瞳径に
比べ、入射測定光の光束径を十分小としなければならな
い。又、フォーカスサーボは、測定光の反射光の一部を
分離して非点収差法で誤差信号を11、トているが、被
測定面の傾きが大きい場合、反射光の一部が対物レンズ
の開口によって遮幣される為、フォーカス誤差を生ずる
という問題点がある。一方、入射測定光の光束径を小さ
くした場合フォーカス誤差信号の検出感度が下がるとい
う問題点がある。なんとなitば、フォーカス誤差信号
の検出感度は、対物レンズの開口数(N人)の2乗に反
比例するが、入射測定光の光束径を小さくすれば、実質
的に人が小さくなる為である。以上のように、前述の明
細書に記載された方法では、測定光からフォーカス誤差
信号をとっている為、フォーカス感度を上げる事と、傾
きの大きい面を測定する事が相反する要求となるという
問題点かあ−た。
Problems to be Solved by the Invention In the method described in the specification of Japanese Patent Application No. 57-189761 mentioned above, a focus error signal ij) is obtained from a part of the measurement light by the astigmatism method. This method had the following problems. That is, in order to enable measurement even when the slope of the surface to be measured is large, the beam diameter of the incident measurement light must be made sufficiently smaller than the entrance pupil diameter of the objective lens. In addition, the focus servo separates a part of the reflected light of the measurement light and generates an error signal using the astigmatism method, but if the surface to be measured has a large inclination, a part of the reflected light will be lost to the objective lens. Since the lens is blocked by the aperture, there is a problem that a focus error occurs. On the other hand, there is a problem in that when the beam diameter of the incident measurement light is made small, the detection sensitivity of the focus error signal decreases. What's more, the detection sensitivity of the focus error signal is inversely proportional to the square of the numerical aperture (N) of the objective lens, but if you reduce the beam diameter of the incident measurement light, the diameter will actually become smaller. be. As mentioned above, in the method described in the above-mentioned specification, since the focus error signal is obtained from the measurement light, there are contradictory demands to increase the focus sensitivity and to measure a surface with a large inclination. Is there a problem?

さらに、上述の特願昭58−62444号の記載された
方式は、測定光を対物レンズの開ロ一杯に入射させてい
る為、フォーカス誤差信号の検出感度は十分高いし、被
測定面が傾いて反射測定光の一部が対物レンズ開口によ
って連撃されてもフォーカス誤差が生じない方法ではあ
るが、光ヘテロダイン干渉させる測定光が、被測定面の
傾きによって、一部連撃され、やはシ測定困難となると
いう問題点があった。
Furthermore, in the method described in the above-mentioned Japanese Patent Application No. 58-62444, the measurement light is incident on the objective lens at its full aperture, so the detection sensitivity of the focus error signal is sufficiently high, and the surface to be measured is tilted. Although this method does not cause a focus error even if a part of the reflected measurement light is repeatedly hit by the objective lens aperture, the measurement light that causes optical heterodyne interference may be partly hit repeatedly due to the inclination of the surface to be measured. There was a problem in that it was difficult to measure.

問題点を解決する為の手段 本発明は、上記の問題点を解決する手段として、フォー
カス誤差信号を検出する光と測定光とを分け、フナ−カ
ス信号検出光は、対物レンズの開ロ一杯に入射させ、フ
ォーカス感度を十分高くすると共に、測定光は、光束t
′6を細くし、上述の傾き補正サーボによって傾きの大
きい面でも測定できるようにしたものである。測定光は
、波長Q633nmのHe−Noゼーマンレーザを使用
するが、フォーカス(fi号検出光は、波長0.82 
nmの半導体レーザを使用し、ダイクロイックミラーに
よって、これらの光の合成9分離を行なうことができる
Means for Solving the Problems The present invention, as a means for solving the above problems, separates the light for detecting the focus error signal and the measurement light, and the focus error signal detection light is transmitted to the full aperture of the objective lens. The measurement light is made incident on the beam t to make the focus sensitivity sufficiently high.
'6 is made thinner so that even a surface with a large inclination can be measured using the above-mentioned inclination correction servo. The measurement light uses a He-No Zeeman laser with a wavelength of 633 nm, but the focus (fi detection light has a wavelength of 0.82 nm).
Using a nm semiconductor laser, these lights can be combined and separated by a dichroic mirror.

作用 本発明は、光ヘテロダイン干渉測長法によって、被測定
物体の表面形状を測定できるようにする為、上記の手段
によって、被測定面の傾きにかかわらず、対物レンズと
被測定位置との距離を一定とすると共に、測定光の反射
光は常に同じ方向及び位置に戻るようしたものであって
、被測定物体の2方向厚さ成分を、レーザ光で直接測定
でき、極めて高精度の、面形状の光学測定装置が得られ
るものである。
In order to measure the surface shape of an object to be measured by optical heterodyne interferometry, the present invention uses the above-mentioned means to determine the distance between the objective lens and the position to be measured, regardless of the inclination of the surface to be measured. is constant, and the reflected light of the measurement light always returns to the same direction and position, allowing the thickness components of the object to be measured in two directions to be directly measured with a laser beam. A shape optical measuring device is obtained.

実施例 第1図において、ゼーマンレーザ1から出た、周波数F
、の測定光とF2の参照光は、ハーフミラ−3で、X座
標と2座標を測定する光に分離される。
Embodiment In FIG. 1, the frequency F emitted from the Zeeman laser 1
The measurement light of , and the reference light of F2 are separated by the half mirror 3 into light for measuring the X coordinate and two coordinates.

2座標を測定する為の光については、偏光プリズム4で
、測定光と参照光とに分離される。測定光は、偏光プリ
ズム4,6で反射し、λ/4波長板6を通過し、ダイク
ロイックミラ−7を透過し、対物レンズ8によって被測
定面9上に集光される。
The light for measuring two coordinates is separated by the polarizing prism 4 into measurement light and reference light. The measurement light is reflected by the polarizing prisms 4 and 6, passes through the λ/4 wavelength plate 6, passes through the dichroic mirror 7, and is focused onto the surface to be measured 9 by the objective lens 8.

被測定面9は、移動テーブル29によってX −Y方向
に移動するので、被測定物上の測定位置のZ座標の変位
速度マによって、反射光の周波数は、Δだけドプラーシ
フトし、F、+Δとなる。ここで、v Δ=c ’+ (0:光速度)である。この反射測定光
は、再びダイクロイックばラー7を透過し、λ/4波長
板6でP偏波となり、S偏波は全反射、P偏波は30%
透過する偏光プリズム5で分離され、この偏光プリズム
5からの反射光は偏光プリズム4を全透過し、光検出器
13上に照射される。
Since the surface to be measured 9 is moved in the X-Y direction by the moving table 29, the frequency of the reflected light is Doppler-shifted by Δ depending on the displacement velocity of the Z coordinate of the measurement position on the object to be measured, F, +Δ becomes. Here, v Δ=c ′+ (0: speed of light). This reflected measurement light passes through the dichroic baller 7 again and becomes P-polarized light at the λ/4 wavelength plate 6. The S-polarized light is totally reflected, and the P-polarized light is 30%
The light is separated by a transmitting polarizing prism 5, and the reflected light from this polarizing prism 5 completely passes through the polarizing prism 4 and is irradiated onto a photodetector 13.

偏光7’ IJズム6の透過光はレンズ1oを通して、
4分割光検出器11上に照射される。光検出器11は、
被測定面の傾きによって生ずる光分布のずれを検出し、
傾き補正サーボの誤差信号を出力し、第1図のX方向に
、対物レンズ保持テーブル4゜を、駆動モータ22によ
って移動させる。
Polarized light 7' The transmitted light of IJism 6 passes through lens 1o,
The light is irradiated onto the 4-split photodetector 11. The photodetector 11 is
Detects deviations in light distribution caused by the inclination of the surface to be measured,
The error signal of the tilt correction servo is output, and the objective lens holding table 4° is moved by the drive motor 22 in the X direction in FIG.

一方、周波数F2の参照光は、偏光プリズム4を全透過
し、λ/4板2板金3過し、レンズ24によって、ミラ
ー27上に集光される。ミラー27は移動テーブル29
上に、被測定物9と共に固定された、平面度がλ/3o
(λ=o、e 33 nm )程度の平面度の良いミラ
ーである。ミラー27からの反射光は、同一光路を戻り
、偏光プリズム4を全反射し、光検出器13上に照射さ
れる。光検出器13上では測定光と参照光の差のビート
周波数を検出し、この積分から、被測定面の厚さの測定
を行なう。
On the other hand, the reference light having the frequency F2 completely passes through the polarizing prism 4, passes through the λ/4 plate 2 and the metal plate 3, and is focused onto the mirror 27 by the lens 24. The mirror 27 is a moving table 29
The flatness is λ/3o, which is fixed together with the object to be measured 9 on the top.
It is a mirror with good flatness of about (λ=o, e 33 nm). The reflected light from the mirror 27 returns along the same optical path, is totally reflected by the polarizing prism 4, and is irradiated onto the photodetector 13. The beat frequency of the difference between the measurement light and the reference light is detected on the photodetector 13, and the thickness of the surface to be measured is measured from this integration.

半導体レーザ2oから出た光は、偏光プリズム16、λ
/4波長板14を通過して、ダイクロイックばラー7を
全反射し、対物レンズ8の開ロ一杯に入射し、被測定面
上の測定光の照射位置とはぼ同一位置に集光される。こ
の反射光は被測定面が傾いていれば一部対物レンズ8の
開口外に出るが、一部は対物レンズの開口内に戻り、再
びダイクロイックミラー7を全反射し、偏光プリズム1
5を全反射し、レンズ17を通過し、ハーフばラー41
で等分割され、焦点前と、焦点後に置かれたピンホール
18を通過し、光検肚器19上に照射される。被測長物
と、対物レンズの距離の変化に応じて、2つのピンホー
ル前後の集光位置がずれる為、光検出器19のそれぞれ
の出力の差からフォーカス誤差信号が得られる。このフ
ォーカス誤差信号がゼロに近づくように、モータ21に
よって、対物レンズ保持テーブル40を2方向に動かし
、常に測定光及び前記半導体レーザの光の集光位置が被
測定面9上にあるようにする。
The light emitted from the semiconductor laser 2o is transmitted through a polarizing prism 16, λ
The light passes through the /4 wavelength plate 14, is totally reflected by the dichroic baller 7, enters the objective lens 8 at full aperture, and is focused at approximately the same position as the measurement light irradiation position on the surface to be measured. . If the surface to be measured is tilted, a part of this reflected light will go outside the aperture of the objective lens 8, but a part of it will return to the aperture of the objective lens and will be totally reflected by the dichroic mirror 7 again, and will be reflected by the polarizing prism 1.
5 is totally reflected, passes through the lens 17, and passes through the half baller 41.
The light is divided into equal parts, passes through a pinhole 18 placed before and after the focus, and is irradiated onto the optical detector 19. Since the focusing positions before and after the two pinholes shift according to changes in the distance between the object to be measured and the objective lens, a focus error signal is obtained from the difference in the respective outputs of the photodetectors 19. The objective lens holding table 40 is moved in two directions by the motor 21 so that this focus error signal approaches zero, so that the focusing position of the measurement light and the light of the semiconductor laser is always on the surface to be measured 9. .

上記のフォーカスサーボと傾き補正サーボによって、被
測定面の位置や傾きにかかわらず、測定光が被測定面か
ら反射し、入射光と同一位置、方向に戻る様子を、第2
図及び第3図に示す。第2図は、被測定面が傾いていな
い場合、第3図は大きく傾いた場合を示すが、いずれの
場合でも、正確なフォーカス誤差信号が得られると共に
、測定光の反射光の光路にも変化がないよう傾き補正サ
ーボが動作し、支障なく、参照光と干渉し、ビート周波
数を検出できる。
Using the focus servo and tilt correction servo described above, the measurement light is reflected from the surface to be measured and returns to the same position and direction as the incident light, regardless of the position or inclination of the surface to be measured.
As shown in FIG. Figure 2 shows the case where the surface to be measured is not tilted, and Figure 3 shows the case where it is significantly tilted. In either case, an accurate focus error signal can be obtained and the optical path of the reflected light of the measurement light can be adjusted. The tilt correction servo operates so that there is no change, and the beat frequency can be detected by interfering with the reference light without any problems.

本実施例に使用した対物レンズは、NA=0.6で、平
行光を一点に集光できる性卵を有し、集光点−c’o波
面収差は、RM S (Root Mean 5qua
re)で0.04λ(λ:0,633μm)であった。
The objective lens used in this example has an NA of 0.6 and a lens capable of condensing parallel light to a single point, and the focal point -c'o wavefront aberration is RMS (Root Mean 5qua
re) was 0.04λ (λ: 0,633 μm).

従って、測定光は、対物レンズの中心部を透過しても、
周辺部を透過しても、集光点までの光路長は、0.04
X0.633=0.025μm程度の差しかない。又、
対物レンズの周辺で収差があった場合でも、被測定面が
傾いて、測定光が対物レンズの周辺を通過した場合、フ
ォーカス用半導体レーザの光も測定光の光路と同様に対
物レンズの周辺を通った光が戻るので、収差によって焦
点位置がずれた場合、そのずれた位置にフォーカスサー
ボがかかる為、収差の影響はある程度補正される方向に
なる。測定位置のX座標は、常に対物レンズ8の中心部
となる為、測定位置のX座標は、移動テーブル29の移
動量と対物レンズ保持テーブルの移動量との差となる。
Therefore, even if the measurement light passes through the center of the objective lens,
Even if it passes through the peripheral area, the optical path length to the focal point is 0.04
There is only a difference of about X0.633=0.025 μm. or,
Even if there is aberration around the objective lens, if the surface to be measured is tilted and the measurement light passes around the objective lens, the light from the focusing semiconductor laser will also follow the optical path of the measurement light around the objective lens. Since the transmitted light returns, if the focal position shifts due to aberrations, the focus servo is applied to the shifted position, so the effects of the aberrations are corrected to some extent. Since the X coordinate of the measurement position is always the center of the objective lens 8, the X coordinate of the measurement position is the difference between the amount of movement of the moving table 29 and the amount of movement of the objective lens holding table.

そこで、それぞれの移動テーブルに固定されたばラー3
2.33へ、それぞれ測定光F、と参照光y2を照射さ
せ、やはシ光へテロダイン法によって、X座標を高精度
に測定できる。
Therefore, the baller 3 fixed to each movable table
2.33, the X coordinate can be measured with high precision by irradiating the measurement light F and the reference light y2, respectively, and by using the optical heterodyne method.

さらに、図では省略しているが、ゼーマンレーザの光を
さらに分離し、移動台40と29の上にそれぞればラー
をっけ、X方向と同様の方法で、測定位置のY座標も高
精度に測定できる。
Furthermore, although not shown in the figure, the light of the Zeeman laser is further separated, and a rosette is placed on each of the movable tables 40 and 29, and the Y coordinate of the measurement position is also highly accurate using the same method as in the X direction. can be measured.

前述の記述では、フォーカスサーボの為、対物レンズ保
持テーブル4oを2方向に駆動している。
In the above description, the objective lens holding table 4o is driven in two directions for focus servo.

しかし、被測定物保持テーブル29を2方向に駆動して
フォーカスサーボをかけることもできる。
However, focus servo can also be applied by driving the object holding table 29 in two directions.

この場合、レンズ24の焦点位置にミラー27を ・置
いであるので、εシー2フが2方向に移動すると、焦点
ずれを起こすが、レンズ24はf= 160mmの長焦
点レンズを使用したので、焦点深度は±10mm程度は
ある。従って±10mm程度は、被測定物保持テーブル
29を2方向に移動させられる。
In this case, since the mirror 27 is placed at the focal position of the lens 24, if the ε-thief moves in two directions, the focus will shift, but since the lens 24 is a long focal length lens with f=160 mm, The depth of focus is about ±10 mm. Therefore, the object holding table 29 can be moved in two directions by about ±10 mm.

傾き補正サーボに関して、前述の方法では、対物°レン
ズ8を2軸に垂直な方向に動かしたが、対物レンズに入
射させる測定光の位置を、Z軸に垂直な方向に動かすこ
とも可能である。
Regarding the tilt correction servo, in the method described above, the objective lens 8 was moved in a direction perpendicular to the two axes, but it is also possible to move the position of the measurement light incident on the objective lens in a direction perpendicular to the Z axis. .

参照光を反射させるミラー27は、前述のように平面度
の良いミラーであるので、移動台29を2軸に垂直な方
向に動かした時、移動真直度が十分でなくても、測定誤
差とはならない。被測定面の形状として、このミラーの
面形状との差を測定しているので、測定精度は、ミラー
の面精度できまることになる。
The mirror 27 that reflects the reference light is a mirror with good flatness as described above, so when the moving table 29 is moved in a direction perpendicular to the two axes, even if the moving straightness is not sufficient, measurement errors will occur. Must not be. Since the difference between the shape of the surface to be measured and the surface shape of this mirror is measured, the measurement accuracy is determined by the surface precision of the mirror.

以上のように本実施例の装置においては、2方向のみな
らず、X−Y座標もすべて、レーザ測定法で測定してい
るので、全座標の測定精度士QO5μm適度が達成可能
である。
As described above, in the apparatus of this embodiment, not only the two directions but also all the X-Y coordinates are measured by the laser measurement method, so that it is possible to achieve a measurement accuracy QO of about 5 μm for all coordinates.

他の実施例として、被測定物の移動台として。Another example is as a moving platform for an object to be measured.

X−Y方向ではなく、極座標即ち、R−0方向の移動台
とすることも可能である。
It is also possible to use a movable table in polar coordinates, that is, in the R-0 direction, instead of in the X-Y direction.

上述の実施例においては、被測定面が粗面である場合は
測定ができない。理由は容易にわかるように、測定光は
被測定面上に直径2μm程度のスポットで集光されてい
るが、粗面の場合5反射光は、被測定面を2軸に垂直な
方向に移動させると、ミクロンオーダーの移動量で反射
光の方向が変化する為、参照光と干渉させられず、測定
不能となるからである。このような粗面の測定も、本発
明の装置においては、以下の説明のように、可能となっ
ている。
In the above embodiment, measurement cannot be performed if the surface to be measured is a rough surface. The reason is that the measurement light is focused on a spot with a diameter of about 2 μm on the surface to be measured, but in the case of a rough surface, the reflected light moves in a direction perpendicular to the two axes of the surface to be measured. This is because the direction of the reflected light changes with the amount of movement on the order of microns, which prevents it from interfering with the reference light and makes measurement impossible. Measurement of such rough surfaces is also possible with the apparatus of the present invention, as explained below.

第4図は、粗面の形状測定に適した装置を示す。FIG. 4 shows an apparatus suitable for measuring the shape of rough surfaces.

上述実施例の装置と切替えて使用する装置で、単にレン
ズ42とはラー43からなるキャッツアイをキャッツア
イ固定部44を介して、対物レンズ保持テーブル4oに
取付けただけであって、きわめて容易に脱着可能である
。フォーカスサーボは、粗面であっても、反射光が対物
レンズ8の開口内に戻りさえすれば、サーボがかかる。
This device is used as an alternative to the device of the above-mentioned embodiment, and the lens 42 is simply a cat's eye made of a lens 43, which is attached to the objective lens holding table 4o via the cat's eye fixing part 44, and it is very easy to use. It is removable. Focus servo is applied even if the surface is rough, as long as the reflected light returns to the aperture of objective lens 8.

従って、対物レンズ保持テーブルと被測定面上の測定点
との距離は常に一定となる為、対物レンズ保持テーブル
に固定されたキャッツアイから、反射した測定光を参照
光と干渉させて対物レンズ保持テーブルの2方向の移動
量を測定することが可能となる。
Therefore, since the distance between the objective lens holding table and the measurement point on the surface to be measured is always constant, the measurement light reflected from the cat's eye fixed on the objective lens holding table is made to interfere with the reference light to hold the objective lens. It becomes possible to measure the amount of movement of the table in two directions.

この場合、傾き補正サーボは働かせない。この方法は、
被測定面に直接測定光を照射して測定するのではないの
で上述実施例の装置に比べて測定精度は10.22mと
落ちるが、本発明の装置はキャッツアイを付加するだけ
で粗面も測定可能となるということを説明した。
In this case, the tilt correction servo is not activated. This method is
Since measurement is not performed by directly irradiating the measurement light onto the surface to be measured, the measurement accuracy is lower at 10.22 m compared to the device of the above-mentioned embodiment, but the device of the present invention can easily measure rough surfaces by simply adding a cat's eye. He explained that it can be measured.

発明の詳細 な説明したように、本発明によれば、光ヘテロダイン法
による干渉測長法で、被測定物体面の形状を直接測定で
きる構造を持ち、従来装置の技術的に可能な機械精度の
不足に起因する測定精度の限界をほとんど打破し、干渉
測長法の精度、即ち、10.1〜0.01μmの精度で
、種々の表面形状を持つ面の形状を測定でき、いわゆる
光学的粗面についても、10.22mの精度で測定でき
、その工業的利用価値は極めて大きい。
As described in detail, the present invention has a structure that allows direct measurement of the shape of the object surface by optical heterodyne interferometric length measurement, and is capable of achieving mechanical precision that is technically possible with conventional devices. It has almost overcome the limitations of measurement accuracy caused by the lack of measurement accuracy, and can measure the shapes of surfaces with various surface shapes with the accuracy of interferometric length measurement, that is, 10.1 to 0.01 μm, and it is possible to measure the shape of surfaces with various surface shapes. Surfaces can also be measured with an accuracy of 10.22 m, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光学測定装置の光学系の構
成を示す図、第2図と第3図は被測定物に照射される測
定光とフォーカスサーボ光の振舞いを示す要部拡大図、
第4図は本発明の他の実施例の光学系の構成を示す図で
ある。 2.25,26,27,30,32,33.34・”H
+H,;ラー、3.41・・・・・・ハーフミ5−14
 、15 。 36・・・・・・偏光ビームスブリブタ、6・・・・・
・特殊偏光ビームスプリッタ、6 、14 、23 、
31・・・・・・λ/4波長板、7・山・・ダイクロツ
クミラー、8・・・・・・対物レンズ、9・・・・・・
被測定物、11,13,19,351・・・・・・光検
出器、12,37・・・・・・偏光板、18・・・・・
・ピンホール、20・・・・・・半導体レーザ、21,
22゜28・・・・・・モータ、29・・・・・・被測
定物固定テーブル、35・・・・・・コーナキューブ、
39・・・・・・波長板、4゜・・・・・・対物レンズ
保持テーブル、42・・・・・・レンズ、43・・・・
・・ばラー、44・・・・・・キャッツアイ固定部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第4図
FIG. 1 is a diagram showing the configuration of the optical system of an optical measuring device according to an embodiment of the present invention, and FIGS. 2 and 3 are main parts showing the behavior of the measurement light and focus servo light irradiated onto the object to be measured. Enlarged view,
FIG. 4 is a diagram showing the configuration of an optical system according to another embodiment of the present invention. 2.25, 26, 27, 30, 32, 33.34・”H
+H,; Ra, 3.41... Half Mi 5-14
, 15. 36...Polarized beam distributor, 6...
・Special polarizing beam splitter, 6, 14, 23,
31...λ/4 wavelength plate, 7...Dichroic mirror, 8...Objective lens, 9...
Measured object, 11, 13, 19, 351...Photodetector, 12,37...Polarizing plate, 18...
・Pinhole, 20... Semiconductor laser, 21,
22゜28... Motor, 29... Measured object fixing table, 35... Corner cube,
39...Wave plate, 4°...Objective lens holding table, 42...Lens, 43...
...Baller, 44...Cat's eye fixing part. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)周波数F_1の測定光と周波数F_2の参照光を
発生する第1の光放射手段と、前記測定光と参照光の光
路を分離する第1の光分離手段と、前記測定光を被測定
物体面上に集光させる為の対物レンズであって、その入
射瞳部で前記測定光の光束径より大きい入射瞳径を持つ
対物レンズと、前記被測定物体面上から反射し、再び前
記対物レンズを通過した測定光と前記参照光を第1の光
検出器上で干渉させるように配置された光学系と、前記
第1の光検出器上に発生したビート信号の周波数の変動
を検出し、前記被測定物体面の形状を測定可能とする為
の信号処理手段と、前記対物レンズの光軸方向をZ方向
とした時、前記被測定物体、前記光源および対物レンズ
を含む光学系の位置をZ方向に垂直な方向に相対的に移
動可能とした第1の移動手段群と、前記対物レンズ又は
前記被測定物体をZ方向に移動させる第2の移動手段と
、前記測定光と異なる波長の第2の光放射手段と、この
第2の光放射手段からの放射光の光束径を前記対物レン
ズの入射瞳部で前記測定光の光束径より大きい放射光と
する為のレンズと、前記放射光と前記測定光の光路を混
合分離する為のダイクロイックミラーと、前記被測定物
体面から反射された前記放射光からフォーカス誤差信号
を検出する為の第2の光検出器群と、前記フォーカス誤
差信号に応じて前記第2の移動手段を移動させ、前記被
測定物体面と前記対物レンズとの距離を一定とする為の
フォーカスサーボ手段と、前記被測定物体面から反射し
た前記測定光の一部を受光して前記被測定物体面の傾き
によって生ずる前記測定光の反射光の位置のずれを検出
する第3の光検出器と、その第3の光検出器の出力から
得られる誤差信号に応じて前記対物レンズ又は前記第1
の光放射手段をZ軸に垂直な方向に移動させる為の第3
の移動手段と、この第3の移動手段によって、前記被測
定物体面の傾きによらず、前記測定光の反射光が同一方
向、同一位置に戻らせることを可能とした傾き補正サー
ボ手段とを備えた光学測定装置。
(1) A first light emitting means that generates a measurement light with a frequency F_1 and a reference light with a frequency F_2; a first light separation means that separates the optical paths of the measurement light and the reference light; and a first light separation means that separates the optical paths of the measurement light and the reference light; An objective lens for condensing light onto an object surface, the objective lens having an entrance pupil diameter larger than the luminous flux diameter of the measurement light at its entrance pupil; an optical system arranged to cause the measurement light passing through the lens and the reference light to interfere with each other on a first photodetector; and detecting fluctuations in the frequency of a beat signal generated on the first photodetector. , a signal processing means for making it possible to measure the shape of the surface of the object to be measured, and a position of an optical system including the object to be measured, the light source, and the objective lens when the optical axis direction of the objective lens is the Z direction. a first moving means group that is relatively movable in a direction perpendicular to the Z direction; a second moving means that moves the objective lens or the object to be measured in the Z direction; a second light emitting means; a lens for making the light flux diameter of the emitted light from the second light emitting means larger than the light flux diameter of the measurement light at the entrance pupil of the objective lens; a dichroic mirror for mixing and separating the optical paths of the synchrotron radiation and the measurement light; a second photodetector group for detecting a focus error signal from the synchrotron radiation reflected from the surface of the object to be measured; and the focus a focus servo means for moving the second moving means in accordance with an error signal to maintain a constant distance between the object surface to be measured and the objective lens; a third photodetector that receives a portion of the light and detects a positional shift of the reflected light of the measurement light caused by the inclination of the surface of the object to be measured; and an error signal obtained from the output of the third photodetector. depending on the objective lens or the first
a third light emitting means for moving the light emitting means in a direction perpendicular to the Z axis;
and a tilt correction servo means that allows the reflected light of the measurement light to return to the same direction and the same position regardless of the tilt of the object surface to be measured. Optical measuring device equipped with.
JP59228114A 1984-10-30 1984-10-30 Optical measuring instrument Granted JPS61105408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59228114A JPS61105408A (en) 1984-10-30 1984-10-30 Optical measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59228114A JPS61105408A (en) 1984-10-30 1984-10-30 Optical measuring instrument

Publications (2)

Publication Number Publication Date
JPS61105408A true JPS61105408A (en) 1986-05-23
JPH0255722B2 JPH0255722B2 (en) 1990-11-28

Family

ID=16871418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59228114A Granted JPS61105408A (en) 1984-10-30 1984-10-30 Optical measuring instrument

Country Status (1)

Country Link
JP (1) JPS61105408A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228003A (en) * 1987-03-02 1988-09-22 Yokogawa Hewlett Packard Ltd Interferometer
NL9202303A (en) * 1992-12-31 1994-07-18 Univ Delft Tech Sailor ellipsometer.
US7962275B2 (en) 2006-12-21 2011-06-14 Toyota Jidosha Kabushiki Kaisha Control device and control method for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228003A (en) * 1987-03-02 1988-09-22 Yokogawa Hewlett Packard Ltd Interferometer
NL9202303A (en) * 1992-12-31 1994-07-18 Univ Delft Tech Sailor ellipsometer.
WO1994016310A1 (en) * 1992-12-31 1994-07-21 Technische Universiteit Delft Zeeman ellipsometer
US7962275B2 (en) 2006-12-21 2011-06-14 Toyota Jidosha Kabushiki Kaisha Control device and control method for internal combustion engine

Also Published As

Publication number Publication date
JPH0255722B2 (en) 1990-11-28

Similar Documents

Publication Publication Date Title
JP2002156206A (en) Interferometer system, interference measuring method, object provision method and object manufacturing method
JPH0455243B2 (en)
JPH02161332A (en) Device and method for measuring radius of curvature
JPS5979104A (en) Optical device
JPS61105408A (en) Optical measuring instrument
TWI431240B (en) Three-dimensional measurement system
JPH04236307A (en) Detecting device of three-dimensional shape of pattern
JPS6161178B2 (en)
JP3439803B2 (en) Method and apparatus for detecting displacement or change in position of an object from the focal point of an objective lens
JPS60104206A (en) Optical measuring device
JP2823660B2 (en) Length measuring device
JPS63241407A (en) Method and device for measuring depth of fine recessed part
JP3045567B2 (en) Moving object position measurement device
JPS6117907A (en) Three-dimensional shape measuring instrument
JP3967058B2 (en) Method and apparatus for measuring surface shape and thickness of plate-like workpiece
JP2005147703A (en) Device and method for measuring surface distance
JPH02156106A (en) Spherometer
JPH06109435A (en) Surface displacement meter
JPH05118829A (en) Method and apparatus for measuring radius of curvature
JPS59188511A (en) Optical measuring device
JPH03125909A (en) Optical apparatus for measurement
JP2975743B2 (en) Optical touch probe
JPS63223510A (en) Surface shape measuring instrument
JPH11325848A (en) Aspherical surface shape measurement device
JP2002213928A (en) Instrument and method for measuring surface shape, and projection lens with optical element assembled therein of which the surface shape is measured using the instrument and the method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term