JPH0464795B2 - - Google Patents
Info
- Publication number
- JPH0464795B2 JPH0464795B2 JP4657984A JP4657984A JPH0464795B2 JP H0464795 B2 JPH0464795 B2 JP H0464795B2 JP 4657984 A JP4657984 A JP 4657984A JP 4657984 A JP4657984 A JP 4657984A JP H0464795 B2 JPH0464795 B2 JP H0464795B2
- Authority
- JP
- Japan
- Prior art keywords
- bonding
- diffusion
- deposited layer
- present
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 27
- 238000009792 diffusion process Methods 0.000 claims description 24
- 229910000838 Al alloy Inorganic materials 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 claims description 17
- 229910000601 superalloy Inorganic materials 0.000 claims description 16
- 238000005304 joining Methods 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 239000012071 phase Substances 0.000 description 15
- 230000008018 melting Effects 0.000 description 11
- 238000002844 melting Methods 0.000 description 11
- 229910000943 NiAl Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- -1 NiAl compound Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/001—Interlayers, transition pieces for metallurgical bonding of workpieces
- B23K35/004—Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/22—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/24—Preliminary treatment
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Description
〔発明の利用分野〕
本発明は、材料の接合方法に係り、特に高温稼
働部材、例えばガスタービン翼の超合金材に好適
な拡散接合方法に関する。
〔発明の背景〕
拡散接合法の特徴は接合部及びその近傍が熱
的・相的な変化が少なく、母材並みの性質が得ら
れるので、接合部の信頼性が高く要求される部材
に推奨されている。2つの金属が接合することは
両材間に金属結合を生じさせることにあるので、
接合前の接合面は清浄で、且つ、平坦でなければ
ならない。しかし、優れた洗浄液により洗浄面を
得ても、常に接合面は有機物、ガス、酸化物等が
吸着しやすく、吸着量が多いときにはそれらが接
合界面に残留して並び、接合強度の低下原因とな
りやすい。接合部の酸化汚染は接合時の加熱過程
にも生じやすく、したがつて、これらの弊害に対
して種々の方策が講じられている。液相拡散接合
に関してのその一つとして接合部材間にインサー
ト材を介装し、このインサート材を溶融すること
によつて母材とインサート材相互の成分の平均化
を図りながら、接合界面の介在物を分散・消滅さ
せる方法がある(特開昭47−33850号公報、特公
昭49−6470号公報)。この方法により、ガスター
ビン耐熱超合金、特に強化機構の根源となるγ′相
を析出してなるNi基、Co基、Fe基の超合金に適
用され、それ相当の成果を挙げている。しかしな
がら、この種の耐熱超合金はγ′相形成の主役をな
すAl、Tiを多量に含有しているため、上記方法
をとつても、接合面から酸化物をなくすことが困
難である。このため、接合面から酸化物をなくす
方法若しくは接合面に酸化物を生成させない方法
が必要であつた。このことは、耐熱超合金同志の
接合に限つたものではなく、異種材特にAl合金
やセラミツクスとの接合でも同様である。
〔発明の目的〕
本発明の目的は、清浄な接合部状態を有し、且
つ、強固な接合部組織を得るための拡散接合方法
を提供することにある。
〔発明の概要〕
本発明を概説すれは、本発明は耐熱超合金の拡
散接合方法に関する発明であつて、少なくとも一
方が耐熱超合金である被整合材を、インサート材
を介在させて拡散接合する方法において、前記被
接合材の接合面の少なくとも一方に、Alを主成
分とし、Si、Ge、Pd、In、La、Ce、Te、及び
Cuよりなる群から選択した少なくとも1種を含
むAl合金の極薄蒸着層からなる前記インサート
材を形成させ、この蒸着層を溶融して接合し、そ
の後高温下で拡散処理を行うことを特徴とする。
以下、本発明を具体的に詳述する。
本発明の方法において、接合は接合面に形成さ
せた極薄の蒸着層を溶融せしめることにより達成
される。この蒸着層は、Al合金を陰極とした金
属イオンにより得られるが、これについては後述
することにし、まず、インサート金属層に相当す
る薄膜蒸着層の利点、役割につき述べる。
例えば、Ni基合金やCo基合金などの耐熱超合
金を接合する場合、インサート金属としてベース
のNiやCoに融点降下元素、例えばB元素を含有
させたものを用いる。この場合、接合温度はイン
サートの融点と母材の融点との間を選ぶため、通
常1000℃を越える高温となる。このような高温で
は超合金がAl、Tiなど酸化物形成元素を多量含
有しているため、高真空下又は保護雰囲気下であ
つても接合面の酸化を抑制することは難しい。こ
れら酸化の多くは、材料が接着完了するまでの加
熱・保持過程で行われる。本発明の方法において
は、接着は接合面上のAl合金を溶融させること
により達成されるが、Al合金の融点が低く接合
温度を高温に上げる必要はないので、酸化汚染が
極めて少ない接合部を得る効果がある。
本発明では、極薄腐食層を形成するAl合金成
分としてSi、Ge、Pd、In、La、Ce、Te、Cu元
素の少なくとも1種を含むことを必須とするが、
これは融点をより降下できること、融解した際に
流動性が向上するなどの利点に由来する。これら
により、接合界面の酸化物生成を確実に抑制し、
接合中に接合面間をぬらして空隙部を消滅させ、
更に、Alの基地への拡散を容易ならしめる効果
を有する。このAlの基地への拡散は接合界面及
びその近傍の組織の改良につながるので重要であ
る。
Alは、強化機構となるγ′相(Ni3(Al、Ti))の
形成元素であり、接合界面を強固にするにはこの
γ′相を母材並みか若しくは母材以上の量に分布さ
せることが肝要である。
本発明の方法において、Al合金の薄い蒸着層
を得るためには従来から行われている蒸着の手法
を用いればよい。例えば、任意の真空下又は不活
性雰囲気下で、Al合金を陰極、接合材を陽極と
して高電圧を付加し、イオン状にしてAl合金成
分を接合面に付着させることにより蒸着を行わせ
る。この蒸着層を溶融することにより接着が行わ
れ、接合温度が低くできることを前述したが接合
温度を下げる限度はAl合金成分の融点(固相線)
であつて、例えばAlに合金化する成分量を共晶
量とすれば、Al−Si577℃、Al−Geb424℃、Al
−Pd615℃の様になる。この温度まで接合温度を
下げ得ることができるが、実質的にはこれら温度
よりも40〜50℃高めた方がより確実性がある。
接合材同志の接着が達成されたならば、次の段
階として、接着部のAl合金成分の母材への拡散
を容易にさせるため、加熱温度を上昇させること
が肝要である。実質的には1100〜1200℃が好まし
い。
本発明では、前記した様な極薄のAl合金蒸着
層が融解するに足りる温度で接合し、その後、高
温下で拡散処理するものであるが、高温に加熱す
る場合の加熱速度も重要である。低温で接合した
ままの元のAl合金蒸着層部は接合界面に極めて
薄く連なつている。母材への拡散はわずかに進行
する程度とみられ、Al合金成分がほとんどその
まま残留している状態にある。このAl合金成分
は高温へ加熱する過程で母材のNiと化合物を造
るとみられるが、この場合、γ′相(Ni3Al)と異
なる化合物相、例えばNiAl3、NiAlの生成を避
けるために加熱速度を大きくとる必要がある。し
たがつて、本発明では、拡散処理温度へ加熱する
速度を、実験結果に基づき、1200℃/時以下とす
ることが好ましいことを見出した。こうすること
により、微細なγ′相が均一に形成され、それによ
り、接合界面の強度を安定して確保することがで
きる。
接合加圧力は、接合面蒸着層の厚さに応じ任意
に選択することが肝要である。接合面の蒸着層が
数μmと薄い場合には接合加圧力は小さくてよ
く、極端な場合には接合材の自重だけでよいこと
もある。一方、蒸着層が厚い場合には、Al合金
成分の拡散及びγ′相形成に長時間を要するので、
蒸着層が溶融したときにある程度加圧力を増大さ
せ、接合界面から溶融物を排出させることが好ま
しい。
本発明の方法においては、接合材をγ′析出型の
耐熱超合金に限つて記述したが、耐熱超合金と、
Al若しくはAl合金及びセラミツクスとの接合で
も、本発明の効果が発揮される。
〔発明の実施例〕
以下、本発明を実施例により更に具体的に説明
するが本発明はこれら実施例に限定されない。
実施例 1
第1図は本発明方法の1実施例で使用する接合
面処理室と接合室の概略側面図である。第1図中
符号1は一方の接合材、2は金属蒸着層、3は
Al合金板、4は基盤、5は他方の接合材、6は
加圧治具、7は発熱体を意味する。第1図におい
て接合材1はφ12mmのNi基超合金ルネ(Ren′e)
80(Cr14%、Co9.4%、Mo3.9%、W3.9%、Al2.9
%、Ti5.0%、C0.17%、Ni残部)である。まず、
接合面に薄い蒸着層を施すため、真空下でAl合
金板3を陰極、接合材1を陽極として高電圧を付
加し、接合表面に2μm程度の蒸着層2を形成さ
せた。この場合、陰極としたAl合金はSi11%、
Ce0.5%、残りAlの成分からなり、融点は約550
℃である。次に、この接合材を接合室Bに移動
し、もう一方の超合金として前述と同じルネ80の
接合材5に対面させて接触させて加圧した。5×
10-5トルの真空下、加熱温度を600℃にし、30分
保持し接合処理した。この場合の加圧力は1.0Kg
f/cm2である。接合処理後、接合装置から試料を
取出して、いくつかの小ブロツク試料に分割切断
した。ついで、Ar気流の保護雰囲気電気炉内で
拡散処理を行つた。拡散処理温度は1175℃とした
が、この温度に加熱する昇温速度、及び加熱保持
時間を変化させて接合状態を調べた。これは、本
発明の方法による効果を確認するためである。第
2図は調査結果の代表例組織の顕微鏡写真であ
る。第2図Aは、昇温速度3000℃/時で1175℃ま
で加熱し、そこで1/3時間保持したときの組織で
あつて、数十個の黒色の円形状領域は微細な
NiAl相が集合したものである。なお、このNiAl
相の集合体同志の間には基地と同じγ′相
(Ni3Al)が存在している。第2図Bは、昇温が
800℃/時で拡散時間が1/3時間の場合であり、黒
色のNiAlが、わずかに認められる程度であり、
大部分γ′相に変化している。第2図Cは、昇温が
800℃/時において拡散が5時間と長い場合であ
り、NiAl化合物は全く認められず、γ′相のみの
均一組織で、本発明方法の最適の場合である。以
上のように、昇温速度をコントロールし、高温で
十分拡散処理することにより、目的とする良好な
接合組織を得ることが実証された。
次に、第2図Cの試料につき、顕微鏡下で接合
部近傍の非金属介在物量を調査した。その結果を
要約して第1表に示す。なお、表中の従来法は、
融点降下元素としてB元素を用いたインサートリ
ボンにおいての結果である。
[Field of Application of the Invention] The present invention relates to a method for joining materials, and particularly to a diffusion joining method suitable for high-temperature operating components, such as superalloy materials for gas turbine blades. [Background of the Invention] Diffusion bonding is characterized by little thermal and phase change in the bonded area and its vicinity, and properties comparable to those of the base material can be obtained, so it is recommended for parts that require high reliability in the bonded area. has been done. The joining of two metals is to create a metallic bond between the two materials, so
The joining surface must be clean and flat before joining. However, even if the surface is cleaned with an excellent cleaning solution, organic matter, gas, oxides, etc. are always easily adsorbed on the bonding surface, and when the amount of adsorption is large, these substances remain on the bonding interface and line up, causing a decrease in bonding strength. Cheap. Oxidation contamination of the bonding portion is also likely to occur during the heating process during bonding, and therefore various measures have been taken to counter these negative effects. One of the methods for liquid phase diffusion bonding is to interpose an insert material between the joining members, and by melting this insert material, the components of the base material and the insert material are averaged, and the interposition of the joining interface is performed. There is a method of dispersing and extinguishing things (Japanese Unexamined Patent Publication No. 47-33850, Japanese Patent Publication No. 49-6470). This method has been applied to gas turbine heat-resistant superalloys, particularly Ni-based, Co-based, and Fe-based superalloys in which the γ' phase, which is the root of the strengthening mechanism, is precipitated, and has achieved considerable results. However, since this type of heat-resistant superalloy contains large amounts of Al and Ti, which play a major role in the formation of the γ' phase, it is difficult to eliminate oxides from the joint surface even with the above method. For this reason, a method of eliminating oxides from the joint surfaces or a method of preventing the formation of oxides on the joint surfaces has been required. This is not limited to joining heat-resistant superalloys, but also applies to joining dissimilar materials, particularly Al alloys and ceramics. [Object of the Invention] An object of the present invention is to provide a diffusion bonding method that has a clean joint state and obtains a strong joint structure. [Summary of the Invention] To summarize the present invention, the present invention relates to a method for diffusion bonding heat-resistant superalloys, in which materials to be matched, at least one of which is a heat-resistant superalloy, are diffusion bonded with an insert material interposed. In the method, at least one of the joining surfaces of the materials to be joined contains Al as a main component, Si, Ge, Pd, In, La, Ce, Te, and
The insert material is formed of an ultra-thin vapor deposited layer of an Al alloy containing at least one selected from the group consisting of Cu, the vapor deposited layer is melted and bonded, and then a diffusion treatment is performed at a high temperature. do. Hereinafter, the present invention will be specifically explained in detail. In the method of the present invention, bonding is achieved by melting an extremely thin vapor deposited layer formed on the bonding surface. This vapor deposited layer is obtained by metal ions using an Al alloy as a cathode, but this will be described later. First, the advantages and role of the thin film vapor deposited layer corresponding to the insert metal layer will be described. For example, when joining heat-resistant superalloys such as Ni-based alloys and Co-based alloys, an insert metal containing a melting point lowering element, such as B element, is used in base Ni or Co. In this case, the joining temperature is selected between the melting point of the insert and the base material, so it is usually a high temperature exceeding 1000°C. At such high temperatures, since the superalloy contains large amounts of oxide-forming elements such as Al and Ti, it is difficult to suppress oxidation of the joint surface even under high vacuum or a protective atmosphere. Most of these oxidations occur during the heating and holding process until the materials are completely bonded. In the method of the present invention, adhesion is achieved by melting the Al alloy on the joint surface, but since the melting point of the Al alloy is low and there is no need to raise the joining temperature to high temperatures, the joint can be bonded with extremely little oxidation contamination. There are benefits to be gained. In the present invention, it is essential to include at least one of the elements Si, Ge, Pd, In, La, Ce, Te, and Cu as the Al alloy component forming the ultra-thin corrosion layer.
This is due to the advantages of lowering the melting point and improving fluidity when melted. These reliably suppress oxide formation at the bonding interface,
Wet the bonded surfaces during bonding to eliminate voids,
Furthermore, it has the effect of facilitating the diffusion of Al into the base. This diffusion of Al into the base is important because it leads to improvement of the structure at the bonding interface and its vicinity. Al is an element that forms the γ′ phase (Ni 3 (Al, Ti)), which acts as a strengthening mechanism. To strengthen the bonding interface, this γ′ phase must be distributed in an amount equal to or greater than the base material. It is important to do so. In the method of the present invention, conventional vapor deposition techniques may be used to obtain a thin vapor deposited layer of Al alloy. For example, under any vacuum or inert atmosphere, a high voltage is applied with the Al alloy as a cathode and the bonding material as an anode, and the Al alloy component is ionized and attached to the bonding surface, thereby performing vapor deposition. As mentioned above, bonding is performed by melting this vapor deposited layer, and the bonding temperature can be lowered, but the limit for lowering the bonding temperature is the melting point (solidus line) of the Al alloy component.
For example, if the amount of components alloyed with Al is the eutectic amount, Al-Si577℃, Al-Geb424℃, Al
−Pd615℃. Although it is possible to lower the junction temperature to this temperature, it is actually more reliable to raise it by 40 to 50° C. above these temperatures. Once the bonding materials have been bonded together, the next step is to increase the heating temperature in order to facilitate the diffusion of the Al alloy component in the bonded portion into the base material. Substantially, 1100 to 1200°C is preferable. In the present invention, the ultra-thin Al alloy vapor deposited layer as described above is bonded at a temperature sufficient to melt, and then a diffusion treatment is performed at a high temperature, but the heating rate when heating to a high temperature is also important. . The original Al alloy vapor-deposited layer that remained bonded at low temperature is extremely thinly connected to the bonding interface. Diffusion into the base metal appears to have progressed only slightly, and most of the Al alloy components remain as they are. This Al alloy component appears to form a compound with the base metal Ni during the process of heating to high temperatures, but in this case, in order to avoid the formation of compound phases different from the γ′ phase (Ni 3 Al), such as NiAl 3 and NiAl, It is necessary to increase the heating rate. Therefore, in the present invention, it has been found that the rate of heating to the diffusion treatment temperature is preferably 1200° C./hour or less based on experimental results. By doing so, the fine γ' phase is uniformly formed, thereby making it possible to stably ensure the strength of the bonding interface. It is important to arbitrarily select the bonding pressure depending on the thickness of the bonding surface vapor deposited layer. If the vapor deposited layer on the bonding surface is as thin as several μm, the bonding pressure may be small, and in extreme cases, only the weight of the bonding material may be sufficient. On the other hand, when the deposited layer is thick, it takes a long time for the diffusion of the Al alloy components and the formation of the γ′ phase.
It is preferable to increase the pressure to some extent when the vapor deposited layer melts to discharge the melt from the bonding interface. In the method of the present invention, the bonding material is limited to a γ′ precipitation type heat-resistant superalloy, but a heat-resistant superalloy and
The effects of the present invention are also exhibited when bonding with Al or Al alloys and ceramics. [Examples of the Invention] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1 FIG. 1 is a schematic side view of a bonding surface processing chamber and a bonding chamber used in one embodiment of the method of the present invention. In Fig. 1, 1 is one of the bonding materials, 2 is the metal vapor deposited layer, and 3 is the bonding material.
4 is an Al alloy plate, 4 is a base, 5 is the other bonding material, 6 is a pressure jig, and 7 is a heating element. In Figure 1, the bonding material 1 is a φ12mm Ni-based superalloy Ren'e.
80 (Cr14%, Co9.4%, Mo3.9%, W3.9%, Al2.9
%, Ti5.0%, C0.17%, balance Ni). first,
In order to form a thin vapor deposition layer on the bonding surface, a high voltage was applied under vacuum using the Al alloy plate 3 as a cathode and the bonding material 1 as an anode to form a vapor deposition layer 2 of about 2 μm on the bonding surface. In this case, the Al alloy used as the cathode is 11% Si,
Consisting of 0.5% Ce and the rest Al, the melting point is approximately 550.
It is ℃. Next, this bonding material was moved to bonding chamber B, and was pressed against and in contact with bonding material 5 made of the same Rene 80 as the other superalloy described above. 5×
Under a vacuum of 10 -5 Torr, the heating temperature was raised to 600°C and held for 30 minutes for bonding processing. In this case, the pressure is 1.0Kg
f/ cm2 . After the bonding process, the sample was removed from the bonding device and cut into several small block samples. Then, diffusion treatment was performed in an electric furnace with a protective atmosphere of Ar airflow. The diffusion treatment temperature was 1175°C, and the bonding state was examined by varying the rate of heating to this temperature and the heating holding time. This was to confirm the effect of the method of the present invention. Figure 2 is a micrograph of a representative example of the structure of the survey results. Figure 2 A shows the structure obtained by heating to 1175°C at a heating rate of 3000°C/hour and holding it there for 1/3 hour.
It is a collection of NiAl phases. Furthermore, this NiAl
The same γ′ phase (Ni 3 Al) as the base exists between the phase aggregates. Figure 2B shows that the temperature rise
When the diffusion time is 1/3 hour at 800℃/hour, black NiAl is only slightly visible.
Most of it has changed to γ' phase. Figure 2 C shows that the temperature rise
This is a case where the diffusion time is as long as 5 hours at 800°C/hour, and no NiAl compound is observed at all, with a uniform structure of only the γ' phase, which is the optimum case for the method of the present invention. As described above, it has been demonstrated that the desired desired bonding structure can be obtained by controlling the heating rate and performing sufficient diffusion treatment at high temperatures. Next, the amount of nonmetallic inclusions in the vicinity of the joint was investigated under a microscope for the sample shown in FIG. 2C. The results are summarized in Table 1. The conventional method in the table is
These are the results for an insert ribbon using element B as the melting point lowering element.
【表】【table】
以上説明したように、本発明によれば、接合面
から酸化物、窒化物などの生成を顕著に抑制した
清浄面が得られ、且つ、γ′相の分布状態のよい接
合部組織が得られるので、接合部強度を向上する
ことができる。したがつて、本発明方法による接
合品は信頼性が高度に要求されるガスタービン部
材のごとき耐熱、耐酸化性材料として推奨される
ものである。
As explained above, according to the present invention, it is possible to obtain a clean surface in which the formation of oxides, nitrides, etc. from the joint surface is significantly suppressed, and also to obtain a joint structure with a good distribution of the γ' phase. Therefore, the joint strength can be improved. Therefore, the bonded product produced by the method of the present invention is recommended as a heat-resistant and oxidation-resistant material for gas turbine components that require a high level of reliability.
第1図は本発明方法の1実施例で使用する接合
面処理室と接合室の概略側面図そして第2図は本
発明による接合部組織の代表例の顕微鏡写真であ
る。
1:一方の接合材、2:金属蒸着層、3:Al
合金板、4:基盤、5:他方の接合材、6:加圧
治具、7:発熱体。
FIG. 1 is a schematic side view of a bonding surface processing chamber and a bonding chamber used in one embodiment of the method of the present invention, and FIG. 2 is a photomicrograph of a representative example of the structure of the bonded portion according to the present invention. 1: One bonding material, 2: Metal vapor deposition layer, 3: Al
Alloy plate, 4: base, 5: other bonding material, 6: pressure jig, 7: heating element.
Claims (1)
を、インサート材を介在させて拡散接合する方法
において、前記被接合材の接合面の少なくとも一
方に、Alを主成分とし、Si、Ge、Pd、In、La、
Ce、Te、及びCuよりなる群から選択した少なく
とも1種を含むAl合金の極薄蒸着層からなる前
記インサート材を形成させ、この蒸着層を溶融し
て接合し、その後高温下で拡散処理を行うことを
特徴とする耐熱超合金の拡散接合方法。 2 拡散処理を行う該高温までの加熱を、1200
℃/時以下の速度で行う特許請求の範囲第1項記
載の耐熱超合金の拡散接合方法。[Claims] 1. A method of diffusion bonding materials to be joined, at least one of which is a heat-resistant superalloy, with an insert material interposed, wherein at least one of the joining surfaces of the materials to be joined contains Al as a main component, Si, Ge, Pd, In, La,
The insert material is formed of an extremely thin vapor-deposited layer of an Al alloy containing at least one selected from the group consisting of Ce, Te, and Cu, the vapor-deposited layer is melted and bonded, and then a diffusion treatment is performed at high temperature. A diffusion bonding method for heat-resistant superalloys. 2 Heating to the high temperature for diffusion treatment at 1200
A method for diffusion bonding heat-resistant superalloys according to claim 1, which is carried out at a rate of less than or equal to .degree. C./hour.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4657984A JPS60191679A (en) | 1984-03-13 | 1984-03-13 | Liquid phase diffusion joining method of heat resistant superalloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4657984A JPS60191679A (en) | 1984-03-13 | 1984-03-13 | Liquid phase diffusion joining method of heat resistant superalloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60191679A JPS60191679A (en) | 1985-09-30 |
JPH0464795B2 true JPH0464795B2 (en) | 1992-10-16 |
Family
ID=12751209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4657984A Granted JPS60191679A (en) | 1984-03-13 | 1984-03-13 | Liquid phase diffusion joining method of heat resistant superalloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60191679A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4875619A (en) * | 1988-09-01 | 1989-10-24 | Anderson Jeffrey J | Brazing of ink jet print head components using thin layers of braze material |
JP4905766B2 (en) * | 2005-10-11 | 2012-03-28 | 日産自動車株式会社 | Method and structure for joining dissimilar metals by resistance welding |
JP5367842B2 (en) * | 2009-12-11 | 2013-12-11 | パイオニア株式会社 | Semiconductor substrate bonding method and MEMS device |
WO2011070626A1 (en) * | 2009-12-11 | 2011-06-16 | パイオニア株式会社 | Method for bonding semiconductor substrates and mems device |
JP5367841B2 (en) * | 2009-12-11 | 2013-12-11 | パイオニア株式会社 | Semiconductor substrate bonding method and MEMS device |
CN101983819B (en) * | 2010-11-04 | 2013-05-22 | 西安航空动力股份有限公司 | Method and fixture for welding high temperature alloy and cupronickel |
US9802273B2 (en) | 2011-11-02 | 2017-10-31 | Uacj Corporation | Method for manufacturing aluminum alloy cladding material |
-
1984
- 1984-03-13 JP JP4657984A patent/JPS60191679A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60191679A (en) | 1985-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4245924B2 (en) | Electronic component package and manufacturing method thereof | |
JPH0217509B2 (en) | ||
JP2011502786A (en) | Workpiece joining method and material welding method having a work piece region made of titanium aluminum alloy | |
JP3040203B2 (en) | High temperature stable composite and method for producing the same | |
US5836505A (en) | Joining by brazing of ceramic materials containing silicon carbide | |
US4859531A (en) | Method for bonding a cubic boron nitride sintered compact | |
JPH0464795B2 (en) | ||
US7658315B2 (en) | Process of brazing superalloy components | |
JPS6245499A (en) | Solder for soldering and connection method using the same | |
JPS59232692A (en) | Brazing filler metal for joining ceramics and metal or the like and composite body composed of ceramics and metal or the like using said brazing filler metal | |
JP4331370B2 (en) | Method for manufacturing HIP joined body of beryllium and copper alloy and HIP joined body | |
JPH0355232B2 (en) | ||
JPH07498B2 (en) | Diamond joining method for cutting tools | |
JP4151859B2 (en) | Method for joining sputtering target plates | |
JPH06263553A (en) | Joined body of carbonaceous material to metal | |
JPH0450107B2 (en) | ||
JPH065546A (en) | Structure and method for brazing junction | |
JPH0280381A (en) | Method for bonding metal to zirconium oxide-based ceramic | |
JP3292767B2 (en) | Joining method of silicon carbide ceramics and silicon | |
JPS61161682A (en) | Joint of superconductor | |
JPH038346A (en) | Brazing material | |
JPH04294884A (en) | Method of liquid phase diffusion joining of stainless steel | |
JPS63260686A (en) | Insert material for liquid-phase diffusion joining of ti and ti alloy and its formation | |
JPH04304369A (en) | Chromium-silicon oxide target material | |
JPS62112051A (en) | Oxygen sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |