JPH046369A - Air-conditioner - Google Patents

Air-conditioner

Info

Publication number
JPH046369A
JPH046369A JP2107912A JP10791290A JPH046369A JP H046369 A JPH046369 A JP H046369A JP 2107912 A JP2107912 A JP 2107912A JP 10791290 A JP10791290 A JP 10791290A JP H046369 A JPH046369 A JP H046369A
Authority
JP
Japan
Prior art keywords
control device
flow rate
indoor
rate control
indoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2107912A
Other languages
Japanese (ja)
Other versions
JP2727733B2 (en
Inventor
Shigeo Takada
茂生 高田
Shuichi Tani
秀一 谷
Setsu Nakamura
中村 節
Tomohiko Kasai
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2107912A priority Critical patent/JP2727733B2/en
Priority to AU74381/91A priority patent/AU636215B2/en
Priority to EP91303443A priority patent/EP0453271B1/en
Priority to ES199191303443T priority patent/ES2046853T3/en
Priority to DE91303443T priority patent/DE69100424T2/en
Priority to US07/687,434 priority patent/US5156014A/en
Publication of JPH046369A publication Critical patent/JPH046369A/en
Application granted granted Critical
Publication of JP2727733B2 publication Critical patent/JP2727733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To allow indoor units to individually, selectively perform either cooling or heating operation at the same time by a method wherein at defrosting operation during simultaneous cooling and heating operation, a four-way valve is changed over and the indoor units in cooling operation continue cooling operation, and a first manifold and a first flow control valve, which are connected to the indoor units in heating operation, are closed. CONSTITUTION:At defrosting operation during simultaneous cooling and heating operation in which heating operation is main, the refrigerant in gas state passes through a first branch pipe 6d on the indoor unit side, a first manifold 10 and a changeover valve 8 at the first manifold, and induced into a compressor 1 via a first connecting pipe 6, a forth check valve 33, a four-way valve 2 at the heat source apparatus A and an accumulator 4 so that a circulating cycle is formed and defrosting operation is carried out while cooling operation is continued. First and second on-off valves of the changeover valves 8 of the first manifold connected to the other indoor units (in heating or air blowing operation or out of service are closed. Further, the first flow control valves 9 of the indoor units other than those to be brought in cooling operation are closed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱源機1台に対して複数台の室内機を接続
する多室型ヒートポンプ空気調和機に関するもので、特
に各室内機毎に冷暖房を選択的に、かつ一方の室内機で
は冷房、他方の室内機では暖房が同時に行うことかでき
る空気調和装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a multi-room heat pump air conditioner in which a plurality of indoor units are connected to one heat source device, and in particular, The present invention relates to an air conditioner that can perform heating and cooling selectively, and can simultaneously perform cooling with one indoor unit and heating with the other indoor unit.

〔従来の敦術〕[Traditional Atsunjutsu]

従来、熱源機1台に対して複数台の室内機をガス管と液
管の2本の配管で接続し、冷暖房運転をするヒートポン
プ式空気調和装置は一般的であり各室内機はすべて暖房
、またはすべて冷房を行うように形成されている。
Conventionally, heat pump air conditioners have been common in which multiple indoor units are connected to one heat source unit using two pipes, a gas pipe and a liquid pipe, and each indoor unit performs heating and cooling operations. or all configured to provide cooling.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

従来の多室型ヒートポンプ式空気調和機は以上のように
構成されているので、すべての室内機か冷房または暖房
にしか運転しないため、冷房か必要な場所で暖房か行わ
れたり、逆に暖房か必要な場所で冷房か行われるような
問題かあった。
Conventional multi-room heat pump air conditioners are configured as described above, so all indoor units operate only for cooling or heating, so cooling or heating is performed only where needed, or vice versa. There were also problems with air conditioning being done where it was needed.

特に、大規模なビルに据え付けた場合、インテリア部と
ペリメータ部、または一般事務室と、コンピュータルー
ム等のOA化された部屋では空調の負荷が著しく異なる
ため、特に問題となっている。
Particularly when installed in a large building, this poses a particular problem because the air conditioning load is significantly different between the interior and perimeter areas, or between general offices and rooms that are OAized, such as computer rooms.

この発明は、上記のような問題点を解決するためになさ
れたもので、熱源機1台に対して複数台の室内機を接続
し、各室内機毎に冷暖房を選択的に、かつ一方の室内機
では冷房、他方の室内機ては暖房か同時に行うことかで
きるようにして、大規模なビルに据え付けた場合、イン
テリア部とペリメータ部、または一般事務室と、コンピ
ュータルーム等のOA化された部屋で空調の負荷か著し
く異なっても、それぞれに対応できる多室型ヒートポン
プ式空気調和装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems. Multiple indoor units are connected to one heat source unit, and each indoor unit can selectively perform air conditioning and heating. The indoor unit can perform cooling and the other indoor unit can perform heating at the same time, and when installed in a large building, it can be used to open the interior and perimeter areas, or general offices and computer rooms, etc. To provide a multi-room heat pump type air conditioner that can handle each room even if the air conditioning loads differ significantly in each room.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、圧縮機、四方切換弁、熱源機側熱交換器、
アキュムレータ、等よりなる1台の熱源機と、室内側熱
交換器、第1の流量制御装置等からなる複数台の室内機
とを、$1、第2の接続配管を介して接続し、上記複数
台の室内機の上記室内側熱交換器の一方を上記第1の接
続配管または、第2の接続配管に切り換え可能に接続し
てなる第1の分岐部と、上記複数台の室内機の上記室内
側熱交換器の他方に、上記第1の流量制御装置を介して
接続され、かつ第2の流量制御装置を介して上記第2の
接続配管に接続してなる第2の分岐部とを、上記第2の
流量制御装置を介して接続し、更に上記第2の分岐部と
上記第1の接続配管を第4の流量制御装置を介して接続
し、上記第1の分岐部、第2の流量制御装置、第4の流
量制御装置及び第2の分岐部を内蔵させた中継器を、上
記熱源機と上記複数台の室内機との間に介在させると共
に、上記第1の接続配管は上記第2の接続配管より大径
に構成し、上記熱源機の上記第1及び第2の接続配管間
に切り換え弁を設け、上記第1の接続配管を低圧に、第
2の接続配管を高圧に切り換え可能にした、冷暖同時運
転可能な空気調和機において、 冷暖同時運転の除霜時に、上記四方切換弁を切り換える
と共に、冷房運転中の室内機は冷房運転を継続し、暖房
運転中の室内機は接続された上記第1の分岐部及び上記
第1の流量制御装置を閉とすることを特徴とするもので
ある。
This invention includes a compressor, a four-way switching valve, a heat exchanger on the heat source side,
One heat source device consisting of an accumulator, etc., and a plurality of indoor units consisting of an indoor heat exchanger, a first flow rate control device, etc. are connected via the second connection pipe, and the above-mentioned a first branching section in which one of the indoor heat exchangers of the plurality of indoor units is switchably connected to the first connection pipe or the second connection pipe; a second branch connected to the other side of the indoor heat exchanger via the first flow rate control device and connected to the second connection pipe via the second flow rate control device; are connected via the second flow rate control device, and further, the second branch portion and the first connection pipe are connected via a fourth flow rate control device, and the first branch portion and the first connection pipe are connected via the fourth flow rate control device. A repeater incorporating a second flow rate control device, a fourth flow rate control device, and a second branch part is interposed between the heat source device and the plurality of indoor units, and the first connection pipe is configured to have a larger diameter than the second connecting pipe, a switching valve is provided between the first and second connecting pipes of the heat source device, the first connecting pipe is set to a low pressure, and the second connecting pipe is set to a low pressure. In an air conditioner that can be switched to high pressure and capable of simultaneous cooling and heating operation, when defrosting the simultaneous cooling and heating operation, the above-mentioned four-way selector valve is switched, and the indoor unit that is in cooling operation continues cooling operation, and the indoor unit that is in heating operation continues to operate. The indoor unit is characterized in that the connected first branch section and the first flow rate control device are closed.

〔作 用〕[For production]

この発明においては、冷暖房同時運転における暖房主体
の場合は高圧ガス冷媒を熱源機側切り換え弁、第2の接
続配管、第1の分岐部から暖房しようとしている各室内
機に導入して暖房を行い、その後冷媒は第2の分岐部か
ら一部は冷房しようとしている室内機に流入して冷房を
行い、第1の分岐部から第1の接続配管に流入する。一
方残りの冷媒は第4の流量制御装置を通って、冷房室内
機を通った冷媒と合流して、第1の接続配管に流入し、
熱源機に戻る。
In this invention, in the case of heating mainly in simultaneous cooling and heating operation, high-pressure gas refrigerant is introduced into each indoor unit to be heated from the heat source equipment side switching valve, the second connection pipe, and the first branch part. Thereafter, a portion of the refrigerant flows from the second branch into the indoor unit to be cooled, and then flows from the first branch into the first connection pipe. On the other hand, the remaining refrigerant passes through the fourth flow rate control device, joins with the refrigerant that has passed through the cooling indoor unit, and flows into the first connection pipe,
Return to the heat source machine.

また冷房主体の場合は、高圧ガスを熱源機で任意量熱交
換し二相状態として熱源機側切り換え弁、第2の接続配
管から、分離されたガス状の冷媒を第1の分岐部を介し
て暖房しようとする室内機に導入して暖房を行い第2の
分岐部に流入する。
In addition, in the case of cooling mainly, the high-pressure gas is exchanged with a heat source device in an arbitrary amount to form a two-phase state, and the separated gaseous refrigerant is transferred from the heat source device side switching valve and the second connection pipe through the first branch part. The air is introduced into the indoor unit to perform heating, and then flows into the second branch.

方、分離された液状の残りの冷媒は第2の流量調整装置
を通って第2の分岐部で暖房しようとする室内機を通っ
た冷媒と合流して冷房しようとする各室内機に流入して
冷房を行い、その後に第1の分岐部から第1の接続配管
を通って熱源機側切り換え弁に導かれ再び圧縮機に戻る
On the other hand, the separated liquid remaining refrigerant passes through the second flow rate adjustment device, joins with the refrigerant that has passed through the indoor unit that is intended to heat the air at the second branch, and flows into each indoor unit that is attempting to cool the room. After that, the air is guided from the first branch through the first connection pipe to the heat source equipment side switching valve and returned to the compressor.

更に、暖房運転のみの場合、冷媒は熱源機側切り換え弁
より第2の接続配管、第1の分岐部を通り各室内機に導
入され、暖房して第2の分岐部から第1の接続配管を通
り熱源機側切り換え弁に戻る。
Furthermore, in the case of only heating operation, the refrigerant is introduced into each indoor unit from the heat source equipment side switching valve through the second connection pipe and the first branch, heats, and then flows from the second branch to the first connection pipe. and returns to the heat source machine side switching valve.

そして、冷房運転のみの場合、冷媒は熱源機側切り換え
弁より第2の接続配管、第2の分岐部を通り各室内機に
導入され、冷房して第1の分岐部から第1の接続配管を
通り熱源機側切り換え弁に戻る。
In the case of only cooling operation, the refrigerant is introduced into each indoor unit from the heat source equipment side switching valve through the second connection pipe and the second branch, cooled, and transferred from the first branch to the first connection pipe. and returns to the heat source machine side switching valve.

そして、冷暖房同時運転における暖房主体の除霜時に、
高温高圧ガスを熱源機て熱交換することによって除霜し
、熱源機側切り換え弁より第2の接続配管、第2の分岐
部を通り冷房しようとしている室内機に導入され、冷房
して第1の分岐部から第1の接続配管を通り熱源機側切
り換え弁に戻る。なお、この際暖房しようとしている室
内機に接続する第1の分岐部及び第1の流量制御装置は
閉とする。
Then, when defrosting mainly by heating in simultaneous cooling and heating operation,
The high-temperature, high-pressure gas is defrosted by heat exchange with the heat source device, and is introduced from the heat source device side switching valve through the second connecting pipe and the second branch to the indoor unit that is being cooled, and is then cooled and cooled. It passes through the first connection pipe from the branch part and returns to the heat source equipment side switching valve. Note that at this time, the first branch and the first flow rate control device connected to the indoor unit to be heated are closed.

〔実施例〕〔Example〕

以下、この発明の実施例について説明する。 Examples of the present invention will be described below.

第1図はこの発明の一実施例の空気調和装置の冷媒を中
心とする全体構成図である。また、第2図乃至第4図は
第1図の一実施例における冷暖房運転時の動作状態を示
したちのて、第2図は冷房又は暖房のみの運転状態図、
第3図及び第4図は冷暖房同時運転の動作を示すもので
、第3図は暖房主体(暖房運転容量か冷房運転容量より
大きい場合)を、第4図は冷房主体(冷房運転容量か暖
房運転容量より大きい場合)を示す運転動作状態図であ
る。そして、第5図は第1図の一実施例におけるデフロ
スト運転時の動作状態図である。
FIG. 1 is a diagram showing the overall configuration of an air conditioner according to an embodiment of the present invention, centering on the refrigerant. In addition, FIGS. 2 to 4 show operating states during cooling and heating operation in the embodiment shown in FIG. 1, and FIG.
Figures 3 and 4 show the operation of simultaneous cooling and heating operation. Figure 3 shows heating-dominant operation (when the heating operation capacity is larger than cooling operation capacity), and Figure 4 shows cooling-dominant operation (cooling operation capacity or heating operation capacity). FIG. FIG. 5 is an operational state diagram during defrost operation in the embodiment shown in FIG. 1.

なお、この実施例では熱源機1台に室内機3台を接続し
た場合について説明するか、2台以上の室内機を接続し
た場合はすへて同様である。
In this embodiment, a case will be described in which three indoor units are connected to one heat source device, or the same applies if two or more indoor units are connected.

第1図において、(A)は熱源機、(B) 、(C)、
(D)は後述するように互いに並列接続された室内機で
それぞれ同し構成となっている。(E)は後述するよう
に、第1の分岐部、第2の流量制御装置、第2の分岐部
、気液分離装置、熱交換部、第3の流量制御装置、第4
の流量制御装置を内蔵した中継機。
In Figure 1, (A) is a heat source device, (B), (C),
(D) are indoor units connected in parallel to each other, each having the same configuration as described later. (E) includes a first branch, a second flow control device, a second branch, a gas-liquid separation device, a heat exchange section, a third flow control device, and a fourth branch, as described later.
A repeater with a built-in flow control device.

(1)は圧縮機、(2)は熱源機の冷媒流通方向を切り
換える四方切換弁、(3)は熱源機側熱交換器、(4)
はアキュムレータて、上記機器(1)〜(3)と接続さ
れ熱源機(A)を構成する。(5)は3台の室内側熱交
換器、(6)は熱源機(A)の四方切換弁(2)と中継
機(E)を接続する太い第1の接続配管、(6b)、(
6C)、(6d)はそれぞれ室内機(B) 、(C)、
(D)の室内側熱交換器(5)と中継機(E)を接続し
、第1の接続配管(6)に対応する室内機側の第1の接
続配管、(7)は熱源機(A)の熱源機側熱交換器(3
)と中継機(E)を接続する上記第1の接続配管より細
い第2の接続配管(7b)、(7c)、(7d)はそれ
ぞれ室内機(B) 、(C)、(D)の室内側熱交換器
(5)と中継機(E)を接続し第2の接続配管(7)に
対応する室内機側の第2の接続配管、(8)は室内機側
の第1の接続配管(6a)、(6b)、(6c)を、第
1の接続配管(6)または第2の接続配管(7)側に切
り換え可能に接続する第1の分岐部の切り換え弁分岐部
であり、第1の接続配管との接続部である第10に開閉
弁(8a)、第2の接続配管との接続部である第20に
開閉弁(8b)を有する。
(1) is a compressor, (2) is a four-way switching valve that switches the refrigerant flow direction of the heat source machine, (3) is a heat exchanger on the heat source machine side, (4)
is an accumulator, which is connected to the above devices (1) to (3) to constitute a heat source device (A). (5) is the three indoor heat exchangers, (6) is the thick first connection pipe that connects the four-way switching valve (2) of the heat source device (A) and the repeater (E), (6b), (
6C), (6d) are indoor units (B), (C), respectively.
The indoor heat exchanger (5) of (D) and the repeater (E) are connected, and the first connection pipe on the indoor unit side corresponding to the first connection pipe (6), (7) is the heat source machine ( A) Heat source machine side heat exchanger (3
) and the repeater (E), the second connection pipes (7b), (7c), and (7d) are thinner than the first connection pipes (7b), (7c), and (7d) of the indoor units (B), (C), and (D), respectively. A second connection pipe on the indoor unit side that connects the indoor heat exchanger (5) and the repeater (E) and corresponds to the second connection pipe (7), (8) is the first connection on the indoor unit side. A switching valve branch of a first branch that connects the pipes (6a), (6b), and (6c) to the first connection pipe (6) or the second connection pipe (7) in a switchable manner. , an on-off valve (8a) is provided at the 10th point which is the connection part with the first connection pipe, and an on-off valve (8b) is provided at the 20th place which is the connection part with the second connection pipe.

(9)は室内側熱交換器(5)に近接して接続された室
内側熱交換器(5)の出口側の冷房時はスーパーヒート
量、暖房時はサブクール量により制御される第1の流量
制御装置で室内機側の第2の接続配管(7b)、(7c
)、(7d)に接続される。α■は室内機側の第1の接
続配管(6b)、(6C)、(6d)を、第1の接続配
管(6)または第2の接続配管(7)側に切り換え可能
に接続する第1の分岐部の切り換え弁部(8)よりなる
第1の分岐部、01)は室内機側の第2の接続配管(7
b)、(7c)、(7d)と、第2の接続配管よりなる
第2の分岐部、α2は第2の接続配管(7)の途中に設
けられた気液分離装置で、その気相部は第1の分岐部の
切り換え弁部(8)の第10の開閉弁(8a)に接続さ
れ、その液相部は第2の分岐部αυに接続されている。
(9) is the first control unit that is controlled by the superheat amount during cooling and the subcooling amount during heating on the outlet side of the indoor heat exchanger (5) connected adjacent to the indoor heat exchanger (5). In the flow control device, connect the second connection pipes (7b) and (7c) on the indoor unit side.
), (7d). α■ is the first connection pipe (6b), (6C), (6d) on the indoor unit side that is switchably connected to the first connection pipe (6) or the second connection pipe (7) side. The first branch part (01) consisting of the switching valve part (8) of the first branch part (01) is connected to the second connection pipe (7) on the indoor unit side.
b), (7c), (7d) and a second branch part consisting of a second connecting pipe, α2 is a gas-liquid separation device installed in the middle of the second connecting pipe (7), and the gas phase The part is connected to the tenth on-off valve (8a) of the switching valve part (8) of the first branch part, and the liquid phase part thereof is connected to the second branch part αυ.

03は気液分離装置α■と第2の分岐部αυとの間に接
続する開閉自在な第2の流量制御装置、041は第2の
分岐部αυと上記第1の接続配管(6)とを結ぶバイパ
ス配管、α9はバイパス配管a4の途中に設けられた第
3の流量制御装置、(16b) 、(+6c) 、(1
6d)はバイパス配管α滲の第3の流量制御装置α9の
下流に設けられ、第2の分岐部αDにおける各室内機側
の第2の接続配管(7b)、(7c)、(7d)の合流
部との間てそれぞれ熱交換を行う第3の熱交換部、(1
6a)はバイパス配管a4の第3の流量制御装置(I5
の下流に設けられ、第2の分岐部o1)における各室内
機側のvg2の接続配管(7b)、(7c)、(7d)
の合流部との間て熱交換を行う第2の熱交換部、(19
+はバイパス配管α4の上記第3の流量制御装置α9の
下流及び第2の熱交換部(16a)の下流に設けられ気
液分離装置(L5と第2の流量制御装置α3とを接続す
る配管との間で熱交換を行う第1の熱交換部、α′7)
は第2の分岐部(11)と上記第1の接続配管(6)と
の間に接続する開閉自在な第4の流量制御装置である。
03 is a second flow rate control device that can be opened and closed and is connected between the gas-liquid separator α■ and the second branch αυ, and 041 is a connection between the second branch αυ and the first connecting pipe (6). α9 is a third flow control device installed in the middle of bypass piping a4, (16b), (+6c), (1
6d) is provided downstream of the third flow rate control device α9 in the bypass pipe αD, and is connected to the second connection pipes (7b), (7c), and (7d) on each indoor unit side at the second branch αD. a third heat exchange section that exchanges heat with the merging section, (1
6a) is the third flow rate control device (I5) of the bypass pipe a4.
Connecting pipes (7b), (7c), (7d) of vg2 on each indoor unit side at the second branch o1)
a second heat exchange section that exchanges heat with the merging section of (19
+ is a pipe that connects the gas-liquid separation device (L5) and the second flow rate control device α3, which is provided downstream of the third flow rate control device α9 and downstream of the second heat exchange section (16a) in the bypass pipe α4. α'7)
is a fourth flow rate control device that is openable and closable and connected between the second branch portion (11) and the first connection pipe (6).

(32)は、上記熱源機側熱交換器(3)と上記第2の
接続配管(ア)との間に設けられた第3の逆止弁であり
、上記熱源機側熱交換器(3)から上記第2の接続配管
(7)へのみ冷媒流通を許容する。(33)は上記熱源
III(A)の四方切換弁(2)と上記第1の接続配管
(6)との間に設けられた第4の逆止弁であり、上記第
1の接続配管(6)から上記四方切換弁(2)へのみ冷
媒流通を許容する。(34)は、上記熱源機(A)の四
方切換弁(2)と上記第2の接続配管(7)との間に設
けられた第5の逆止弁であり、上記四方切換弁(2)か
ら上記第2の接続配管(7)へのみ冷媒流通を許容する
(32) is a third check valve provided between the heat source machine side heat exchanger (3) and the second connection pipe (A); ) to the second connection pipe (7). (33) is a fourth check valve provided between the four-way switching valve (2) of the heat source III (A) and the first connection pipe (6), and Refrigerant flow is allowed only from 6) to the four-way switching valve (2). (34) is a fifth check valve provided between the four-way switching valve (2) of the heat source device (A) and the second connection pipe (7); ) to the second connection pipe (7).

(35)は上記熱源機側熱交換器(3)と上記第1の接
続配管(6)との間に設けられた第6の逆止弁であり、
上記第1の接続配管(6)から上記熱源機側熱交換器(
3)へのみ冷媒流通を許容する。上記第3の逆止弁(3
2)〜上記第6の逆止弁(35)で熱源機側切り換え弁
(40)を構成する。
(35) is a sixth check valve provided between the heat source machine side heat exchanger (3) and the first connection pipe (6),
From the first connection pipe (6) to the heat source equipment side heat exchanger (
Refrigerant flow is allowed only to 3). The third check valve (3
2) The sixth check valve (35) constitutes a heat source machine side switching valve (40).

このように構成されたこの発明の実施例について説明す
る。
An embodiment of the invention configured in this manner will be described.

まず、第2図を用いて冷房運転のみの場合について説明
する。
First, the case of only cooling operation will be explained using FIG.

すなわち、第2図に実線矢印で示すように圧縮器(1)
より吐出された高温高圧の冷媒ガスは四方切換弁(2)
を通り、熱源機側熱交換器(3)で熱交換して凝縮され
た後、第3の逆止弁(32)、第2の接続配管(7)、
気液分離装置Q2、第2の流量制御装置03の順に通り
、更に第2の分岐部aD、室内機側の第2の接続配管(
7b)、(7C)、(7d)を通り、各室内機(B) 
、 (C) 、(D)に流入する。そして、各室内機(
B) 、 (C) 、(D)に流入した冷媒は、各室内
側熱交器(5)出口のスーパーヒート量により制御され
る第1の流量制御袋!(9)により低圧まで減圧されて
室内側熱交換器(5)で室内空気と熱交換して蒸発し、
ガス化され室内を冷房する。そして、このガス状態とな
った冷媒は、室内機側の第1の接続配管(6b)、(6
c)、(6d)、第1の分岐部α0)第1の分岐部の切
り換え弁部(8)を通り、第1の接続配管(6)、第4
の逆止弁(33)、熱源機(A)の四方切換弁(2)。
That is, as shown by the solid line arrow in Fig. 2, the compressor (1)
The high temperature and high pressure refrigerant gas discharged from the four-way switching valve (2)
After being condensed through heat exchange in the heat source equipment side heat exchanger (3), the third check valve (32), the second connection pipe (7),
It passes through the gas-liquid separator Q2, the second flow rate control device 03 in this order, and further passes through the second branch aD and the second connection pipe on the indoor unit side (
7b), (7C), and (7d), each indoor unit (B)
, (C) and (D). Then, each indoor unit (
The refrigerant flowing into B), (C), and (D) is controlled by the amount of superheat at the outlet of each indoor heat exchanger (5) through the first flow rate control bag! (9), the pressure is reduced to low pressure, and the indoor heat exchanger (5) exchanges heat with indoor air and evaporates.
It is gasified and cools the room. Then, this refrigerant in a gas state is transferred to the first connection pipe (6b) and (6) on the indoor unit side.
c), (6d), first branch part α0) passing through the switching valve part (8) of the first branch part, the first connecting pipe (6), the fourth
check valve (33), and four-way switching valve (2) of the heat source device (A).

アキュムレータ(4)を経て、圧縮機(1)に吸入され
る循環サイクルを構成し、冷房運転を行う。このとき、
第1の分岐部の切り換え弁部(8)の第10の開閉弁(
8a)は閉路、第20の開閉弁(8b)は開路されてい
る。また、この時冷媒は、第1の接続配管(6)が低圧
、第2の接続配管(7)が高圧のため必然的に第3の逆
止弁(32)、第4の逆止弁(33)へ流通する。
A circulation cycle is configured in which the air is sucked into the compressor (1) through the accumulator (4) to perform cooling operation. At this time,
The tenth on-off valve (
8a) is closed, and the 20th on-off valve (8b) is opened. Moreover, at this time, since the first connection pipe (6) is at low pressure and the second connection pipe (7) is at high pressure, the refrigerant is inevitably passed through the third check valve (32) and the fourth check valve ( 33).

さらに、このサイクルの時、第2の流量制御装置α3を
通過した冷媒の一部がバイパス配管α4へ入り、第3の
流量制御袋flQ5て低圧まで減圧されて、第3の熱交
換部(16b) 、(16c)、(+6d)で各室内機
側の第2の接続配管(7b)、(7c)、(7d)との
間で、第2の熱交換部(16a)で第2の分岐部aυの
各室内機側の第2の接続配管(7b)、(7c)、(7
d)の合流部との間で、更に第1の熱交換部Q91で第
2の流量制御装置03に流入する冷媒との間て熱交換を
行い蒸発した冷媒は、第1の接続配管(6)、第4の逆
止弁(34)へ入り四方切換弁(2)、アキュムレータ
(4)を経て圧縮機(1)に吸入される。一方、第1及
び第2及び第3の熱交換部a91、(16a) 、(+
6b’) 、(16c)、(+6d’)で熱交換し冷却
されサブクールを充分につけられた上記第2の分岐部0
1)の冷媒は冷房しようとしている室内機(B)、(C
)、(D)へ流入する。
Furthermore, during this cycle, a part of the refrigerant that has passed through the second flow rate control device α3 enters the bypass pipe α4, is reduced to a low pressure through the third flow rate control bag flQ5, and is transferred to the third heat exchange section (16b ), (16c), (+6d) and the second connection pipes (7b), (7c), (7d) on each indoor unit side, and the second branch at the second heat exchange part (16a). Second connection pipes (7b), (7c), (7) on each indoor unit side of section aυ
The refrigerant that has been evaporated through heat exchange with the refrigerant flowing into the second flow rate control device 03 in the first heat exchange section Q91 is transferred to the first connection pipe (6). ), enters the fourth check valve (34), passes through the four-way switching valve (2), and the accumulator (4), and is sucked into the compressor (1). On the other hand, the first, second and third heat exchange parts a91, (16a), (+
6b'), (16c), and (+6d'), the second branch part 0 is cooled by heat exchange and sufficiently subcooled.
The refrigerant in 1) is used in the indoor units (B) and (C) that are trying to cool the room.
), flows into (D).

次に、第2図を用いて暖房運転のみの場合について説明
する。すなわち、第2図に点線矢印で示すように圧縮機
(1)より吐出された高温高圧の冷媒ガスは四方切換弁
(2)を通り、第5の逆止弁(34)、第2の接続配管
(7)、気液分離装置O2を通り、第1の分岐部α0)
、第1の分岐部の切り換え弁部(8)、室内機側の第1
の接続配管(6b)、(6c)、(6d)の順に通り、
各室内機(B) 、 (C)、(D)に流入し、室内空
気と熱交換して凝縮液化し、室内を暖房する。そして、
この液状態となった冷媒は、各室内側熱交換器(5)出
口のサブクール量により制御される第1の流量制御装置
(9)を通り、室内機側の第2の接続配管(7b)、(
7c)、(7d)から第2の分岐部01)に流入して合
流し、更に第4の流量制御装置α力を通り、ここで第1
の流量制御装置(9)又は第4の流量制御装置aηて低
圧の二相状態まて減圧される。そして、低圧まで減圧さ
れた冷媒は、第1の接続配管(6)を経て、第6の逆止
弁(35)から、熱源機側熱交換器(3)に流入し熱交
換して蒸発しガス状態となり、四方切換弁(2)、アキ
ュムレータ(4)を経て圧縮機(1)に吸入される循環
サイクルを構成し、暖房運転を行う。このとき、第1の
分岐部の切り換え弁部(8)の開閉弁(8a)は開路、
(8b)は閉路されている。また、この時冷媒は、第1
の接続配管(6)か低圧、第2の接続配管(7)か高圧
のため必然的に第5の逆止弁(34)、第6の逆止弁(
35)へ流通する。
Next, the case of only heating operation will be described using FIG. 2. That is, as shown by the dotted line arrow in FIG. 2, the high temperature and high pressure refrigerant gas discharged from the compressor (1) passes through the four-way switching valve (2), the fifth check valve (34), and the second connection. Piping (7) passes through the gas-liquid separator O2 and enters the first branch α0)
, the switching valve part (8) of the first branch part, the first valve part on the indoor unit side
Pass through the connecting pipes (6b), (6c), and (6d) in this order,
It flows into each indoor unit (B), (C), and (D), exchanges heat with indoor air, condenses and liquefies, and heats the room. and,
This liquid refrigerant passes through the first flow control device (9) that is controlled by the subcooling amount at the outlet of each indoor heat exchanger (5), and then passes through the second connection pipe (7b) on the indoor unit side. ,(
7c), (7d) flow into the second branch 01) and merge, further passing through the fourth flow control device α force, where the first
The low pressure two-phase state is reduced by the flow rate control device (9) or the fourth flow rate control device aη. Then, the refrigerant whose pressure has been reduced to a low pressure passes through the first connection pipe (6), flows into the heat source equipment side heat exchanger (3) from the sixth check valve (35), exchanges heat, and evaporates. It becomes a gas state and forms a circulation cycle in which it is sucked into the compressor (1) via the four-way switching valve (2) and the accumulator (4), thereby performing heating operation. At this time, the on-off valve (8a) of the switching valve section (8) of the first branch is open;
(8b) is closed. Also, at this time, the refrigerant is
Because the connecting pipe (6) is low pressure and the second connecting pipe (7) is high pressure, the fifth check valve (34) and the sixth check valve (
35).

冷暖同時運転における暖房主体の場合について第3図を
用いて説明する。ここては室内機(B)、(C”lの2
台か暖房、室内機(D)1台か冷房しようとしている場
合について説明する。
A case in which heating is the main component in simultaneous cooling and heating operation will be explained using FIG. 3. This is the indoor unit (B), (C”l 2)
We will explain the case where one indoor unit (D) is used for heating and one indoor unit (D) is used for cooling.

すなわち、第3図に実線矢印で示すように圧縮機(1)
より吐出された高温高圧冷媒ガスは四方切換弁(2)、
第5の逆止弁(34)、第2の接続配管(7)を通り、
中継機(E)へ送られ、気液分離装置α2を通り、そし
て第1の分岐部α0)、第1の分岐部の切り換え弁部(
8)、室内機側の第1の接続配管(6b)、(6c)の
順に通り、暖房しようとしている室内機(B)、(C)
に流入し、室内側熱交換器(5)で室内空気と熱交換し
て凝縮液化され、室内を暖房する。そして、この液状態
となった冷媒は、各室内側熱交換器(5)出口のサブク
ール量により制御されほぼ全開状態の第1の流量制御装
置(9)を通り少し減圧されて第2の分岐部0υに流入
する。そして、この冷媒の一部は、室内機側の第2の接
続配管(7d)を通り、冷房しようとしている室内機(
D)に入り、室内側熱交換器(5)出口のスーパーヒー
ト量により制御される第1の流量制御装置(9)に入り
減圧された後に、室内側熱交換器(5)に入って熱交換
して蒸発しガス状態となって室内を冷房し、第1の分岐
部の切り換え弁部(8)を介して第1の接続配管(6)
に流入する。
That is, as shown by the solid line arrow in Fig. 3, the compressor (1)
The high temperature and high pressure refrigerant gas discharged from the four-way switching valve (2),
Passing through the fifth check valve (34) and the second connection pipe (7),
It is sent to the repeater (E), passes through the gas-liquid separator α2, and then passes through the first branch part α0) and the switching valve part of the first branch part (α0).
8) Pass through the first connection pipes (6b) and (6c) on the indoor unit side in that order, and connect the indoor units (B) and (C) that are trying to heat the room.
The air flows into the room, exchanges heat with indoor air in the indoor heat exchanger (5), is condensed and liquefied, and heats the room. Then, this liquid refrigerant is controlled by the sub-cooling amount at the outlet of each indoor heat exchanger (5), passes through the first flow rate control device (9) which is in an almost fully open state, and is slightly depressurized before being transferred to the second branch. It flows into part 0υ. Then, a part of this refrigerant passes through the second connection pipe (7d) on the indoor unit side and passes through the indoor unit (7d) that is trying to cool the room.
D), enters the first flow rate control device (9) controlled by the amount of super heat at the outlet of the indoor heat exchanger (5), is depressurized, enters the indoor heat exchanger (5), and heats up. It is exchanged, evaporates, becomes a gas state, cools the room, and is connected to the first connection pipe (6) via the switching valve part (8) of the first branch part.
flows into.

一方、他の冷媒は第2の接続配管(7)の高圧、第2の
分岐部αDの中間圧値によって制御される開閉自在な第
4の流量制御装置07)を通って、冷房使用とする室内
機(D)を通った冷媒と合流して、太い第1の接続配管
(6)を経て熱源機(A)の第6の逆止弁(35)、熱
源機側熱交換器(3)に流入し熱交換して蒸発しガス状
態となる。そして、その冷媒は、熱源機の四方切換弁(
2)、アキュムレータ(4)を経て圧縮機(1)に吸入
される循環サイクルを構成し、暖房主体運転を行う。こ
の時、冷房する室内機(D)の室内側熱交換器(5)の
蒸発圧力と熱源機側熱交換器(3)の蒸発圧力の圧力差
か、太い第1の接続配管(6)に切り換えるために小さ
くなる。また、この時、室内機(B)、(C)に接続さ
れた第1の分岐部の切り換え弁部(8)の第20の開閉
弁(8b)は閉路、第10の開閉弁(8a)は開路され
ており、室内機(D)に接続された第1の分岐部の切り
換え弁部(8)の第1口の開閉弁(8a)は閉路、第2
0の開閉弁(8b)は開路されている。さらに、この時
冷媒は、第1の接続配管(6)か低圧、第2の接続配管
(7)か高圧のため必然的に第5の逆止弁(34)、第
6の逆止弁(35)へ流通する。
On the other hand, other refrigerants are used for cooling through a fourth flow rate control device 07) which can be opened and closed and controlled by the high pressure of the second connection pipe (7) and the intermediate pressure value of the second branch αD. It joins with the refrigerant that has passed through the indoor unit (D), passes through the thick first connection pipe (6), and passes through the sixth check valve (35) of the heat source unit (A) and the heat exchanger on the heat source unit side (3). It flows into the water, exchanges heat and evaporates, becoming a gas. Then, the refrigerant is transferred to the four-way switching valve (
2) A circulation cycle is configured in which air is sucked into the compressor (1) via the accumulator (4), and heating-based operation is performed. At this time, due to the pressure difference between the evaporation pressure of the indoor heat exchanger (5) of the indoor unit (D) to be cooled and the evaporation pressure of the heat source equipment side heat exchanger (3), the thick first connection pipe (6) Become smaller to switch. Also, at this time, the 20th on-off valve (8b) of the switching valve section (8) of the first branch connected to the indoor units (B) and (C) is closed, and the 10th on-off valve (8a) is closed. is open, the first opening/closing valve (8a) of the switching valve section (8) of the first branch connected to the indoor unit (D) is closed, and the second opening/closing valve (8a) is closed.
The on-off valve (8b) of No. 0 is open. Furthermore, at this time, since the refrigerant is at low pressure in the first connection pipe (6) and high pressure in the second connection pipe (7), the refrigerant is inevitably passed through the fifth check valve (34) and the sixth check valve (34). 35).

また、このサイクル時、一部の液冷媒は第2の分岐部0
1)の各室内機側の第2の接続配管(7b)、(7c)
、(7d)の合流部からバイパス配管α滲へ入り、第3
の流量制御装置09て低圧まで減圧されて第3の熱交換
部(16b) 、(+6c)、(+6d)で各室内機側
の第2の接続配管(7b)、(7c)、(7d)との間
で、第2の熱交換部(16a)で第2の分岐部avの各
室内機側の第2の接続配管(7b)、(7c)、(7d
)の合流部との間で。
Also, during this cycle, some liquid refrigerant flows to the second branch 0.
1) Second connection pipes (7b), (7c) on each indoor unit side
, enters the bypass pipe α from the confluence part of (7d), and enters the third
The flow rate control device 09 reduces the pressure to a low pressure, and the third heat exchange section (16b), (+6c), (+6d) connects the second connecting pipes (7b), (7c), (7d) on each indoor unit side. and the second connecting pipes (7b), (7c), (7d) on each indoor unit side of the second branch part av in the second heat exchange part (16a).
) between the confluence of the two.

更に第1の熱交換部α9て第2の流量制御装置o3から
流入する冷媒との間て熱交換を行い、蒸発した冷媒は、
第1の接続配管(6)へ入り、熱源機(A)の第6の逆
止弁(35)、熱源機側熱交換器(3)に流入し熱交換
して蒸発し、ガス状態となる。そして、この冷媒は熱源
機(A)の四方切換弁(2)、アキュムレータ(4)を
経て圧縮機(1)に吸入される。一方、第1、第2、第
3の熱交換部09、(16a)、(16b)、(16c
)、(+66)て熱交換し冷却されサブクールを充分に
つけられた上記第2の分岐部αυの冷媒は冷房しようと
している室内機(D)へ流入する。
Furthermore, heat exchange is performed between the first heat exchange part α9 and the refrigerant flowing from the second flow rate control device o3, and the evaporated refrigerant is
It enters the first connecting pipe (6), flows into the sixth check valve (35) of the heat source device (A), and the heat exchanger on the heat source device side (3), exchanges heat, evaporates, and becomes a gas state. . Then, this refrigerant is sucked into the compressor (1) through the four-way switching valve (2) of the heat source device (A) and the accumulator (4). On the other hand, the first, second, and third heat exchange parts 09, (16a), (16b), (16c
), (+66), the refrigerant in the second branch part αυ, which has been cooled by heat exchange and has been sufficiently subcooled, flows into the indoor unit (D) which is to be cooled.

冷暖房同時運転における冷房主体の場合について第4図
を用いて説明する。ここては、室内機(B) 、(C)
の2台か冷房、室内機(D) 1台か暖房しようとして
いる場合について説明する。
A case in which cooling is the main component in simultaneous heating and cooling operation will be described with reference to FIG. 4. Here, indoor units (B) and (C)
We will explain the case where two indoor units (D) are used for cooling, and one indoor unit (D) is used for heating.

すなわち、第4図に実線矢印て示すように圧縮機(1)
より吐出された高温高圧冷媒ガスは、熱源機側熱交換器
(3)で任意量熱交換して二相の高温高圧ガスとなり、
第3の逆止弁(32)、第2の接続配管(7)を通り、
中継機(E)の気液分離装置02へ送られる。そして、
ここて、ガス状冷媒と液状冷媒に分離され、分離された
ガス状冷媒は第1の分岐部α0)、第1の分岐部の切り
換え弁部(8)、室内機側の第1の接続配管(6d)の
順に通り、暖房しようとしている室内機(D)に流入し
、室内側熱交換器(5)で室内空気と熱交換して凝縮液
化し、室内を暖房する。
That is, as shown by the solid line arrow in Fig. 4, the compressor (1)
The high-temperature, high-pressure refrigerant gas discharged from the heat exchanger (3) on the heat source side exchanges heat in an arbitrary amount to become a two-phase high-temperature, high-pressure gas.
Passing through the third check valve (32) and the second connection pipe (7),
It is sent to the gas-liquid separation device 02 of the repeater (E). and,
Here, the gaseous refrigerant is separated into a gaseous refrigerant and a liquid refrigerant, and the separated gaseous refrigerant is transferred to the first branch part α0), the switching valve part (8) of the first branch part, and the first connection pipe on the indoor unit side. (6d), flows into the indoor unit (D) to be heated, exchanges heat with indoor air in the indoor heat exchanger (5), condenses and liquefies, and heats the room.

更に、室内側熱交換器(5)出口のサブクール量により
制御されほぼ全開状態の第1の流量制御装置(9)を通
り少し減圧されて、第2の分岐部aDに流入する。一方
、気液分離装置α2て分離された残りの液状冷媒は第2
の接続配管(7)の高圧、第2の分岐部aDの中間圧値
によって制御される開閉自在な第2の流量制御装置α3
を通って第2の分岐部a1)に流入し、暖房しようとし
ている室内機(D)を通った冷媒と合流する。そして、
第2の分岐部αD、室内機側の第2の接続配管(7b)
、(7C)の順に通り、各室内機(B)、(C)に流入
する。そして、各室内機(B)、(C)に流入した冷媒
は、室内機側熱交換機(5)出口のスーパーヒート量に
より制御される第1の流量制御装置(9)により低圧ま
で減圧されて室内側熱交換器(5)に流入し、室内空気
と熱交換して蒸発しガス化され室内を冷房する。更に、
このガス状態となった冷媒は、室内機側の第1の接続配
管(6b)、(6c)、第1の分岐部の切り換え弁部(
8)、第1の分岐部α0)を通り、第1の接続配管(6
)、第4の逆止弁(33)、熱源機(A)の四方切換弁
(2)、アキュムレータ(4)を経て圧縮機(1)に吸
入される循環サイクルを構成し、冷房主体運転を行う。
Further, it passes through the first flow rate control device (9) which is controlled by the subcooling amount at the outlet of the indoor heat exchanger (5) and is in a substantially fully open state, and is slightly depressurized before flowing into the second branch aD. On the other hand, the remaining liquid refrigerant separated by the gas-liquid separator α2 is transferred to the second
A second flow rate control device α3 that can be opened and closed is controlled by the high pressure of the connecting pipe (7) and the intermediate pressure value of the second branch aD.
The refrigerant flows through the second branch part a1) and joins with the refrigerant that has passed through the indoor unit (D) to be heated. and,
Second branch αD, second connection pipe on the indoor unit side (7b)
, (7C), and flows into each indoor unit (B) and (C). The refrigerant that has flowed into each of the indoor units (B) and (C) is then reduced to a low pressure by the first flow rate control device (9) that is controlled by the amount of superheat at the outlet of the indoor unit heat exchanger (5). It flows into the indoor heat exchanger (5), exchanges heat with indoor air, evaporates and becomes gas, and cools the room. Furthermore,
This gaseous refrigerant is transferred to the first connection pipes (6b), (6c) on the indoor unit side, the switching valve part (6c) of the first branch part (
8), passes through the first branch part α0), and connects to the first connecting pipe (6).
), the fourth check valve (33), the four-way switching valve (2) of the heat source device (A), and the accumulator (4) to form a circulation cycle in which the air is sucked into the compressor (1), and the cooling-main operation is performed. conduct.

この時、室内機(B)、(C)に接続された第1の分岐
部の切り換え弁部(8)の第20の開閉弁(8b)は開
路、第10の開閉弁(8a)は閉路されており、室内機
(D)に接続された第1の分岐部の切り換え弁部(8)
の第10の開閉弁(8a)は開路、第20の開閉弁(8
b)は閉路されている。また、この時冷媒は、第1の接
続配管(6)か低圧、第2の接続配管か高圧のため、必
然的に第3の逆止弁(32)、第4の逆止弁(33)へ
流通する。
At this time, the 20th on-off valve (8b) of the switching valve section (8) of the first branch connected to the indoor units (B) and (C) is open, and the 10th on-off valve (8a) is closed. and the switching valve part (8) of the first branch part connected to the indoor unit (D)
The 10th on-off valve (8a) is open, and the 20th on-off valve (8a) is open.
b) is closed. Also, at this time, since the refrigerant is at low pressure in the first connection pipe (6) and high pressure in the second connection pipe, it is necessary to use the third check valve (32) and the fourth check valve (33). distributed to.

更に、このサイクル時、一部の液冷媒は第2の分岐部0
1)の各室内機側の第2の接続配管(7b)、(7C)
、(7d)の合流部からバイパス配管04)へ入り、第
3の流量制御装置O9で低圧まで減圧されて第3の熱交
換部(16b) 、(16c)、(16d)で各室内機
側の第2の接続配管(7b)、(7c)、(7d)との
間で、第2の熱交換部(16a)て第2の分岐部Ql)
の各室内機側の第2の接続配管(7b)、(7c)、(
7d)の合流部との間で、更に第1の熱交換部α9で第
2の流量制御装置a3へ流入する冷媒との間て熱交換を
行い蒸発した冷媒は、第1の接続配管(6)へ入り、熱
源機(A)の第4の逆止弁(33)、熱源機(A)の四
方切換弁(2)、アキュムレータ(4)を経て圧縮機(
1)に吸入される。
Furthermore, during this cycle, some liquid refrigerant flows to the second branch 0.
1) Second connection piping (7b), (7C) on each indoor unit side
, (7d) enters the bypass pipe 04), is reduced to low pressure by the third flow rate control device O9, and is then transferred to each indoor unit side by the third heat exchange part (16b), (16c), (16d). between the second connection pipes (7b), (7c), and (7d) of the second heat exchange section (16a) and the second branch section Ql).
The second connection pipes (7b), (7c), (
The evaporated refrigerant undergoes heat exchange with the refrigerant flowing into the second flow rate control device a3 in the first heat exchange part α9, and then passes through the first connection pipe (6). ) to the compressor (
1) is inhaled.

一方、第1、第2、第3の熱交換部αg)、(16a’
)、(16b)、(16c)、(+6d)て熱交換し冷
却されサブクールを充分につけられた上記第2の分岐部
0υの冷媒は冷房しようとしている室内機(B)、(C
)へ流入する。
On the other hand, the first, second, and third heat exchange parts αg), (16a'
), (16b), (16c), (+6d), the refrigerant in the second branch 0υ, which has been cooled by heat exchange and has been sufficiently subcooled, is sent to the indoor units (B) and (C) that are being cooled.
).

次に、上記一実施例の冷暖同時運転における暖房主体の
場合の除霜運転の場合について第5図を用いて説明する
。ここでは室内機(B)、(C)の2台か暖房、室内機
(D)1台か冷房しようとしている場合について説明す
る。
Next, a defrosting operation in which heating is the main component in the simultaneous cooling and heating operation of the above-mentioned embodiment will be described with reference to FIG. Here, a case will be described in which two indoor units (B) and (C) are used for heating, and one indoor unit (D) is used for cooling.

すなわち、第5図に実線矢印で示すように圧縮機(1)
より吐出された高温高圧冷媒ガスは、熱源機側熱交換器
(3)て熱交換して熱源機側熱交換器に付着した霜を溶
かしなから凝縮された後、第3の逆止弁(32)、第2
の接続配管(7)、気液分離装置O2、第2の流量制御
装置α3の順に通り、更に第2の分岐部0υ、室内機側
の第2の接続配管(7d)を通り、室内機(D)に流入
する。そして、室内機(D)に流入した冷媒は、室内側
熱交換器(5)出口のスーパーヒート量により制御され
る第1の流量制御装置(9)により低圧まで減圧されて
室内側熱交換器(5)で室内空気と熱交換して蒸発し、
ガス化され室内を冷房する。そして、このガス状態とな
った冷媒は、室内機側の第1の接続配管(6d)、第1
の分岐部G(1)、第1の分岐部の切り換え弁部(8)
を通り、第1の接続配管(6)、第4の逆止弁(33)
、熱源機(A)の四方切換弁(2)、アキュムレータ(
4)を経て圧縮機(1)に吸入される循環サイクルを構
成し、冷房運転を継続しなからデフロスト運転を行う。
That is, as shown by the solid line arrow in Fig. 5, the compressor (1)
The high-temperature, high-pressure refrigerant gas discharged from the heat source equipment side heat exchanger (3) exchanges heat and is condensed without melting the frost that has adhered to the heat source equipment side heat exchanger (3). 32), 2nd
It passes through the connecting pipe (7), the gas-liquid separator O2, and the second flow rate control device α3 in this order, and then passes through the second branch 0υ and the second connecting pipe (7d) on the indoor unit side, and then passes through the indoor unit ( D). The refrigerant that has flowed into the indoor unit (D) is then reduced to a low pressure by the first flow control device (9) that is controlled by the amount of superheat at the outlet of the indoor heat exchanger (5), and then transferred to the indoor heat exchanger (5). In (5), it exchanges heat with the indoor air and evaporates.
It is gasified and cools the room. Then, this refrigerant in a gas state is transferred to the first connection pipe (6d) on the indoor unit side,
branch part G (1), switching valve part (8) of the first branch part
passing through, the first connection pipe (6), and the fourth check valve (33)
, four-way switching valve (2) of heat source machine (A), accumulator (
A circulation cycle is constructed in which air is sucked into the compressor (1) via step 4), and defrost operation is performed after continuing cooling operation.

このとき、冷房しようとしている室内機に接続された第
1の分岐部の切り換え弁部(8)の第10の開閉弁(8
a)は閉路、第20の開閉弁(8b)は閉路されている
。また、それ以外の室内機(暖房または停止・送風)に
接続された第1の分岐部の切り換え弁部(8)の第10
の開閉弁(8a)、第20の開閉弁(8b)は共に閉路
されている。さらに、冷房しようとしている室内機以外
の第1の流量制御装置は閉路されている。また、この時
冷媒は、第1の接続配管(6)が低圧、第2の接続配管
(7)か高圧のため必然的に第3の逆止弁(32)、第
4の逆止弁(33)へ流通する。
At this time, the tenth on-off valve (8) of the switching valve part (8) of the first branch part connected to the indoor unit that is trying to cool the room
a) is closed, and the 20th on-off valve (8b) is closed. In addition, the 10th switch valve section (8) of the first branch section connected to other indoor units (heating or stop/ventilation)
The on-off valve (8a) and the 20th on-off valve (8b) are both closed. Furthermore, the first flow rate control device other than the indoor unit that is attempting to cool the air is closed. Also, at this time, since the first connecting pipe (6) has a low pressure and the second connecting pipe (7) has a high pressure, the refrigerant is inevitably passed through the third check valve (32) and the fourth check valve ( 33).

さらに、このサイクルの時、第2の流量制御装置03を
通過した冷媒の一部かバイパス配管04)へ入り、第3
の流量制御装置α9て低圧まで減圧されて、第3の熱交
換部(+6b) 、(16c)、(16d)で各室内機
側の第2の接続配管(7b)、(7C)、(7d)との
間で、第2の熱交換部(16a)で第2の分岐部01)
の各室内機側の第2の接続配管(7b)、(7C)、(
7d)の合流部との間で、更に第1の熱交換部(19)
で第2の流量制御装置G3に流入する冷媒との間で、熱
交換を行い蒸発した冷媒は、第1の接続配管(6)、第
4の逆止弁(33)へ入り四方切換弁(2)、アキュム
レータ(4)を経て圧縮機(1)に吸入される。一方、
第1及び第2及び第3の熱交換部Q9)、(16a) 
、(+6b)、(16c)、(16d’)で熱交換し冷
却されサブクールを充分につけられた上記第2の分岐部
αυの冷媒は冷房しようとしている室内機(D)へ流入
する。
Furthermore, during this cycle, part of the refrigerant that has passed through the second flow rate control device 03 enters the bypass pipe 04) and enters the third flow rate control device 03.
The pressure is reduced to low pressure by the flow rate control device α9, and the third heat exchange section (+6b), (16c), (16d) connects the second connecting pipes (7b), (7C), (7d) on each indoor unit side ) and the second branch part 01) at the second heat exchange part (16a).
The second connection pipes (7b), (7C), (
A first heat exchange section (19) is further connected to the confluence section of 7d).
The evaporated refrigerant undergoes heat exchange with the refrigerant flowing into the second flow rate control device G3, enters the first connection pipe (6) and the fourth check valve (33), and enters the four-way switching valve ( 2), is sucked into the compressor (1) via the accumulator (4). on the other hand,
First, second and third heat exchange parts Q9), (16a)
, (+6b), (16c), and (16d'), the refrigerant in the second branch part αυ, which has been cooled by heat exchange and has been sufficiently subcooled, flows into the indoor unit (D) to be cooled.

これらにより、暖房しようとしている各室内側熱交換器
(5)及び室内機側の第1の接続配管(6b)、(6C
)には冷却された冷媒は流通せず、暖房室内に冷風感を
与えることはない。また、暖房しようとしている室内機
側の第1の接続配管(6b)、(6C)は冷媒により冷
却されないので、除霜運転から復帰後の暖房運転の立ち
上がりか早い。
With these, each indoor heat exchanger (5) and the indoor unit side first connection pipe (6b), (6C
), the cooled refrigerant does not flow through the heating chamber, so there is no feeling of cold air inside the heated room. Furthermore, since the first connecting pipes (6b) and (6C) on the indoor unit side that are to be heated are not cooled by the refrigerant, the heating operation starts quickly after returning from the defrosting operation.

以下第6図、第7図を用いて説明する。This will be explained below using FIGS. 6 and 7.

第6図は上記一実施例の冷暖同時運転における暖房主体
運転時の除霜運転時の制御についての構成図である。
FIG. 6 is a configuration diagram of control during the defrosting operation during the heating-main operation in the simultaneous cooling and heating operation of the above-mentioned embodiment.

除霜運転の開始制御は、圧縮機連続運転時間積算手段(
21)による圧縮機の連続運転時間信号と、配管温度検
出器(イ)により検出した熱源機側熱交換器温度の信号
より配管温度連続低温時間積算手段(22)による所定
温度以下運転の連続時間信号より、除霜運転開始判定手
段(23)で除霜運転の開始を判定し、制御手段(26
)にて四方切換弁(2)、第1の流量制御装置(9)、
および第1の分岐部の第10の開閉弁(8a)、第20
の開閉弁(8b)の開度または開閉を決定し制御するこ
とによって実現される。
The start control of defrosting operation is performed using the compressor continuous operation time accumulation means (
Based on the continuous operation time signal of the compressor from 21) and the signal of the heat exchanger temperature on the heat source equipment side detected by the pipe temperature detector (a), the continuous time of operation below a predetermined temperature is determined by the pipe temperature continuous low temperature time integration means (22). Based on the signal, the defrosting operation start determination means (23) determines the start of the defrosting operation, and the control means (26)
) at the four-way switching valve (2), the first flow control device (9),
and the 10th on-off valve (8a) of the first branch, the 20th
This is realized by determining and controlling the opening degree or opening/closing of the on-off valve (8b).

除霜運転の終了制御は、除霜運転開始判定手段(23)
にて除霜運転開始と判定され除霜運転開始後、除霜運転
時間積算手段(24)により積算された除霜運転時間信
号と、配管温度検出器(21)により検出した熱源機側
熱交換器温度の信号より、除霜運転終了判定手段(25
)で除霜運転の終了を判定し、制御手段(26)にて四
方切換弁(2)、第1の流量制御装置(9)、および第
1の分岐部の第10の開閉弁(8a)、第20の開閉弁
(8b)の開度または開閉を決定し制御する二とによっ
て実現される。
Defrosting operation termination control is performed by defrosting operation start determination means (23)
After it is determined that the defrosting operation has started and the defrosting operation has started, the defrosting operation time signal accumulated by the defrosting operation time integration means (24) and the heat exchanger on the heat source equipment side detected by the piping temperature detector (21) Based on the temperature signal, the defrosting operation completion determination means (25
) determines the end of the defrosting operation, and the control means (26) controls the four-way switching valve (2), the first flow rate control device (9), and the tenth on-off valve (8a) of the first branch. , 2, which determines and controls the opening degree or opening/closing of the 20th on-off valve (8b).

第7図は、上記一実施例の冷暖同時運転における暖房主
体運転時の除霜運転時の制御についてのフローチャート
である。
FIG. 7 is a flowchart regarding the control during the defrosting operation during the heating-main operation in the simultaneous cooling and heating operation of the above-mentioned embodiment.

ステップ(27)及びステップ(28)にて圧縮機連続
運転時間と配管温度連続低温時間の判定を行い、共に所
定時間以上であった場合にステップ(29)以下の除霜
運転制御にはいる。ステップ(29)では、四方切換弁
(2)を熱源機側熱交換器を凝縮器とするように切り替
える。ステップ(30)では、暖房しようとしている室
内機の第1の流量制御装置(9)を全開とする。ステッ
プ(31)では、暖房しようとしている室内機に対応す
る第1の分岐部の第10の開閉弁(8a)、第20の開
閉弁(8b)を共1こ閉とする。
In step (27) and step (28), the compressor continuous operation time and the pipe temperature continuous low temperature time are determined, and if both are longer than a predetermined time, the defrosting operation control in step (29) and subsequent steps is entered. In step (29), the four-way switching valve (2) is switched so that the heat exchanger on the heat source equipment side becomes the condenser. In step (30), the first flow control device (9) of the indoor unit to be heated is fully opened. In step (31), both the 10th on-off valve (8a) and the 20th on-off valve (8b) of the first branch corresponding to the indoor unit to be heated are closed.

除霜運転に入った後は、ステ・ノブ(41)及びステッ
プ(42)にて除霜運転時間と配管温度の判定を行い、
除霜運転時間が所定温度以上続いた場合まtコは配管温
度か所定温度以上になった場合にステ・ツブ(43)以
下の除霜運転終了制御にはいる。ステ・ツブ(43)で
は、四方切換弁(2)を除霜運転前の状態の戻す。ステ
ップ(44)では、暖房しようとして0る室内機の第1
の流量制御装置(9)を除霜運転前の状態に戻す。ステ
ップ(36)では、暖房しようとしている室内機に対応
する第1の分岐部の第10の開閉弁(8a)、第20の
開閉弁(8b)をそれぞれ除霜運転前の状態に戻す。
After starting the defrosting operation, the defrosting operation time and pipe temperature are determined at the step knob (41) and step (42).
If the defrosting operation time continues at a predetermined temperature or higher, the defrosting operation end control starts when the pipe temperature reaches a predetermined temperature or higher. In the step tube (43), the four-way switching valve (2) is returned to the state before the defrosting operation. In step (44), the first indoor unit that turns off when trying to heat the
Return the flow rate control device (9) to the state before defrosting operation. In step (36), the 10th on-off valve (8a) and the 20th on-off valve (8b) of the first branch corresponding to the indoor unit to be heated are returned to the state before the defrosting operation.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、この発明の空気調和装置は、圧縮機
、四方切換弁、熱源機側熱交換器、アキュムレータ、等
よりなる1台の熱源機と、室内側熱交換器、第1の流量
制御装置等からなる複数台の室内機とを、第1、第2の
接続配管を介して接続し、上記複数台の室内機の上記室
内側熱交換器の一方を上記第1の接続配管または、第2
の接続配管に切り換え可能に接続してなる第1の分岐部
と、上記複数台の室内機の上記室内側熱交換器の他方に
、上記第1の流量制御装置を介して接続され、かつ第2
の流量制御装置を介して上記第2の接続配管に接続して
なる第2の分岐部とを、上記第2の流量制御装置を介し
て接続し、更に上記第2の分岐部と上記第1の接続配管
を第4の流量制御装置を介して接続し、上記第1の分岐
部、第2の流量制御装置、第4の流量制御装置及び第2
の分岐部を内蔵させた中継器を、上記熱源機と上記複数
台の室内機との間に介在させると共に、上記第1の接続
配管は上記第2の接続配管より大径に構成し、上記熱源
機の上記第1及び第2の接続配管間に切り換え弁を設け
、上記第1の接続配管を低圧に、第2の接続配管を高圧
に切り換え可能にしたものである。
As explained above, the air conditioner of the present invention includes one heat source device including a compressor, a four-way switching valve, a heat exchanger on the heat source side, an accumulator, etc., an indoor heat exchanger, and a first flow rate control device. A plurality of indoor units consisting of devices, etc. are connected via first and second connection pipes, and one of the indoor heat exchangers of the plurality of indoor units is connected to the first connection pipe or, Second
a first branch part switchably connected to the connecting pipe of the plurality of indoor units, and a first branch part connected to the other of the indoor heat exchangers of the plurality of indoor units via the first flow rate control device; 2
A second branch section connected to the second connection pipe via the flow rate control device is connected via the second flow rate control device, and further the second branch section and the first connection pipe are connected via the second flow rate control device. connection pipes are connected via a fourth flow rate control device, and the first branch, the second flow rate control device, the fourth flow rate control device and the second
A repeater having a built-in branch part is interposed between the heat source device and the plurality of indoor units, and the first connecting pipe is configured to have a larger diameter than the second connecting pipe, and the first connecting pipe is configured to have a larger diameter than the second connecting pipe. A switching valve is provided between the first and second connecting pipes of the heat source device, so that the first connecting pipe can be switched to low pressure and the second connecting pipe can be switched to high pressure.

そして、冷暖同時運転の除霜時に、上記四方切換弁を切
り換えると共に、冷房運転中の室内機は冷房運転を継続
し、暖房運転中の室内機は接続された上記第1の分岐部
及び上記第1の流量制御装置を閉とすることにより暖房
運転中の各室内機を冷媒回路から分離し、暖房室内の冷
風感をなくすと共に、冷房室内から得た熱量を利用し、
短時間で除霜運転を終了することかできる。
At the time of defrosting in the simultaneous cooling and heating operation, the four-way switching valve is switched, the indoor unit in cooling operation continues cooling operation, and the indoor unit in heating operation is connected to the first branch and the first branch. By closing the flow rate control device No. 1, each indoor unit in heating operation is separated from the refrigerant circuit, eliminating the feeling of cold air in the heating room, and utilizing the amount of heat obtained from the cooling room.
Defrosting operation can be completed in a short time.

また、暖房運転中の室内機側の第1の接続配管は冷媒に
より冷却されないのて、除霜運転から復帰後の暖房運転
の立ち上かりか早い。
Furthermore, since the first connecting pipe on the indoor unit side during heating operation is not cooled by the refrigerant, heating operation starts quickly after returning from defrosting operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の空気調和装置の冷媒を中
心とする全体構成図である。また、第2図、第3図、第
4図は第1図の一実施例における冷暖房運転時の動作状
態を示したもので、第2図は冷房または暖房のみの運転
状態図、第3図及び第4図は冷暖房同時運転の動作を示
す図で、第3図は暖房主体(暖房運転容量が冷房運転容
量より大きい場合)を、第4図は冷房主体(冷房運転容
量が暖房運転容量より大きい場合)を示す運転動作状態
図である。そして、第5図は第1図の一実施例における
デフロスト運転時の動作状態図である。さらに、第6図
は第1図の一実施例におけるデックスト運転に対する制
御の構成図、第7図はその制御フローチャートである。 図において、(A)は熱源機、(B)、(C)、(D)
は同し構成となっている室内機、(E)は中継機、(1
)は圧縮機、(2)は四方切換弁、(3)は熱源機側熱
交換器、(4)はアキュムレータ、(5)は室内側熱交
換器、(6)は第1の接続配管、(6b)、(6C)、
(6d)は室内機側の第2の接続配管、(7b)、(7
C)、(7d)は室内機側の第2の接続配管、(8)は
第1の分岐部の切り換え弁部、(8a)は第10の開閉
弁、(8b)は第20の開閉弁、(9)は第1の流量制
御装置、α0)は第1の分岐部、01)は第2の分岐部
、α2は気液分離装置、α3は第2の流量制御装置、α
4はバイパス配管、0!19は第3の流量制御装置、(
16a)、(+6b)、(16c)、(+6d)は第2
及び第3の熱交換部、Og)は第1の熱交換部、07)
は第4の流量制御装置、(32)は第3の逆止弁、(3
3)は第4の逆止弁、(34)は第5の逆止弁、(35
)は第6の逆止弁、(40)は熱源機側切り換え弁てあ
る。 なお、 図中、 同一符号は同一 または相当部分 を示す。 代 理 人 大 石 増 雄
FIG. 1 is a diagram showing the overall configuration of an air conditioner according to an embodiment of the present invention, centering on the refrigerant. In addition, Figures 2, 3, and 4 show operating states during cooling/heating operation in the embodiment shown in Figure 1. Figure 2 is a diagram of operating states for cooling or heating only, and Figure 3 and Figure 4 are diagrams showing the operation of simultaneous heating and cooling operation. Figure 3 shows heating-dominant operation (when heating operation capacity is larger than cooling operation capacity), and Figure 4 shows cooling-dominant operation (when cooling operation capacity is greater than heating operation capacity). FIG. FIG. 5 is an operational state diagram during defrost operation in the embodiment shown in FIG. 1. Further, FIG. 6 is a block diagram of the control for the Dext operation in the embodiment shown in FIG. 1, and FIG. 7 is a flowchart of the control. In the figure, (A) is a heat source device, (B), (C), (D)
(E) is an indoor unit with the same configuration, (E) is a repeater, (1
) is a compressor, (2) is a four-way switching valve, (3) is a heat exchanger on the heat source side, (4) is an accumulator, (5) is an indoor heat exchanger, (6) is the first connection pipe, (6b), (6C),
(6d) is the second connection pipe on the indoor unit side, (7b), (7
C), (7d) are the second connection pipes on the indoor unit side, (8) are the switching valves of the first branch, (8a) are the 10th on-off valves, and (8b) are the 20th on-off valves. , (9) is the first flow control device, α0) is the first branch, 01) is the second branch, α2 is the gas-liquid separation device, α3 is the second flow control device, α
4 is the bypass pipe, 0!19 is the third flow rate control device, (
16a), (+6b), (16c), (+6d) are the second
and the third heat exchange section, Og) is the first heat exchange section, 07)
(32) is the third check valve; (32) is the fourth flow control device; (32) is the third check valve;
3) is the fourth check valve, (34) is the fifth check valve, (35
) is the sixth check valve, and (40) is the heat source machine side switching valve. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent Masuo Oishi

Claims (1)

【特許請求の範囲】[Claims]  圧縮機、四方切換弁、熱源機側熱交換機、アキュムレ
ータ、等よりなる1台の熱源機と、室内側熱交換器、第
1の流量制御装置等からなる複数台の室内機とを、第1
、第2の接続配管を介して接続し、上記複数台の室内機
の上記室内側熱交換器の一方を上記第1の接続配管また
は、第2の接続配管に切り換え可能に接続してなる第1
の分岐部と、上記複数台の室内機の上記室内側熱交換器
の他方に、上記第1の流量制御装置を介して接続され、
かつ第2の流量制御装置を介して上記第2の接続配管に
接続してなる第2の分岐部とを、上記第2の流量制御装
置を介して接続し、更に、上記第2の分岐部と上記第1
の接続配管を第4の流量制御装置を介して接続し、上記
第1の分岐部。第2の流量制御装置、第4の流量制御装
置及び第2の分岐部を内蔵させた中継器を、上記熱源機
と上記複数台の室内機との間に介在させると共に、上記
第1の接続配管は上記第2の接続配管より大径に構成し
、上記熱源機の上記第1及び第2の接続配管間に切り換
え弁を設け、上記第1の接続配管を低圧に、第2の接続
配管を高圧に切り換え可能にした、冷暖同時運転可能な
空気調和機において、冷暖同時運転の除霜時に、上記四
方切換弁を切り換えると共に、冷房運転中の室内機は冷
房運転を継続し、暖房運転中の室内機は接続された上記
第1の分岐部及び上記第1の流量制御装置を閉とするこ
とを特徴とする空気調和機。
One heat source device consisting of a compressor, a four-way switching valve, a heat exchanger on the heat source side, an accumulator, etc., and a plurality of indoor units consisting of an indoor heat exchanger, a first flow rate control device, etc.
, connected via a second connection pipe, and one of the indoor heat exchangers of the plurality of indoor units is switchably connected to the first connection pipe or the second connection pipe. 1
and the other of the indoor heat exchangers of the plurality of indoor units via the first flow rate control device,
and a second branch section connected to the second connection pipe via the second flow rate control device, and further connected to the second branch section via the second flow rate control device. and the first above
connecting the connecting pipe through the fourth flow rate control device to the first branch section. A repeater incorporating a second flow rate control device, a fourth flow rate control device, and a second branching section is interposed between the heat source device and the plurality of indoor units, and the first connection The piping is configured to have a larger diameter than the second connecting piping, a switching valve is provided between the first and second connecting piping of the heat source device, the first connecting piping is set to low pressure, and the second connecting piping is connected to the second connecting piping. In an air conditioner that is capable of simultaneous cooling and heating operation, the four-way switching valve is switched during defrosting of simultaneous cooling and heating operation, and the indoor unit that is currently in cooling operation continues cooling operation, while the indoor unit is in heating operation. An air conditioner, wherein the indoor unit has the connected first branch part and the first flow rate control device closed.
JP2107912A 1990-04-23 1990-04-23 Air conditioner Expired - Lifetime JP2727733B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2107912A JP2727733B2 (en) 1990-04-23 1990-04-23 Air conditioner
AU74381/91A AU636215B2 (en) 1990-04-23 1991-04-15 Air conditioning apparatus
EP91303443A EP0453271B1 (en) 1990-04-23 1991-04-17 Air conditioning apparatus
ES199191303443T ES2046853T3 (en) 1990-04-23 1991-04-17 AIR CONDITIONER.
DE91303443T DE69100424T2 (en) 1990-04-23 1991-04-17 Air conditioner.
US07/687,434 US5156014A (en) 1990-04-23 1991-04-18 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107912A JP2727733B2 (en) 1990-04-23 1990-04-23 Air conditioner

Publications (2)

Publication Number Publication Date
JPH046369A true JPH046369A (en) 1992-01-10
JP2727733B2 JP2727733B2 (en) 1998-03-18

Family

ID=14471209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107912A Expired - Lifetime JP2727733B2 (en) 1990-04-23 1990-04-23 Air conditioner

Country Status (1)

Country Link
JP (1) JP2727733B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948896A (en) * 1987-07-08 1990-08-14 Daiso Co., Ltd. Process for preparing pyridine-2,3-dicarboxylic acid compounds
JP2011127775A (en) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp Air conditioner
US8616017B2 (en) 2009-05-08 2013-12-31 Mitsubishi Electric Corporation Air conditioning apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312471B2 (en) * 2008-10-29 2013-10-09 三菱電機株式会社 Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140044A (en) * 1976-05-18 1977-11-22 Daikin Ind Ltd Heat recovery type air conditioning device
JPH0297857A (en) * 1988-06-07 1990-04-10 Mitsubishi Electric Corp Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140044A (en) * 1976-05-18 1977-11-22 Daikin Ind Ltd Heat recovery type air conditioning device
JPH0297857A (en) * 1988-06-07 1990-04-10 Mitsubishi Electric Corp Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948896A (en) * 1987-07-08 1990-08-14 Daiso Co., Ltd. Process for preparing pyridine-2,3-dicarboxylic acid compounds
US8616017B2 (en) 2009-05-08 2013-12-31 Mitsubishi Electric Corporation Air conditioning apparatus
JP2011127775A (en) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp Air conditioner

Also Published As

Publication number Publication date
JP2727733B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
JPH0754217B2 (en) Air conditioner
JP2598550B2 (en) Air conditioner
JPH046369A (en) Air-conditioner
JP2944507B2 (en) Air conditioner
JP2004324947A (en) Air conditioning system
JP2601052B2 (en) Air conditioner
JP2718308B2 (en) Air conditioner
JP2718286B2 (en) Air conditioner
JP2765970B2 (en) Air conditioner
JPH046364A (en) Air-conditioner
JP2718287B2 (en) Air conditioner
JP2621687B2 (en) Air conditioner
JP2757584B2 (en) Air conditioner
JPH05172433A (en) Air conditioning apparatus
JPH0752044B2 (en) Air conditioner
JP3092212B2 (en) Air conditioner
JPH046361A (en) Air-conditioner
JPH05322348A (en) Air conditioner
JP2525927B2 (en) Air conditioner
JPH046373A (en) Air conditioner
JP2800472B2 (en) Air conditioner
JP3092214B2 (en) Air conditioner
JP2536229B2 (en) Air conditioner
JPH0752046B2 (en) Operation control device for air conditioner
JPH04110573A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 13