JPH0463316B2 - - Google Patents

Info

Publication number
JPH0463316B2
JPH0463316B2 JP58152668A JP15266883A JPH0463316B2 JP H0463316 B2 JPH0463316 B2 JP H0463316B2 JP 58152668 A JP58152668 A JP 58152668A JP 15266883 A JP15266883 A JP 15266883A JP H0463316 B2 JPH0463316 B2 JP H0463316B2
Authority
JP
Japan
Prior art keywords
ultra
sealed tube
wick
heat pipe
inner circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58152668A
Other languages
Japanese (ja)
Other versions
JPS6044796A (en
Inventor
Koichi Masuko
Tsuneaki Motai
Masataka Mochizuki
Masahiko Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP58152668A priority Critical patent/JPS6044796A/en
Publication of JPS6044796A publication Critical patent/JPS6044796A/en
Publication of JPH0463316B2 publication Critical patent/JPH0463316B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明はヒートパイプに関するもので、比較
的長距離に亙つて熱輸送する場合や加熱部が冷却
部に対してわずか高い場合等優れた熱輸送能力が
要求される場合に有効なヒートパイプに関するも
のである。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a heat pipe, which has excellent heat transport ability when transporting heat over a relatively long distance or when the heating part is slightly higher than the cooling part. This relates to a heat pipe that is effective when the following is required.

従来技術 周知のようにヒートパイプは、熱伝導率の最も
高い金属である銅に比べて数十倍〜百数十倍の熱
伝導率を有しているので、熱交換器や太陽熱温水
器、さらには医療機器等の各種の分野で用いられ
ており、最近では電力ケーブルの間接冷却等にも
用いられるようになつてきた。
Prior Art As is well known, heat pipes have a thermal conductivity that is tens to hundreds of times higher than copper, which is the metal with the highest thermal conductivity, so they can be used in heat exchangers, solar water heaters, Furthermore, it is used in various fields such as medical equipment, and recently it has also been used for indirect cooling of power cables.

このように各種の分野で利用されているヒート
パイプには、その用途に応じて長尺であること、
可撓性を有するものであること、ある程度の高低
差があつても熱輸送できることなどの特性が要求
される場合がある。これら互いに異なる特性が要
求される場合であつても、熱輸送能力を損わない
ことが必要であるが、例えば溝(グループ)をウ
イツクとした従来のヒートパイプでは、得られる
毛細管圧力が低いうえに、そのウイツクとしての
溝がヒートパイプの軸線方向に沿うものであるた
めに、内周面全体に液相作動液体を充分に行き渡
らせることが困難であり、したがつてグループウ
イツクタイプのヒートパイプは熱輸送能力が比較
的低く、長距離に亙つて熱輸送を行なうことが困
難であつた。また従来、金属網や多孔質焼結金属
をウイツクとしたヒートパイプが知られている
が、このようなヒートパイプにあつては、溝をウ
イツクとした前記のヒートパイプに比べて高い毛
細管圧力を得ることができ、また液相作動液体を
内周面全体にある程度分に行き渡られることがで
きる。しかしその反面金属網や多孔質焼結金属で
は、液相作動液体の還流路となる微細孔が複雑に
曲がりかつ縦横に錯綜しているから、液相作動液
体の圧力損失が大きく、さらに多孔質焼結金属を
ウイツクとして用いた場合には、ヒートパイプ全
体としての可撓性がなくなる問題があつた。
Heat pipes used in various fields have different lengths depending on their purpose.
In some cases, properties such as flexibility and the ability to transport heat even if there is a certain level difference are required. Even when these mutually different characteristics are required, it is necessary not to impair heat transport ability, but for example, with conventional heat pipes using grooves (groups), the capillary pressure obtained is low and In addition, since the grooves as the wicks are along the axial direction of the heat pipe, it is difficult to sufficiently spread the liquid phase working liquid over the entire inner circumferential surface. Pipes have a relatively low heat transport capacity, making it difficult to transport heat over long distances. In addition, heat pipes using metal mesh or porous sintered metal as the wick have been known, but such heat pipes have a higher capillary pressure than the aforementioned heat pipes that use grooves as the wick. The liquid phase working liquid can be distributed over the entire inner peripheral surface to a certain extent. However, on the other hand, in metal nets and porous sintered metals, the micropores that serve as return paths for the liquid-phase working liquid are intricately curved and intertwined vertically and horizontally, resulting in a large pressure loss for the liquid-phase working liquid. When sintered metal was used as the heat pipe, there was a problem that the heat pipe as a whole lacked flexibility.

そこで本出願人は、外装体をなす密閉管の内周
面に直径が5〜100μm程度の多数の極細線を前
記密閉管の軸線方向に沿つて配置することによ
り、その極細線をウイツクとしたヒートパイプを
既に提案した(特公昭61−41398号)。このような
構成のヒートパイプであれば、得られる毛細管圧
力が高いうえに、液相作動流体の還流路が直線状
となつて、圧力損失が小さいから、液相作動流体
の加熱部への還流を促進して熱輸送能力を充分高
くすることができ、また前記極細線自体が可撓性
を有しているから、可撓性のあるヒートパイプと
することも可能である。しかしながら極細線によ
つて構成したウイツクは各極細線同士の隙間が液
相作動流体の還流路になるから、各極細線を例え
ば接着剤によつて一体化してしまうことはでき
ず、したがつて前記極細線を外装体をなす密閉管
の内周面に添設する場合、従来では、極細線を1
本ないし数本づつ前記密閉管の内部に挿入してそ
の内周面に密着配置させていたが、その作業が非
常に面倒であるとともに、長時間を要する問題が
あつた。また上述のようにして密閉管の内周面に
添設した極細線は、その内周側に挿入した適宜の
押え具によつて密閉管の内周面に対して半径方向
に向けて押圧固定しており、例えば特開昭55−
68589号に示されるヒートパイプではスパイラル
状の押え具を内側に挿入することによつて押圧固
定しているが、周方向への固定力が積極的には作
用しないので、振動等の何等かの外力が作用した
場合に前記極細線が密閉管の周方向にずれて各部
分での極細線の均一性が損われ、その結果液相作
動流体の還流が阻害されて熱輸送能力が低下する
問題があつた。
Therefore, the present applicant has made the ultra-fine wires by arranging a large number of ultra-fine wires with diameters of about 5 to 100 μm along the axial direction of the sealed tube on the inner circumferential surface of the sealed tube that forms the exterior body. We have already proposed a heat pipe (Special Publication No. 61-41398). With a heat pipe configured like this, not only can the obtained capillary pressure be high, but the return path for the liquid-phase working fluid is linear and the pressure loss is small, so the return flow of the liquid-phase working fluid to the heating section is low. can be promoted to sufficiently increase the heat transport ability, and since the ultrafine wire itself has flexibility, it is also possible to make a flexible heat pipe. However, in the case of a wick constructed of ultra-fine wires, the gaps between the ultra-fine wires serve as return paths for the liquid-phase working fluid, so it is not possible to integrate the ultra-fine wires with adhesive, for example. When attaching the ultra-fine wire to the inner circumferential surface of the sealed tube forming the exterior body, conventionally, one ultra-fine wire is
One or more tubes were inserted into the sealed tube and placed in close contact with the inner circumferential surface of the tube, but this operation was very troublesome and took a long time. In addition, the ultra-fine wire attached to the inner circumferential surface of the sealed tube as described above is pressed and fixed in the radial direction against the inner circumferential surface of the sealed tube by an appropriate holding device inserted into the inner circumferential side. For example, JP-A-55-
The heat pipe shown in No. 68589 is fixed by pressure by inserting a spiral-shaped retainer inside, but the fixing force in the circumferential direction does not actively act, so it is difficult to prevent vibrations or other causes. When an external force is applied, the ultra-fine wire shifts in the circumferential direction of the sealed tube, impairing the uniformity of the ultra-fine wire in each part, and as a result, the reflux of the liquid-phase working fluid is inhibited, resulting in a reduction in heat transport capacity. It was hot.

発明の目的 この発明は上記の事情に鑑みてなされたもの
で、ウイツクを構成する極細線を容易かつ均一に
外装体をなす密閉管の内周面に添設することがで
き、しかもその極細線がずれることがなく、した
がつて毛細管圧力が高うえに液相作動流体の圧力
損失の少ない熱輸送能力の優れたヒートパイプを
提供することを目的とするものである。
Purpose of the Invention The present invention has been made in view of the above circumstances, and it is possible to easily and uniformly attach the ultra-fine wire constituting the wick to the inner circumferential surface of the sealed tube forming the exterior body, and the ultra-fine wire It is an object of the present invention to provide a heat pipe which has an excellent heat transport ability, which does not shift, has a high capillary pressure, and has a small pressure loss of a liquid-phase working fluid.

発明の構成 すなわちこの発明は、密閉管の内周面に毛細管
圧力を生じさせるウイツクを添設するとともに、
その密閉管内に作動流体を封入したヒートパイプ
において、前記ウイツクが、前記密閉管の軸線方
向に沿う多数本の縦沿え極細線束を、その極細線
束に交差しかつ前記密閉管の軸線方向に沿つた方
向に一定の間隔を置いて配置された横糸で編んだ
一体化した構成とされ、かつ前記縦沿え極細線束
に対する横糸の体積比が0.1以下に設定されてお
り、さらにそのウイツクがその内周側に挿入した
押え具によつて前記密閉管の内周面に密着させら
れていることを特徴とするものである。
Structure of the Invention In other words, the present invention adds a wick that generates capillary pressure to the inner circumferential surface of a sealed tube, and
In the heat pipe in which a working fluid is sealed in the sealed tube, the wick moves a large number of longitudinally extending ultra-fine wire bundles along the axial direction of the sealed tube, and crosses the ultra-fine wire bundles and runs along the axial direction of the sealed tube. It has an integrated structure knitted with weft yarns arranged at regular intervals in the direction, and the volume ratio of the weft yarns to the longitudinally extending ultra-fine wire bundle is set to 0.1 or less, and the weft yarns are arranged on the inner circumferential side. It is characterized in that it is brought into close contact with the inner circumferential surface of the sealed tube by a presser inserted into the tube.

実施例 以下この発明の実施例を添付の図面を参照して
説明する。第1図はこの発明の一実施例を示す部
分断面図であり、また第2図は第1図の−線
矢視断面図であつて、ここに示すヒートパイプ1
は、外装体をなす密閉管2の内周面に、多数の極
細線束3からなるウイツク4を配置し、さらにそ
のウイツク4をその内周側に挿入した押え具5に
よつて密閉管2の内周面に密着させ、そして密閉
管2の内部から空気等の非凝縮性気体を吸引排気
した後、適宜の作動流体を封入した構成とされて
いる。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a partial sectional view showing one embodiment of the present invention, and FIG. 2 is a sectional view taken along the - line in FIG.
In this method, a wick 4 made of a large number of ultra-thin wire bundles 3 is placed on the inner circumferential surface of a sealed tube 2 forming an exterior body, and the wick 4 is further held by a presser 5 inserted into the inner circumferential side of the sealed tube 2. It is configured such that it is brought into close contact with the inner peripheral surface, and after a non-condensable gas such as air is sucked out from the inside of the sealed tube 2, an appropriate working fluid is sealed.

すなわち前記極細線束3は、直径が5〜100μ
m程度の炭素繊維やガラス繊維等の線条体を多数
本束ねた構成であり、ウイツク4はその多数の極
細線束3を第3図に示すように横糸6によつて編
んで一体化した構成とされている。また前記押え
具5は例えば金属製の帯状材を螺施状に湾曲させ
たものであつて、弾性力によつて直径が拡大する
よう形成されている。したがつてウイツク4は極
細線束3を横糸6で編んでシート状態からその極
細線束3が軸線方向を向くよう筒状に丸められて
前記密閉管2内に挿入され、さらに直径が小さく
なるよう弾性変形させた押え具5をウイツク4の
内周側に挿入することにより、ウイツク4は押え
具5の弾性力によつて密閉管2の内周面に密着さ
せられている。
That is, the ultrafine wire bundle 3 has a diameter of 5 to 100μ.
It has a structure in which a large number of filament bodies such as carbon fibers and glass fibers with a diameter of about It is said that Further, the presser tool 5 is, for example, a metal band-shaped material curved into a spiral shape, and is formed so that its diameter expands due to elastic force. Therefore, the wick 4 knits an ultra-fine wire bundle 3 with weft threads 6, rolls the ultra-fine wire bundle 3 from a sheet state into a cylindrical shape so as to face the axial direction, inserts it into the sealed tube 2, and further reduces the diameter by applying elasticity. By inserting the deformed presser 5 into the inner circumferential side of the wick 4, the wick 4 is brought into close contact with the inner circumferential surface of the sealed tube 2 by the elastic force of the presser 5.

上記のように構成したヒートパイプ1では、極
細線束3の内部および極細線束3同士の間に形成
された隙間が、液相作動流体の還流路となるが、
極細線束3が密閉管2の軸線方向に沿つて配置さ
れており、しかも通常、密閉管2の一端部を加熱
部としかつ他端部を冷却部とするから、還流路は
液相作動流体が本来流動すべき方向に沿つた直線
状の流路となり、そのため液相作動流体に対する
流動抵抗の小さいヒートパイプとすることができ
る。また極細線束3を構成する線条体同士の間の
隙間が極めて狭いから、実効毛細管半径が小さく
なり、すなわち高い毛細管圧力を得ることができ
る。
In the heat pipe 1 configured as described above, the gaps formed inside the ultra-fine wire bundles 3 and between the ultra-fine wire bundles 3 serve as reflux paths for the liquid-phase working fluid.
The ultra-thin wire bundle 3 is arranged along the axial direction of the sealed tube 2, and usually one end of the sealed tube 2 is used as a heating section and the other end is used as a cooling section, so that the liquid phase working fluid does not flow through the reflux path. The heat pipe becomes a linear flow path along the direction in which the flow should originally occur, and therefore a heat pipe with low flow resistance to the liquid-phase working fluid. Furthermore, since the gaps between the filament bodies constituting the ultrafine wire bundle 3 are extremely narrow, the effective capillary radius becomes small, that is, high capillary pressure can be obtained.

なお前記横糸6は通常は極細線束3と同一素材
で構成することが好ましい。また横糸6は密閉管
2の軸線方向に沿つた方向に一定の間隔を置いて
配設されている。ここで、横糸6は極細線束3に
対し交差しているから、液相作動流体の還流を阻
害するように作用する。そこで本発明者等が実験
を行なつたところ、極細線束3に対する横糸6の
体積比は0.1以下であることが好ましいことが認
められた。すなわち極細線束3に対する横糸6の
体積比を0.1としたヒートパイプと、その体積比
を1としたヒートパイプと、金属網をウイツクと
したヒートパイプとの各々について、加熱部を若
干高くした(傾斜角5°)所謂トツプヒートモード
で作動させ、その際の各ヒートパイプの各点の温
度分布を測定した。結果は第4図に示す通りであ
つて、体積比を1としたヒートパイプ(曲線A)
および金属網をウイツクとしたヒートパイプ(曲
線B)とは共に温度勾配が大きく、これに対しこ
の発明のヒートパイプ1(曲線C)は温度勾配が
極めて小さいことが認められた。すなわち、液相
作動流体が充分加熱部に還流すれば、ヒートパイ
プの内部が均温化することが知られているから、
上記の結果から極細線束3と横糸6との体積比を
0.1以下とすれば、液相作動流体の加熱部への還
流が充分生じ、ひいては熱輸送能力に優れること
が認められた。
Note that it is preferable that the weft thread 6 is usually made of the same material as the ultrafine wire bundle 3. Further, the weft threads 6 are arranged at regular intervals along the axial direction of the sealed tube 2. Here, since the weft thread 6 intersects with the ultrafine wire bundle 3, it acts to inhibit the reflux of the liquid phase working fluid. Accordingly, the present inventors conducted experiments and found that it is preferable that the volume ratio of the weft yarn 6 to the ultrafine wire bundle 3 is 0.1 or less. In other words, the heating section was made slightly higher (slanted The heat pipe was operated in the so-called top heat mode (angle 5°), and the temperature distribution at each point of each heat pipe was measured. The results are shown in Figure 4, and the heat pipe with a volume ratio of 1 (curve A)
It was found that both the heat pipe and the heat pipe using a metal mesh (curve B) had a large temperature gradient, whereas the heat pipe 1 of the present invention (curve C) had an extremely small temperature gradient. In other words, it is known that if the liquid-phase working fluid flows back to the heating section sufficiently, the temperature inside the heat pipe becomes equal.
From the above results, the volume ratio of the ultrafine wire bundle 3 and the weft thread 6 can be determined.
It was found that when the value is 0.1 or less, sufficient reflux of the liquid-phase working fluid to the heating section occurs, resulting in excellent heat transport ability.

他方、上述した構成のヒートパイプ1では、ウ
イツク4を構成する極細線束3の周方向への移動
が横糸6によつて規制されているから、極細線束
3がずれて均一性が損われることがなく、したが
つて長期に亙つて毛細管圧力を高く、かつ還流路
での圧力損失を小さく維持することができる。
On the other hand, in the heat pipe 1 having the above-described configuration, the movement of the ultra-fine wire bundle 3 constituting the wick 4 in the circumferential direction is regulated by the weft thread 6, so that the ultra-fine wire bundle 3 is not displaced and the uniformity is impaired. Therefore, it is possible to keep the capillary pressure high and the pressure loss in the reflux path small for a long period of time.

なお、前記押え具としては、螺施状の帯状材以
外に例えば金属網や金属線を環状に丸めた構成の
もの等種々のものを用いることができる。
In addition to the threaded strip material, various other materials such as a metal net or a metal wire rolled into an annular shape may be used as the presser.

発明の効果 以上の説明から明らかなようにこの発明のヒー
トパイプによれば、ウイツクが、密閉管の軸線方
向に沿う多数本の縦沿え極細線束を、その極細線
束に交差する横糸で編んで一体化した構成とさ
れ、さらにそのウイツクがその内周側に挿入した
押え具によつて前記密閉管の内周面に密着させら
れている構成であるから、極細線を用いたことに
伴い実効毛細管半径が小さくなるので、高い毛細
管圧力を得ることができ、しかもウイツクの作用
をなす縦沿え極細線束内および縦沿え極細線束同
士の間に形成された液相作動流体の流路が密閉管
の軸線方向に沿つた直線状をなしており、しかも
その縦沿え極細線束に対して交差する横糸はその
体積比が縦沿え極細線束の1/10以下とされている
ため横糸が作動流体に対しその流れを阻害するお
それは極めて少なく、そのため液相作動流体およ
び気相作動流体の圧力損失が小さく、したがつて
長距離に亘つて熱輸送を行なうことができる。ま
た極細線束は横糸によつて編まれて一体化されて
いるから、外装体をなす密閉管の内部に挿入する
作業を容易に行なうことができ、また極細線束は
横糸によつて編まれているに加えて、その横糸は
一定間隔毎に配設されており、したがつて極細線
束が振動等によつてずれることがないから、極細
線束の分布を常に均一にすることができ、その結
果長期の亙つて熱輸送能力を良好な状態に維持す
ることができる等の効果を得られる。
Effects of the Invention As is clear from the above description, according to the heat pipe of the present invention, the heat pipe is made by knitting together a large number of longitudinally extending ultra-fine wire bundles along the axial direction of the closed tube with weft threads crossing the ultra-fine wire bundles. Furthermore, since the wick is in close contact with the inner circumferential surface of the sealed tube by a presser inserted into the inner circumferential side, the effective capillary tube is reduced due to the use of ultra-thin wire. Since the radius is small, high capillary pressure can be obtained, and the flow path of the liquid-phase working fluid formed within the longitudinally running ultrafine wire bundles and between the longitudinally running ultrafine wire bundles, which acts as a wick, is aligned with the axis of the sealed tube. It has a straight line shape along the direction, and the volume ratio of the weft thread that intersects with the longitudinally running ultra-fine wire bundle is less than 1/10 of the longitudinally running ultra-fine wire bundle, so the weft thread has a flow rate with respect to the working fluid. There is extremely little risk of inhibiting the flow, and therefore the pressure loss between the liquid phase working fluid and the gas phase working fluid is small, and therefore heat can be transported over long distances. In addition, since the ultra-fine wire bundle is knitted and integrated by the weft, it can be easily inserted into the sealed tube that forms the exterior body, and the ultra-fine wire bundle is knitted by the weft. In addition, the weft threads are arranged at regular intervals, so the ultra-fine wire bundles do not shift due to vibrations, etc., so the distribution of the ultra-fine wire bundles can always be uniform, resulting in long-term lifespan. Effects such as being able to maintain heat transport ability in a good state throughout the period can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す部分断面
図、第2図は第1図の−線矢視断面図、第3
図はウイツクを展開して示す正面図、第4図は実
験結果を示す図であつてヒートパイプの軸線方向
での温度分布を示す線図である。 1……ヒートパイプ、2……密閉管、3……極
細線束、4……ウイツク、5……押え具、6……
横糸。
FIG. 1 is a partial sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view taken along the - line in FIG. 1, and FIG.
The figure is a front view showing the heat pipe expanded, and FIG. 4 is a diagram showing the experimental results, and is a diagram showing the temperature distribution in the axial direction of the heat pipe. 1...Heat pipe, 2...Sealed tube, 3...Superfine wire bundle, 4...Witch, 5...Press tool, 6...
Weft.

Claims (1)

【特許請求の範囲】[Claims] 1 密閉管の内周面に毛細管圧力を生じさせるウ
イツクを装着するとともに、その密閉管内に作動
流体を封入したヒートパイプにおいて、前記ウイ
ツクが、前記密閉管の軸線方向に沿う多数本の縦
沿え極細線束を、その極細線束に交差しかつ前記
密閉管の軸線方向に沿つた方向に一定の間隔を置
いて配置された横糸で編んだ一体化した構成とさ
れ、かつ前記縦沿え極細線束に対する横糸の体積
比が0.1以下に設定されており、さらにそのウイ
ツクがその内周側に挿入した押え具によつて前記
密閉管の内周面に密着させられていることを特徴
とする極細線からなるウイツクを有するヒートパ
イプ。
1. A heat pipe in which a wick that generates capillary pressure is attached to the inner circumferential surface of a sealed tube and a working fluid is sealed in the sealed tube, in which the wick has a large number of longitudinally extending ultra-fine wicks extending along the axial direction of the sealed tube. It has an integrated structure in which a wire bundle is knitted with weft threads that intersect the ultra-fine wire bundle and are arranged at regular intervals along the axial direction of the sealed tube, and the weft threads for the longitudinally-aligned ultra-fine wire bundle are knitted. A wick made of ultra-fine wire, characterized in that the volume ratio is set to 0.1 or less, and the wick is brought into close contact with the inner circumferential surface of the sealed tube by a presser inserted into the inner circumferential side of the wick. Heat pipe with.
JP58152668A 1983-08-22 1983-08-22 Heat pipe having wick of extremely fine filament Granted JPS6044796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58152668A JPS6044796A (en) 1983-08-22 1983-08-22 Heat pipe having wick of extremely fine filament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58152668A JPS6044796A (en) 1983-08-22 1983-08-22 Heat pipe having wick of extremely fine filament

Publications (2)

Publication Number Publication Date
JPS6044796A JPS6044796A (en) 1985-03-09
JPH0463316B2 true JPH0463316B2 (en) 1992-10-09

Family

ID=15545482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58152668A Granted JPS6044796A (en) 1983-08-22 1983-08-22 Heat pipe having wick of extremely fine filament

Country Status (1)

Country Link
JP (1) JPS6044796A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004982A1 (en) * 1985-02-21 1986-08-28 Fujikura Ltd. Heat pipe
JPS642293A (en) * 1987-06-24 1989-01-06 Ryoda Sato Vacuum polyphase, multi-electrode arc heating furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568589A (en) * 1978-11-20 1980-05-23 Tdk Corp Amorphous metalic fiber wick for heat pipe
JPS5687795A (en) * 1979-12-19 1981-07-16 Kanai Hiroyuki Heat pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568589A (en) * 1978-11-20 1980-05-23 Tdk Corp Amorphous metalic fiber wick for heat pipe
JPS5687795A (en) * 1979-12-19 1981-07-16 Kanai Hiroyuki Heat pipe

Also Published As

Publication number Publication date
JPS6044796A (en) 1985-03-09

Similar Documents

Publication Publication Date Title
FR1455991A (en) heat exchanger and its manufacturing process
US3857441A (en) Heat pipe wick restrainer
US3419069A (en) Heat transfer apparatus having flexible plastic tubular elements arranged in a braided configuration
US4003427A (en) Heat pipe fabrication
CN209445862U (en) Flexible heat pipe
JP4533224B2 (en) heat pipe
US4416408A (en) Solder removing device
TWM521170U (en) Heat pipe with fiber capillary structure
US3498369A (en) Heat pipes with prefabricated grooved capillaries and method of making
JP3140425B2 (en) Heat pipe manufacturing method
US3195627A (en) Heat exchangers
JP6049837B1 (en) Flat heat pipe
BRPI0901557A2 (en) Methods of forming, inserting and permanently gluing fries in heating ducts
WO1999056641A1 (en) Cryosurgical apparatus
JPH0463316B2 (en)
USRE32086E (en) Solder removing device
JPS61153388A (en) Heat exchange device
US4607424A (en) Thermal regenerator
JPH0330078B2 (en)
JPS58127091A (en) Long heat pipe for heat transport
KR100364048B1 (en) A heat exchanger
CA1278291C (en) Heat pipe
JP2018204941A (en) heat pipe
JP2017146024A (en) heat pipe
SU1108323A1 (en) Heat pipe