JPH0463238A - High ductility ti-al intermetallic compound - Google Patents

High ductility ti-al intermetallic compound

Info

Publication number
JPH0463238A
JPH0463238A JP17504190A JP17504190A JPH0463238A JP H0463238 A JPH0463238 A JP H0463238A JP 17504190 A JP17504190 A JP 17504190A JP 17504190 A JP17504190 A JP 17504190A JP H0463238 A JPH0463238 A JP H0463238A
Authority
JP
Japan
Prior art keywords
atomic
intermetallic compound
tial
less
based intermetallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17504190A
Other languages
Japanese (ja)
Inventor
Sakae Tsunashima
綱島 栄
Yoshinari Fujiwara
良也 藤原
Toshio Tokune
敏生 徳根
Kazuhiko Yagi
一彦 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP17504190A priority Critical patent/JPH0463238A/en
Publication of JPH0463238A publication Critical patent/JPH0463238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a high ductility Ti-Al intermetallic compound improved in cold ductility without damaging its high temp. properties by adding a specified amt. of Pb to a Ti-Al intermetallic compound having a specified compsn. CONSTITUTION:The components of a lightweight Ti-Al intermetallic compound contg. 35 to 60 atomic % Al and the balance Ti and excellent in heat resistance are mixed with 0.05 to 1.5% Pb. Furthermore, Pb, the components to be added can be substituted by either 0.05 to 3% Sn or Ge, or <=3.5% Pb+Sn or <=3.5% Pb+Ge+Sn. By adding the above third components such as Pb by a specified amt., the cold ductility of the above Ti-Al intermetallic compound can be improved without damaging its high temp. properties.

Description

【発明の詳細な説明】 Al発明の目的 (1)産業上の利用分野 本発明は高延性TiA/!系金属間他金属間化合物。[Detailed description of the invention] Purpose of Al invention (1) Industrial application fields The present invention provides high ductility TiA/! Intermetallic and other intermetallic compounds.

(2)従来の技術 TiAl!系金属間他金属間化合物、且つ優れた耐熱性
を有するためエンジン部品等の構造材料として着目され
ている。
(2) Conventional technology TiAl! Because it is an intermetallic compound and has excellent heat resistance, it is attracting attention as a structural material for engine parts.

(3)発明が解決しようとする課題 しかしながらTiA/!系金属間他金属間化合物°C程
度に延性−脆性遷移温度を有するため常温延性が極めて
低い、といった問題がある。
(3) Problems to be solved by the invention However, TiA/! Since the intermetallic compound has a ductile-brittle transition temperature of about °C, there is a problem that the room temperature ductility is extremely low.

そこで、第3元素を添加することによってTiAl系金
属間化合物の常温延性の向上を図ることが試みられてい
る(例えば、特公昭62−215号公報参照)。
Therefore, attempts have been made to improve the room temperature ductility of TiAl-based intermetallic compounds by adding a third element (see, for example, Japanese Patent Publication No. 62-215).

本発明は前記従来のものとは異なった見地、即ち金属組
織および第3元素添加の観点より開発されたものであっ
て、その金属組織を改善すると共に第3元素の添加を行
うことによって常温延性を向上させたTiA/!系金属
間他金属間化合物ることを目的とする。
The present invention was developed from a different perspective from the conventional ones, namely from the viewpoint of the metal structure and the addition of a third element. TiA/! The aim is to intermetallic and other intermetallic compounds.

B1発明の構成 (1)課題を解決するための手段 本発明に係る高延性TiAjl!系金属間化合金属間化
合物子%以上、60原子%以下のAlを含有し、残部が
TiであるTiAj2系金属化合金属化合物組成分05
原子%以上、1.5原子%以下のPbを添加したことを
特徴とする。
B1 Structure of the invention (1) Means for solving the problem Highly ductile TiAjl according to the present invention! TiAj2-based metal compound containing Al in an amount of % to 60 atomic %, with the remainder being Ti.Composition 05
It is characterized by adding Pb in an amount of at least 1.5 at %.

この場合、第3元素であるPbは、0.05原子%以上
、3原子%以下のSnおよびGeの一方、合計量で3.
5原子%以下のPbおよびSn、または合計量で3.5
原子%以下のPb、GeおよびSnによって代替される
In this case, the third element Pb is one of Sn and Ge in an amount of 0.05 atomic % or more and 3 atomic % or less, and the total amount is 3.
Pb and Sn up to 5 atomic % or 3.5 in total amount
Substituted by atomic percent or less of Pb, Ge, and Sn.

(2)作 用 前記のようにAl量を特定されたTiA/!系金属間他
金属間化合物金属組織は、T i A γ相およびTi
xAl相を交互に析出させた層状組織、またはTiAl
fi相のみからなる単相部と、TiAl相およびTi、
Affi相を交互に析出させた層状組織部とより構成さ
れる。
(2) Effect TiA/! with the Al amount specified as described above! The metal structure of other intermetallic compounds is T i A γ phase and Ti
Layered structure in which xAl phases are alternately precipitated, or TiAl
A single phase part consisting only of fi phase, TiAl phase and Ti,
It is composed of a layered structure in which Affi phases are alternately precipitated.

前者の金属組織において、TiA/!相はγ相であって
常温延性が低いが、第2相であるTi5A!相(α2相
)をTiAl相と交互に層状に析出させると、T i 
A 12系金属間化合物の常温延性が向上する。
In the former metal structure, TiA/! The phase is γ phase and has low room temperature ductility, but the second phase is Ti5A! When the phase (α2 phase) is precipitated in layers alternately with the TiAl phase, Ti
A: The room temperature ductility of the 12-based intermetallic compound is improved.

また後者の金属組織において、常温延性の低いTiAl
相よりなる単相部に第2相である層状組織部を混在させ
ると、その層状組織部の存在に起因してT i A j
22系金属化合物の常温延性が向上する。
In addition, in the latter metal structure, TiAl, which has low room temperature ductility,
When a layered structure part which is a second phase is mixed with a single phase part made up of phases, T i A j due to the presence of the layered structure part
Room-temperature ductility of the 22-series metal compound is improved.

このような金属組織に、前記のような第3元素を特定量
添加すると、TiAlfi系金属間化合物の常温延性が
さらに向上する。この種手段を採用してもTiAj2系
金属間他金属間化合物性を損うことはない。
When a specific amount of the third element described above is added to such a metal structure, the room temperature ductility of the TiAlfi-based intermetallic compound is further improved. Even if this kind of means is employed, the properties of the TiAj2-based intermetallic and other intermetallic compounds will not be impaired.

た!し、Pbの含有量、SnおよびGeの一方の含有量
、PbおよびSnの合計含有量、ならびにPb、Geお
よびSnの合計含有量が前記規定量を逸脱すると、Ti
Al系金属間化合物の常温延性が低下する。
Ta! However, if the content of Pb, the content of one of Sn and Ge, the total content of Pb and Sn, and the total content of Pb, Ge, and Sn deviate from the specified amounts, Ti
Room temperature ductility of the Al-based intermetallic compound decreases.

(3)実施例 第1図は、T i A l系金属間化合物の金属組織の
一例を模型的に示したもので、この金属組織は、TiA
l相TおよびTl s A γ相α2を交互に析出させ
た層状組織(ラメラ−組織)、図示例では層状組織部り
の集合体よりなる。このような金属組織を得るためには
、組成上、Affi含有量を35原子%≦Aj2≦52
原子%に設定することが必要である。
(3) Example Figure 1 schematically shows an example of the metal structure of a TiAl-based intermetallic compound.
A layered structure (lamellar structure) in which l-phase T and Tl s A γ-phase α2 are alternately precipitated, and in the illustrated example, it consists of an aggregate of layered structure parts. In order to obtain such a metal structure, the Affi content must be adjusted to 35 atomic %≦Aj2≦52 in terms of composition.
It is necessary to set it to atomic%.

この場合、Ti、Aj!相α2の体積分率α2(Vf)
を0.05%以上、80%以下、好ましくは5%以上、
60%以下に設定することにより、TiAl系金属間化
合物の常温延性を向上させることができる。また常温延
性向上の観点より層状組織部りの平均粒径は、1μm以
上、1000μm以下であることが望ましい。
In this case, Ti, Aj! Volume fraction α2 (Vf) of phase α2
0.05% or more and 80% or less, preferably 5% or more,
By setting it to 60% or less, the room temperature ductility of the TiAl-based intermetallic compound can be improved. Further, from the viewpoint of improving cold ductility, the average grain size of the layered structure portion is preferably 1 μm or more and 1000 μm or less.

第2図は、TiAl系金属間化合物。(3)織の他例を
模型的に示したもので、この金属組織は、TiAj!相
のみからなる単相部Srと、T i A 1相Tおよび
Ti、Affi相α2相変2に析出させた層状組織部り
とより構成される。このような金属組織を得るためには
、組成上、A!含有量を、45原子%<、12≦60原
子%に設定することが必要である。
Figure 2 shows a TiAl-based intermetallic compound. (3) This is a model showing another example of weaving, and this metal structure is TiAj! It is composed of a single phase part Sr consisting only of phases, and a layered structure part precipitated into a Ti, Affi phase α2 phase T and Ti, and an Affi phase α2 phase change 2. In order to obtain such a metal structure, A! It is necessary to set the content to 45 atomic %<, 12≦60 atomic %.

この場合、層状組織部りの体積分率L(Vf)を15%
以上、好ましくは35%以上に設定することによりTi
A/!系金属間他金属間化合物性を向上させることがで
きる。また常温延性向上の観点より層状組織部りの平均
粒径は、1μm以上、1000μm以下であることが望
ましい。
In this case, the volume fraction L (Vf) of the layered structure is 15%.
By setting the above, preferably 35% or more, Ti
A/! The properties of intermetallic and other intermetallic compounds can be improved. Further, from the viewpoint of improving cold ductility, the average grain size of the layered structure portion is preferably 1 μm or more and 1000 μm or less.

本発明においては、前記のような金属Mi織を現出する
35原子%以上、60原子%以下のA2を含有するTi
Aj!iAj!化合物組成分に、0.05原子%以上、
1.5原子%以下のPb、0.05原子%以上、3原子
%以下のSnおよびGeの一方、合計量で3.5原子%
以下のPbおよびSn、または合計量で3.5原子%以
下のPb、GeおよびSnを添加するものである。
In the present invention, Ti containing A2 of 35 atomic % or more and 60 atomic % or less is used to produce the metallic Mi weave as described above.
Aj! iAj! In the compound composition, 0.05 atom% or more,
1.5 at% or less of Pb, 0.05 at% or more and 3 at% or less of Sn and Ge, the total amount of which is 3.5 at%
The following Pb and Sn are added, or the total amount of Pb, Ge and Sn is 3.5 atomic % or less.

TiAl系金属間化合物の製造に当っては、原材料をア
ルゴンガス雰囲気下にてボタンアーク溶解を行うことに
よりインゴットを溶製し、次いでそのインゴットに、ア
ルゴンガス雰囲気下にて1000°C程度で所定時間の
加熱、それに次ぐ炉冷、または空冷よりなる熱処理を施
す、といった方法が採用される。この場合、金属組織を
第1図のものにするか、または第2図のものにするかに
よって、熱処理条件が異なる。
In producing TiAl-based intermetallic compounds, raw materials are melted into an ingot by button arc melting in an argon gas atmosphere, and then the ingot is melted at a predetermined temperature of about 1000°C in an argon gas atmosphere. A heat treatment method consisting of heating for a period of time followed by furnace cooling or air cooling is employed. In this case, the heat treatment conditions differ depending on whether the metal structure is the one shown in FIG. 1 or the one shown in FIG. 2.

第3図は47原子%A!のTiAl!、系金属間化合物
におけるPb添加量と常温伸びの関係を示す。
Figure 3 shows 47 atomic%A! TiAl! , which shows the relationship between the amount of Pb added and elongation at room temperature in intermetallic compounds.

このTiAlfi系金属間化合物は第1図の金属組織を
有する。引張り伸び試験片の平行部の寸法は縦2閣、横
3■、長さ15■であり、歪速度は0.05■in−’
に設定された。この試験条件は以下に述べる他例におい
ても同じである。
This TiAlfi-based intermetallic compound has the metal structure shown in FIG. The dimensions of the parallel part of the tensile elongation test piece were 2 cm vertically, 3 cm horizontally, and 15 cm long, and the strain rate was 0.05 cm in-'
was set to . These test conditions are the same in other examples described below.

第3図から明らかなように、前記金属組織を有し、また
Pb添加量を0.05原子%以上、1.5原子%以下に
設定することによって、TiAl系金属間化合物。(3
)1.2%以上の常温伸びを確保することができる。
As is clear from FIG. 3, the TiAl-based intermetallic compound has the above-mentioned metal structure and the amount of Pb added is set to 0.05 atomic % or more and 1.5 atomic % or less. (3
) A room temperature elongation of 1.2% or more can be secured.

第4図は47原子%AlのTiAl系金属間化合物にお
けるSn添加量と常温伸びの関係を、また第5図は同化
合物におけるGe添加量と常温伸びの関係を示す。これ
らTiA/!系金属間他金属間化合物の金属組織を有す
る。
FIG. 4 shows the relationship between the amount of Sn added and the elongation at room temperature in a TiAl-based intermetallic compound containing 47 atom % Al, and FIG. 5 shows the relationship between the amount of Ge added and the elongation at room temperature in the same compound. These TiA/! It has a metal structure of intermetallic and other intermetallic compounds.

第4.第5図から明らかなように、前記金属組織を有し
、またSnまたはGe添加量を0.05原子%以上、3
原子%以下に設定することによって、TiAj2系金属
間化合物において1.2%以上の常温伸びを確保するこ
とができる。
4th. As is clear from FIG.
By setting the content to atomic % or less, room temperature elongation of 1.2% or more can be ensured in the TiAj2-based intermetallic compound.

第6回は47原子%AfのTiA/!系金属間他金属間
化合物、Sn添加量をそれぞれ1,2.3原子%に設定
し、これにPbを添加した場合のPb添加量と常温伸び
の関係を示す。これらTiAl系金属間化合物は第1図
の金属組織を有する。
The 6th episode is TiA/! with 47 atomic% Af! The relationship between the amount of Pb added and elongation at room temperature when Pb is added to the system intermetallic compound and Sn added is set to 1 and 2.3 atomic %, respectively. These TiAl-based intermetallic compounds have the metal structure shown in FIG.

図中、線X、が1原子%Snに、線xtが2原子%Sn
に、線X、が3原子%Snにそれぞれ該当する。
In the figure, line X represents 1 atomic% Sn, and line xt represents 2 atomic% Sn.
, the line X corresponds to 3 atomic % Sn.

第6図線X1〜X3から明らかなように、前記金属組織
を有し、またPbおよびSnを、それらの合計量で3.
5原子%以下添加することによってTiAl2系金属間
化合物において、1.2%以上の常温伸びを確保するこ
とができる。この場合、PbおよびSnの合計添加量の
下限値は、PbおよびSnを単独で用いたときの下限値
の和、即ち、0.1原子%である。
As is clear from the lines X1 to X3 in FIG. 6, it has the above-mentioned metal structure and also contains Pb and Sn in a total amount of 3.
By adding 5 atomic % or less, room temperature elongation of 1.2% or more can be ensured in the TiAl2 intermetallic compound. In this case, the lower limit of the total addition amount of Pb and Sn is the sum of the lower limits when Pb and Sn are used alone, that is, 0.1 atomic %.

第7図は47原子%AffのTiAl!系金属間他金属
間化合物、SnおよびGeの合計添加量を一定にし、こ
れにPbを添加した場合のPb添加量と常温伸びの関係
を示す。これらTiAl系金属間化合物は第1図の金属
組織を有する。図中、線y1が1原子%Snおよび1原
子%Ge併用の場合に、線y2が1原子%Snおよび2
原子%Ge併用の場合に、線y、が2原子%Snおよび
1原子%Ge併用の場合に、線y3が2原子%Snおよ
び2原子%Ge併用の場合にそれぞれ該当する。
Figure 7 shows TiAl with 47 atomic% Aff! The relationship between the amount of Pb added and elongation at room temperature is shown when the total amount of other intermetallic compounds, Sn, and Ge is kept constant and Pb is added thereto. These TiAl-based intermetallic compounds have the metal structure shown in FIG. In the figure, when line y1 is a combination of 1 atom% Sn and 1 atom% Ge, line y2 is a combination of 1 atom% Sn and 2 atom%
In the case of a combination of atomic % Ge, line y corresponds to the case of a combination of 2 atomic % Sn and 1 atomic % Ge, and line y3 corresponds to the case of a combination of 2 atomic % Sn and 2 atomic % Ge.

第7図から明らかなように、前記金属組織を有し、また
Pb、C;eおよびSnを、それらの合計量で3.5原
子%以下添加することによって、TiAl系金属間化合
物において1.2%以上の常温伸びを確保することがで
きる。この場合、Pb、snおよびGeの合計添加量の
下限値は、Pb、snおよびGeを単独で用いたときの
下限値の和、即ち、0.15原子%である。
As is clear from FIG. 7, by having the above-mentioned metal structure and adding Pb, C; e, and Sn in a total amount of 3.5 atomic % or less, a TiAl-based intermetallic compound with 1. Room temperature elongation of 2% or more can be secured. In this case, the lower limit of the total addition amount of Pb, sn, and Ge is the sum of the lower limits when Pb, sn, and Ge are used alone, that is, 0.15 atomic %.

C0発明の効果 本発明によれば、Af量および第3元素量を前記のよう
に特定することによって、高温特性を損うことなく、優
れた常温延性を有するTiAj2系金属間化合物を提供
することができる。
Effects of the C0 Invention According to the present invention, by specifying the amount of Af and the amount of the third element as described above, it is possible to provide a TiAj two-based intermetallic compound that has excellent room temperature ductility without impairing high temperature properties. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は金属組織の一例の説明図、第2図は金属組織の
他側の説明図、第3〜第7図はTiAl系金属間化合物
の引張伸び試験結果を示すグラフである。 α2・・・Tj3Aj2相、T・・・TiAj2相、L
・・・層状組織部、sr・・・単相部 第1 図
FIG. 1 is an explanatory diagram of an example of a metal structure, FIG. 2 is an explanatory diagram of the other side of the metal structure, and FIGS. 3 to 7 are graphs showing the results of a tensile elongation test of a TiAl-based intermetallic compound. α2...Tj3Aj 2-phase, T...TiAj 2-phase, L
...Layered structure part, sr...Single phase part Fig. 1

Claims (4)

【特許請求の範囲】[Claims] (1)35原子%以上、60原子%以下のAlを含有し
、残部がTiであるTiAl系金属間化合物組成分に、
0.05原子%以上、1.5原子%以下のPbを添加し
たことを特徴とする高延性TiAl系金属間化合物。
(1) A TiAl-based intermetallic compound composition containing 35 atomic % or more and 60 atomic % or less Al, with the remainder being Ti,
A highly ductile TiAl-based intermetallic compound characterized in that Pb is added in an amount of 0.05 atomic % or more and 1.5 atomic % or less.
(2)35原子%以上、60原子%以下のAlを含有し
、残部がTiであるTiAl系金属間化合物組成分に、
SnおよびGeの一方を0.05原子%以上、3原子%
以下添加したことを特徴とする高延性TiAl系金属間
化合物。
(2) A TiAl-based intermetallic compound composition containing 35 atomic % or more and 60 atomic % or less Al, with the remainder being Ti,
One of Sn and Ge is 0.05 atomic % or more, 3 atomic %
A highly ductile TiAl-based intermetallic compound characterized by the addition of the following:
(3)35原子%以上、60原子%以下のAlを含有し
、残部がTiであるTiAl系金属間化合物組成分に、
PbおよびSnを、それらの合計量で3.5原子%以下
添加したことを特徴とする高延性TiAl系金属間化合
物。
(3) A TiAl-based intermetallic compound composition containing 35 atomic % or more and 60 atomic % or less Al, with the remainder being Ti,
A highly ductile TiAl-based intermetallic compound, characterized in that Pb and Sn are added in a total amount of 3.5 at % or less.
(4)35原子%以上、60原子%以下のAlを含有し
、残部がTiであるTiAl系金属間化合物組成分に、
Pb、GeおよびSnを、それらの合計量で3.5原子
%以下添加したことを特徴とする高延性TiAl系金属
間化合物。
(4) A TiAl-based intermetallic compound composition containing 35 atomic % or more and 60 atomic % or less Al, with the remainder being Ti,
A highly ductile TiAl-based intermetallic compound characterized by adding Pb, Ge, and Sn in a total amount of 3.5 atomic % or less.
JP17504190A 1990-07-02 1990-07-02 High ductility ti-al intermetallic compound Pending JPH0463238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17504190A JPH0463238A (en) 1990-07-02 1990-07-02 High ductility ti-al intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17504190A JPH0463238A (en) 1990-07-02 1990-07-02 High ductility ti-al intermetallic compound

Publications (1)

Publication Number Publication Date
JPH0463238A true JPH0463238A (en) 1992-02-28

Family

ID=15989185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17504190A Pending JPH0463238A (en) 1990-07-02 1990-07-02 High ductility ti-al intermetallic compound

Country Status (1)

Country Link
JP (1) JPH0463238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107130139A (en) * 2017-06-15 2017-09-05 北京科技大学 A kind of method of the intensified-sintered Powder Metallurgy TiAl based Alloys of addition Sn

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107130139A (en) * 2017-06-15 2017-09-05 北京科技大学 A kind of method of the intensified-sintered Powder Metallurgy TiAl based Alloys of addition Sn

Similar Documents

Publication Publication Date Title
JP2679109B2 (en) Intermetallic compound TiA-based light-weight heat-resistant alloy
JP4327952B2 (en) Al alloy with excellent vibration absorption performance
JPH0463238A (en) High ductility ti-al intermetallic compound
JPH06279905A (en) Superplastic magnesium alloy
JP2003293108A (en) Hot dip plated steel having excellent surface smoothness
JPH0463237A (en) High ductility ti-al intermetallic compound
JP3626507B2 (en) High strength and high ductility TiAl intermetallic compound
JPH0432535A (en) High strength and high rigidity magnesium-lithium alloy
JPH01272743A (en) High tensile aluminum alloy having excellent heat resistance
JPH04268037A (en) Ni3(si,ti)-base heat resisting alloy excellent in creep resistance
JP3242493B2 (en) Heat resistant magnesium alloy
JPH01290738A (en) Aluminum alloy having excellent heat resistance
JPS6059035A (en) Shape memory cu-zn-al alloy
JPH01242743A (en) Heat-resistant titanium alloy
JPH04285138A (en) Ti-al base alloy excellent in oxidation resistance
JP2903102B2 (en) High temperature high strength TiAl based alloy
JPH06145933A (en) Tial intermetallic compound and its production
JPH0565561A (en) Production of tial intermetallic compound having high creep strength
JPS6311643A (en) High strength aluminum alloy having superior heat resistance
JPH0551678A (en) Tial intermetallic compound having high toughness and ductility
JP2536583B2 (en) High strength titanium alloy with excellent cold workability
JPH0559469A (en) High toughness and high ductility tial intermetallic compound
JPH0452245A (en) High strength aluminum alloy excellent in heat resistance
JPH0466642A (en) High strength and high toughness ti-al intermetallic compound
JPH0565576A (en) High toughness and high ductility tial intermetallic compound