JPH01242743A - Heat-resistant titanium alloy - Google Patents

Heat-resistant titanium alloy

Info

Publication number
JPH01242743A
JPH01242743A JP6861588A JP6861588A JPH01242743A JP H01242743 A JPH01242743 A JP H01242743A JP 6861588 A JP6861588 A JP 6861588A JP 6861588 A JP6861588 A JP 6861588A JP H01242743 A JPH01242743 A JP H01242743A
Authority
JP
Japan
Prior art keywords
strength
content
alloy
creep
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6861588A
Other languages
Japanese (ja)
Other versions
JPH0621305B2 (en
Inventor
Atsushi Ogawa
厚 小川
Shinji Mitao
三田尾 真司
Yoji Kosaka
洋司 高坂
Kuninori Minagawa
邦典 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP63068615A priority Critical patent/JPH0621305B2/en
Publication of JPH01242743A publication Critical patent/JPH01242743A/en
Publication of JPH0621305B2 publication Critical patent/JPH0621305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title Ti alloy particularly having excellent high temp. strength and creep strength by incorporating prescribed amounts of Al, Sn, Zr, Mo, Si, C and O to the alloy and specifying the content of Al+Sn/3+Zr/6. CONSTITUTION:The heat-resistant Ti alloy consisting of, by weight, 5.5-6.5% Al, 1.5-3.0% Sn, 0.7-5.0% Zr, 0.7-3.0% Mo, 0.04-0.15% Si, 0.04-0.30% C, <=0.16% O and the balance constituted of Ti with inevitable impurities, and satisfying the content of 6.5-8.0wt.% Al+Sn/3+Zr/6 is prepd. In the Ti alloy, high tensile strength and creep strength can be obtd. in the wide temp. range from room temp. to high temp. by regulating the C content to the above range as shown by Figure. As the result, owing to its excellent specific strength and high temp. characteristics, the alloy can widely be used in the field of various industry including the material for aviation and space.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、耐熱チタン合金、特に、高温強度およびク
リープ強度に優れた耐熱チタン合金に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat-resistant titanium alloy, particularly a heat-resistant titanium alloy that has excellent high-temperature strength and creep strength.

〔従来の技術〕[Conventional technology]

チタン合金は軽くて強靭な機械的性質を有し。 Titanium alloys are lightweight and have strong mechanical properties.

特に、450℃程度までの温度域において高い比強度(
強度/密度)を示すことから、航空機用ジェットエンジ
ン材料として近年盛んに用いられている。チタン合金の
中で、最も一般に用いられているのはTi −6At−
4V合金であるが、この合金の使用可能温度範囲はせい
ぜい300℃程度までである。この合金の耐熱性を高め
た合金として、Ti−62428合金がU8パテント3
,833,363に開示されている。
In particular, high specific strength (
In recent years, it has been widely used as an aircraft jet engine material because of its high strength/density. Among titanium alloys, the most commonly used is Ti-6At-
Although it is a 4V alloy, the usable temperature range of this alloy is at most about 300°C. As an alloy with improved heat resistance of this alloy, Ti-62428 alloy is U8 Patent 3
, 833, 363.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ジェットエンジン用チタン合金に要求される特性には、
高温強度、耐クリープ特性、耐酸化性などがあり、また
製造上、優れた鍛造性および溶接性も求められる。Ti
 −62428合金は、Siを添加することにより生じ
るコットレル効果により転位運動を抑え、高温強度やク
リープ強度を上昇させている。しかしながら、Siは高
温強度の小さいβ相安定化元素であるため、その効果は
550℃程度の温度域までであった。
The properties required for titanium alloys for jet engines include:
It has high temperature strength, creep resistance, oxidation resistance, etc., and also requires excellent forgeability and weldability in manufacturing. Ti
-62428 alloy suppresses dislocation motion due to the Cottrell effect caused by adding Si, and increases high temperature strength and creep strength. However, since Si is a β-phase stabilizing element with low high-temperature strength, its effect was limited up to a temperature range of about 550°C.

そのため、これらのチタン合金も、航空機の高速度化を
目的とした高効率ジェットエンジンの開発の点からは十
分とは言えず、更に高温特性に優れた耐熱チタン合金の
開発が望まれている。
Therefore, these titanium alloys are not sufficient from the point of view of developing high-efficiency jet engines aimed at increasing the speed of aircraft, and there is a desire to develop heat-resistant titanium alloys with even better high-temperature properties.

そこで、この発明の目的は、上記従来の合金よりも高温
強度およびクリープ強度に優れた耐熱チタン合金を提供
することにある。
Therefore, an object of the present invention is to provide a heat-resistant titanium alloy that has superior high-temperature strength and creep strength to the conventional alloys.

〔課題を解決するだめの手段〕[Failure to solve the problem]

この発明は、A1:5.sから6.5%、Sn:1.5
から3.0 %、 Zr : 0.7から5.0 ’%
、 Mo : 0.7から3.0%、sl:o、o4か
ら0.15%、C:0.04から0.30%、O:0.
16%以下(以上重量%)、残り:T1および不可避不
純物からなり、且つ、Ae−二十一と−:6.5から8
.0重量%を満足することに特徴を有するものである。
This invention has A1:5. 6.5% from s, Sn: 1.5
to 3.0%, Zr: 0.7 to 5.0'%
, Mo: 0.7 to 3.0%, sl: o, 0.15% from o4, C: 0.04 to 0.30%, O: 0.
16% or less (weight% or more), remainder: consisting of T1 and inevitable impurities, and Ae-21 and -: 6.5 to 8
.. It is characterized by satisfying 0% by weight.

次に、この発明において成分組成を上記範囲に限定した
理由について説明する。
Next, the reason why the component composition is limited to the above range in this invention will be explained.

Ag : Alは、α+βの二相組織を得るためのα相
安定化元素として添加され、且つ強度上昇に寄与する。
Ag: Al is added as an α-phase stabilizing element to obtain an α+β two-phase structure, and also contributes to increasing strength.

しかし、含有量が5.5%未満では、目的とする引張強
さ(特に高温強度)およびクリープ強度が得られず、一
方、含有量が6.5%を超えると、T1との間に脆化相
である、α2相(Ti3At )が析出して、機械的性
質(特に延性)を劣化させる。従って、この発明におい
ては、Mの添加量を5.5から6.5重量%の範囲に限
定した。
However, if the content is less than 5.5%, the desired tensile strength (especially high-temperature strength) and creep strength cannot be obtained, while if the content exceeds 6.5%, the relationship between T1 and T1 is brittle. α2 phase (Ti3At), which is a chemical phase, precipitates and deteriorates mechanical properties (especially ductility). Therefore, in this invention, the amount of M added is limited to a range of 5.5 to 6.5% by weight.

Sn: Snは、中性元素としてα相およびβ相の両方
に固溶し、強度上昇に寄与する。しかし、含有量が1.
5%未満では、目的とする強度が得られず、一方、含有
量が3.0%を超えると、密度が大きくなり、高比強度
であるというチタン合金の長所が損なわれ、しかも、 
Tiとの間に脆化相であるα2 相(qtsu)が析出
して、機械的性質(特に延性)を劣化させる。従つて、
この発明においては、Soの添加量を1.5から3.0
重量%の範囲内に限定した。
Sn: Sn is a neutral element that dissolves in solid solution in both the α phase and the β phase, and contributes to an increase in strength. However, the content is 1.
If the content is less than 5%, the desired strength cannot be obtained, while if the content exceeds 3.0%, the density increases and the advantage of titanium alloys, which is high specific strength, is lost.
An α2 phase (qtsu), which is a brittle phase, precipitates between Ti and deteriorates mechanical properties (especially ductility). Therefore,
In this invention, the amount of So added is 1.5 to 3.0.
It was limited within the range of % by weight.

Zr: Zrは、中性元素としてα相およびβ相の両方
に固溶し1強度上昇に寄与する。しかし、含有量が0.
7%未満では、目的とする強度が得られず、一方、含有
量が5.0%を超えると、クリープ強度の小さいβ相の
体積率が大きくな9、クリープ強度が低下する。従って
、この発明においては、Zrの添加量を0.7 から5
.0重量%の範囲内に限定した。
Zr: Zr is a neutral element that is dissolved in solid solution in both the α phase and the β phase and contributes to an increase in strength. However, the content is 0.
If the content is less than 7%, the desired strength cannot be obtained, while if the content exceeds 5.0%, the volume fraction of the β phase, which has low creep strength, becomes large9, resulting in a decrease in creep strength. Therefore, in this invention, the amount of Zr added is from 0.7 to 5.
.. It was limited to 0% by weight.

Mo:Moは、β相安定化元素として添加され、強度上
昇、特に室温強度の上昇に寄与する。しかし、含有量が
0.7%未満では、目的とする強度が得られず、一方、
含有量が3.0チを超えると、Zrの添加の場合と同様
、高温強度やクリープ強度を低下させる。従って、この
発明においては ’kAoの添加量を0.TIから3.
0重量−の範囲内に限定した。
Mo: Mo is added as a β-phase stabilizing element and contributes to increasing strength, particularly room temperature strength. However, if the content is less than 0.7%, the desired strength cannot be obtained;
If the content exceeds 3.0 g, the high temperature strength and creep strength will be reduced as in the case of adding Zr. Therefore, in this invention, the amount of 'kAo added is 0. 3 from TI.
It was limited to a range of 0 weight.

Si: Siは、高温時の転位運動をコットレル効果に
より抑え、高温強度やクリープ強度の上昇に寄与する。
Si: Si suppresses dislocation motion at high temperatures through the Cottrell effect, contributing to increases in high temperature strength and creep strength.

しかし、含有量が0.04%未満では、目的とする強度
が得られず、一方、含有量が0.15%を超えると、T
1と81との化合物(Ti5S13等)を形成し、延性
等の機械的性質を劣化させ、しかも、550℃以上の温
度域において高温強度やクリープ強度の低下をもたらす
However, if the content is less than 0.04%, the desired strength cannot be obtained, while if the content exceeds 0.15%, the T
1 and 81 (such as Ti5S13), which deteriorates mechanical properties such as ductility, and also causes a decrease in high temperature strength and creep strength in a temperature range of 550° C. or higher.

従って、この発明においては、Siの添加量を0.04
から0.15重量%の範囲内に限定した。
Therefore, in this invention, the amount of Si added is 0.04
The content was limited to 0.15% by weight.

C:Cは、主にα相に固溶し、室温の強度上昇のみなら
ず、高温強度とクリープ強度の上昇に寄与する。しかし
ながら、含有量が0.04%未満では、目的とする強度
が得られず、一方、含有量がo、3o%を超えるとチタ
ンの炭化物が析出して、延性を損なう。従って、この発
明においては、Cの添加量を0.04から0.30重量
%の範囲内に限定した。
C: C is mainly dissolved in the α phase and contributes not only to an increase in strength at room temperature but also to an increase in high temperature strength and creep strength. However, if the content is less than 0.04%, the desired strength cannot be obtained, while if the content exceeds 30%, titanium carbide will precipitate, impairing ductility. Therefore, in this invention, the amount of C added is limited to within the range of 0.04 to 0.30% by weight.

0:0は、主にα相に固溶し、室温の強度上昇のみなら
ず、高温強度とクリープ強度の上昇に寄与する。しかし
ながら、含有量が0.16%を超えると延性が低下する
。従って、この発明においては、0の添加量を0.16
重量%以下に限定した。
0:0 is mainly dissolved in the α phase and contributes not only to an increase in strength at room temperature but also to an increase in high temperature strength and creep strength. However, when the content exceeds 0.16%, ductility decreases. Therefore, in this invention, the amount of 0 added is 0.16
It was limited to % by weight or less.

M −1−−4−−、6,5から8.0重量%に限定し
たのは、次の理由による。即ち、これはチタン合金のア
ルミ当量と呼ばれ、この値が8%を超えると。
The reason why M -1--4-- was limited to 6.5 to 8.0% by weight is as follows. That is, this is called the aluminum equivalent of titanium alloy, and if this value exceeds 8%.

Ti3Al等の金属間化合物が生成し、延性を損なうの
で好ましくない。また、この値が6.5%未満では、室
温強度、高温強度およびクリープ強度が小さくなる。従
って、この発明においては、上記値を6.5から8.0
重量%の範囲内に限定した。
This is not preferable because intermetallic compounds such as Ti3Al are generated and impair ductility. Furthermore, if this value is less than 6.5%, the room temperature strength, high temperature strength, and creep strength will decrease. Therefore, in this invention, the above value is set to 6.5 to 8.0.
It was limited within the range of % by weight.

〔実施例〕〔Example〕

アルゴンガス雰囲気アーク溶解炉にてインゴットを溶製
した。これを、熱間鍛造および熱間圧延を行い、厚さマ
ーの板材に加工した。β晶の粗大化を防ぐため、および
、等軸α晶組織を得るために、熱間圧延時の加熱を、β
変態点を30℃下回る温度で実施した。これらの材料を
、β変態点を15〜30℃下回る温度にて1時間焼鈍し
、この後、空冷し、さらに、600℃にて8時間の時効
処理を行い、供試材とした。本発明チタン合金の成分組
成および室温引張試験の結果を第1表に示し、高温引張
試験およびクリープ試験の結果を第3表に示す。また、
従来チタン合金、比較チタン合金の成分組成および室温
引張試験の結果を第2表に示し、高温引張試験およびク
リープ試験の結果を第4表に示す。ただし、比較チタン
合金16゜17および22は、室温引張シ試験時の伸び
が10チ未満と小さく、実用に耐えないため、高温引張
り試験及びクリープ試験を実施しなかった。第3表およ
び第4表に示す高温引張試験は、600℃においておこ
なったものである。また、同表中の最小クリープ速度(
%/h、r )は、温度510℃、応力z4.6Kgt
/−において行ったクリープ試験の時間−伸び曲線から
求めたものである。高温引張試験およびクリープ試験は
、大気中で実施した。
An ingot was melted in an argon gas atmosphere arc melting furnace. This was hot-forged and hot-rolled to form a plate material with a thickness of 1. In order to prevent the coarsening of β crystals and to obtain an equiaxed α crystal structure, heating during hot rolling is
It was carried out at a temperature 30°C below the transformation point. These materials were annealed for 1 hour at a temperature 15 to 30°C below the β transformation point, then air cooled, and then aged at 600°C for 8 hours to obtain test materials. The composition of the titanium alloy of the present invention and the results of the room temperature tensile test are shown in Table 1, and the results of the high temperature tensile test and creep test are shown in Table 3. Also,
The compositions and room temperature tensile test results of the conventional titanium alloy and comparative titanium alloy are shown in Table 2, and the results of the high temperature tensile test and creep test are shown in Table 4. However, the comparative titanium alloys 16°17 and 22 had a small elongation of less than 10 inches during the room temperature tensile test, and were not suitable for practical use, so high temperature tensile tests and creep tests were not conducted. The high temperature tensile tests shown in Tables 3 and 4 were conducted at 600°C. In addition, the minimum creep rate (
%/h, r ) is at a temperature of 510°C and a stress of 4.6 kgt.
It was determined from the time-elongation curve of the creep test conducted at /-. High temperature tensile tests and creep tests were conducted in air.

第  3  表 第  4  表 第3表から明らかなように1本発明チタン合金は、60
0℃における高温引張強度が67にgt/d以上と大き
く、しかも、510℃、応力24.6Kg f/−にお
ける最小クリープ速度が、0.64X10−3%/hr
  以下と小さく、比較チタン合金および従来チタン合
金Ti −6At −4V 、 Ti −6AL−2S
n −4Zr−2Moと比較して非常に優れている。ま
た、本発明チタン合金は、室温においても1o5KB/
−以上の大きな引張強さと1z、s%以上の大きな伸び
とを合わせ持っておシ、室温から高温までの広い温度範
囲において、非常に優れた機械的性質を有していること
がわかる。
As is clear from Table 3, the titanium alloy of the present invention has a
The high temperature tensile strength at 0℃ is as high as 67 gt/d or more, and the minimum creep rate at 510℃ and stress 24.6Kg f/- is 0.64X10-3%/hr.
Comparative titanium alloys and conventional titanium alloys Ti-6At-4V, Ti-6AL-2S
It is very superior compared to n-4Zr-2Mo. Furthermore, the titanium alloy of the present invention has a capacity of 1o5KB/ even at room temperature.
It can be seen that it has a large tensile strength of - or more and a large elongation of 1z, s% or more, and has very excellent mechanical properties in a wide temperature range from room temperature to high temperature.

第1図に、横軸にC含有量(重量%)を、縦軸に温度5
10℃、応力24.6〜で/−のクリープ試験における
最小クリープ速度を示す。ここにおいて、曲線における
実線の部分1は、本発明チタン合金の実験値をプロット
した部分を示し、点線の部分2は、比較チタン合金の実
験値をプロットした部分を示し、Δ印3は従来チタン合
金の実験値をプロットした点を示す。
In Figure 1, the horizontal axis shows C content (wt%), and the vertical axis shows temperature 5.
The minimum creep rate in the creep test at 10° C. and stress 24.6 to /− is shown. Here, the solid line part 1 of the curve shows the part where the experimental values of the titanium alloy of the present invention are plotted, the dotted line part 2 shows the part where the experimental values of the comparative titanium alloy are plotted, and the Δ mark 3 shows the part where the experimental values of the titanium alloy of the present invention are plotted. Shows the points where experimental values for the alloy are plotted.

第1図から明らかなように、C含有量が0.04〜0.
30重量%の範囲で0.64 X 10””以下の最小
クリープ速度の値を示しており、その範囲に満たないC
含有量(重量%)では、最小クリープ速度が大きい。一
方、C含有量(重量%)をその範囲を超えて添加すると
、最小クリープ速度は良くならず、第2表かられかるよ
うに室温における延性が5.6%と非常に劣化する。
As is clear from FIG. 1, the C content is between 0.04 and 0.04.
It shows a minimum creep rate value of 0.64 x 10" or less in the range of 30% by weight, and C
The minimum creep rate is high for the content (wt%). On the other hand, when the C content (wt%) is added beyond this range, the minimum creep rate does not improve, and as shown in Table 2, the ductility at room temperature deteriorates significantly to 5.6%.

第2図において、横軸にC含有量(重量%)を、縦軸に
温度600℃における引張試験の結果を示す。ここにお
いて、曲線における実線の部分1は、本発明チタン合金
の実験値をプロットした部分を示し、点線の部分2は比
較チタン合金および従来チタン合金の実験値をプロット
した部分を示す。
In FIG. 2, the horizontal axis shows the C content (% by weight), and the vertical axis shows the results of a tensile test at a temperature of 600°C. Here, the solid line section 1 of the curve indicates the section where the experimental values of the titanium alloy of the present invention are plotted, and the dotted line section 2 indicates the section where the experimental values of the comparative titanium alloy and the conventional titanium alloy are plotted.

第2図から明らかなように、C含有量が0.04〜0.
30重量%の範囲で67にy f/l!j  以上の引
張強さを示しておシ、その範囲に満たないC含有量(重
量%)では、引張強さが小さい。
As is clear from FIG. 2, the C content ranges from 0.04 to 0.
y f/l to 67 in the range of 30% by weight! If the C content (wt%) is less than that range, the tensile strength is small.

これらのことから、C含有量が0.04〜0.30重量
%の範囲において、優れた機械的性質(室温強度、高温
強度およびクリープ強度)が得られることが明らかとな
った。
These results revealed that excellent mechanical properties (room temperature strength, high temperature strength, and creep strength) can be obtained when the C content is in the range of 0.04 to 0.30% by weight.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、C含有量を0
.04〜0.30重量%の範囲にすることによって、室
温から高温までの広い温度範囲において、大きな引張強
度およびクリープ強度を得ることができ、その結果、航
空宇宙用材料を始めとして、その優れた比強度、高温特
性から、各種産業分野において広く用いることができる
といった有用な効果がもたらされる。
As explained above, according to the present invention, the C content can be reduced to 0.
.. By setting the content in the range of 0.04 to 0.30% by weight, large tensile strength and creep strength can be obtained in a wide temperature range from room temperature to high temperature. Due to its specific strength and high-temperature properties, it has useful effects that allow it to be widely used in various industrial fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明チタン合金、比較チタン合金、そして
従来チタン合金と最小クリープ速度との関係を示すグラ
フ、第2図は、本発明チタン合液、比較チタン合金、そ
して従来チタン合金と高温引張特性(0,2チ耐力およ
び引張強さ]との関係を示すグラフである。 第1図 C含有量 (重量%)
Figure 1 is a graph showing the relationship between the minimum creep rate of the titanium alloy of the present invention, a comparative titanium alloy, and a conventional titanium alloy. It is a graph showing the relationship with tensile properties (0, 2 inch proof stress and tensile strength). Figure 1 C content (wt%)

Claims (1)

【特許請求の範囲】 1 Al:5.5から6.5%、 Sn:1.5から3.0%、 Zr:0.7から5.0%、 Mo:0.7から3.0%、 Si:0.04から0.15%、 C:0.04から0.30%、 O:0.16%以下(以上重量%)、 残り:Tiおよび不可避不純物 からなり、且つ、 Al+Sn/3+Zr/6:6.5から8.0重量%を
満足することを特徴とする耐熱チタン合金。
[Claims] 1 Al: 5.5 to 6.5%, Sn: 1.5 to 3.0%, Zr: 0.7 to 5.0%, Mo: 0.7 to 3.0% , Si: 0.04 to 0.15%, C: 0.04 to 0.30%, O: 0.16% or less (weight%), remainder: consisting of Ti and inevitable impurities, and Al+Sn/3+Zr /6: A heat-resistant titanium alloy that satisfies 6.5 to 8.0% by weight.
JP63068615A 1988-03-23 1988-03-23 Heat resistant titanium alloy Expired - Lifetime JPH0621305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63068615A JPH0621305B2 (en) 1988-03-23 1988-03-23 Heat resistant titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63068615A JPH0621305B2 (en) 1988-03-23 1988-03-23 Heat resistant titanium alloy

Publications (2)

Publication Number Publication Date
JPH01242743A true JPH01242743A (en) 1989-09-27
JPH0621305B2 JPH0621305B2 (en) 1994-03-23

Family

ID=13378841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63068615A Expired - Lifetime JPH0621305B2 (en) 1988-03-23 1988-03-23 Heat resistant titanium alloy

Country Status (1)

Country Link
JP (1) JPH0621305B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005425A1 (en) * 1998-07-21 2000-02-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium-based composite material, method for producing the same and engine valve
JP2009531546A (en) * 2006-03-30 2009-09-03 スネクマ Heat treatment method and manufacturing method for thermomechanical components made of titanium alloy, and thermomechanical components obtained from these methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2797996A (en) * 1953-12-07 1957-07-02 Rem Cru Titanium Inc Titanium base alloys
JPS4915611A (en) * 1972-04-04 1974-02-12
US3833363A (en) * 1972-04-05 1974-09-03 Rmi Co Titanium-base alloy and method of improving creep properties
JPS5989744A (en) * 1982-10-15 1984-05-24 アイエムアイ・チタニウム・リミテツド Weldable titanium alloy
US4639281A (en) * 1982-02-19 1987-01-27 Mcdonnell Douglas Corporation Advanced titanium composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2797996A (en) * 1953-12-07 1957-07-02 Rem Cru Titanium Inc Titanium base alloys
JPS4915611A (en) * 1972-04-04 1974-02-12
US3833363A (en) * 1972-04-05 1974-09-03 Rmi Co Titanium-base alloy and method of improving creep properties
US4639281A (en) * 1982-02-19 1987-01-27 Mcdonnell Douglas Corporation Advanced titanium composite
JPS5989744A (en) * 1982-10-15 1984-05-24 アイエムアイ・チタニウム・リミテツド Weldable titanium alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005425A1 (en) * 1998-07-21 2000-02-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium-based composite material, method for producing the same and engine valve
US6551371B1 (en) 1998-07-21 2003-04-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium-based composite material, method for producing the same and engine valve
KR100398547B1 (en) * 1998-07-21 2003-09-19 도요타지도샤가부시키가이샤 Titanium-based composite material, method for producing the same and engine valve
JP2009531546A (en) * 2006-03-30 2009-09-03 スネクマ Heat treatment method and manufacturing method for thermomechanical components made of titanium alloy, and thermomechanical components obtained from these methods

Also Published As

Publication number Publication date
JPH0621305B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
JP3049767B2 (en) Ti alloy with excellent heat resistance
US8066938B2 (en) Ni-Cr-Co alloy for advanced gas turbine engines
JP6328398B2 (en) High strength titanium alloy with excellent oxidation resistance and compressor parts using the same
US4738822A (en) Titanium alloy for elevated temperature applications
JP3303641B2 (en) Heat resistant titanium alloy
US5167732A (en) Nickel aluminide base single crystal alloys
JPH01255632A (en) Ti-al intermetallic compound-type alloy having toughness at ordinary temperature
US3666453A (en) Titanium-base alloys
JPH0931572A (en) Heat resistant titanium alloy excellent in high temperature fatigue strength
US5730931A (en) Heat-resistant platinum material
US4722828A (en) High-temperature fabricable nickel-iron aluminides
US5718867A (en) Alloy based on a silicide containing at least chromium and molybdenum
JPH0663049B2 (en) Titanium alloy with excellent superplastic workability
JPH0578769A (en) Heat resistant alloy on intermetallic
JPH0222435A (en) Heat-resistant titanium alloy
JPH01242743A (en) Heat-resistant titanium alloy
JPH0441641A (en) Nickel-base superalloy for die
JP2012532982A (en) Nickel-base superalloy
JP2001234292A (en) LOW THERMAL EXPANSION Fe-BASE HEAT RESISTANT ALLOY, EXCELLENT IN HIGH TEMPERATURE STRENGTH
JP2787946B2 (en) Ni-based single crystal superalloy with excellent high-temperature strength and high-temperature corrosion resistance
JPH07300643A (en) Heat resistant cast cobalt-base alloy
JP2002294374A (en) Ni BASED CAST HEAT RESISTANT SUPERALLOY AND TURBINE WHEEL MADE OF THE Ni BASED SUPERALLOY
JPS62116748A (en) Superheat resistant single crystalline ni alloy
JPH04268037A (en) Ni3(si,ti)-base heat resisting alloy excellent in creep resistance
JPS63161137A (en) High tensile aluminum alloy having excellent heat resistance