JPH0463237A - High ductility ti-al intermetallic compound - Google Patents

High ductility ti-al intermetallic compound

Info

Publication number
JPH0463237A
JPH0463237A JP17360890A JP17360890A JPH0463237A JP H0463237 A JPH0463237 A JP H0463237A JP 17360890 A JP17360890 A JP 17360890A JP 17360890 A JP17360890 A JP 17360890A JP H0463237 A JPH0463237 A JP H0463237A
Authority
JP
Japan
Prior art keywords
phase
intermetallic compound
volume fraction
layered structure
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17360890A
Other languages
Japanese (ja)
Inventor
Sakae Tsunashima
綱島 栄
Toshio Tokune
敏生 徳根
Kazuhiko Yagi
一彦 八木
Yoshinari Fujiwara
良也 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP17360890A priority Critical patent/JPH0463237A/en
Publication of JPH0463237A publication Critical patent/JPH0463237A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the cold ductility of an intermetallic compound by forming a lamellar structure in which a Ti-Al phase and a Ti3Al phase are alternately precipitated and setting the volumetric fraction of the Ti-Al phase to a specified range. CONSTITUTION:The metallic structure of a Ti-Al intermetallic compound is formed of an aggregate of lamellar structural parts L in which a Ti-Al phase gammaand a Ti3Al phase alpha2 are alternately precipitated. For obtaining this metallic structure, compositionally, the Al content is set to, by atom, 35 to 52%. Or, the metallic structure is formed of a single phase part Sgamma constituted of a Ti-Al phase only and lamellar structural parts L in which a Ti-Al phase gamma and a Ti3Al phase alpha2 are alternately precipitated. For obtaining this metallic compound, compositionally, the Al content is set to, by atom, 45 to 60%. In this way, the Ti-Al intermetallic compound having excellent cold ductility, light in weight and having excellent heat resistance can be obtd.

Description

【発明の詳細な説明】 (1)産業上の利用分野 本発明は高延性TiAf系金属間化合物に関する。[Detailed description of the invention] (1) Industrial application fields The present invention relates to highly ductile TiAf-based intermetallic compounds.

(2)従来の技術 TiAl!、系金属間化合物は軽量で、且つ優れた耐熱
性を有するためエンジン部品等の構造材料として着目さ
れている。
(2) Conventional technology TiAl! , type intermetallic compounds are attracting attention as structural materials for engine parts and the like because they are lightweight and have excellent heat resistance.

(3)発明が解決しようとする課題 しかしながらTiAf系金属間化合物は700°C程度
に延性−脆性遷移温度を有するため常温延性が極めて低
い、といった問題がある。
(3) Problems to be Solved by the Invention However, since the TiAf-based intermetallic compound has a ductile-brittle transition temperature of about 700°C, there is a problem that the room temperature ductility is extremely low.

そこで、第3元素を添加することによってTiAf系金
属間化合物の常温延性の向上を図ることが試みられてい
る(例えば、特公昭62−215号公報参照)。
Therefore, attempts have been made to improve the room temperature ductility of TiAf-based intermetallic compounds by adding a third element (see, for example, Japanese Patent Publication No. 62-215).

本発明は前記従来のものとは異なった見地、即ち金属組
織の観点より開発されたものであって、その金属組織を
改善することにより常温延性を向上させたTiAf!系
金属間他金属間化合物ることを目的とする。
The present invention was developed from a different perspective than the conventional ones, namely from the viewpoint of metallographic structure, and TiAf! has improved cold ductility by improving the metallographic structure. The aim is to intermetallic and other intermetallic compounds.

B6発明の構成 (1)課題を解決するための手段 本発明に係る高延性TiAf系金属間化合物は、金属組
織が、TiAf相およびT 13 A γ相を交互に析
出させた層状組織よりなり、前記TixAl相の体積分
率αZ  (Vf)を0.05%以上、80%以下に設
定したことを第1の特徴とする。
B6 Structure of the Invention (1) Means for Solving the Problems The high ductility TiAf-based intermetallic compound according to the present invention has a metal structure consisting of a layered structure in which a TiAf phase and a T 13 A γ phase are alternately precipitated, The first feature is that the volume fraction αZ (Vf) of the TixAl phase is set to 0.05% or more and 80% or less.

本発明に係る高延性TiAf系金属間化合物は、金属組
織が、TiA/l!相のみからなる単相部と、TiAl
相およびTi、Aj!相を交互に析出させた層状組織部
とより構成され、その層状組織部の体積分率L(Vf)
を15%以上に設定したことを第2の特徴とする。
The highly ductile TiAf-based intermetallic compound according to the present invention has a metal structure of TiA/l! A single phase part consisting only of phases and a TiAl
Phase and Ti, Aj! It is composed of a layered structure in which phases are alternately precipitated, and the volume fraction L (Vf) of the layered structure is
The second feature is that the ratio is set to 15% or more.

(2)作 用 第1の特徴において、T i A 1相はγ相であって
常温延性が低いが、第2相であるTi3Al相(α2相
)をTiAl3相と交互に層状に析出させると、TiA
l!、系金属間化合物の常温延性が向上する。
(2) Effect In the first characteristic, the TiA1 phase is a γ phase and has low room temperature ductility, but when the second phase, the Ti3Al phase (α2 phase), is precipitated in layers alternately with the TiAl3 phase, , TiA
l! , the room temperature ductility of the intermetallic compound is improved.

た\”し、Ti:+Af相の体積分率α2  (Vf)
が0.05%未満であるか、または80%を超えると、
TiAf系金属間化合物の常温延性が低下する。
The volume fraction of Ti:+Af phase α2 (Vf)
is less than 0.05% or more than 80%,
The room temperature ductility of the TiAf-based intermetallic compound decreases.

第2の特徴において、常温延性の低いTiAf相よりな
る単相部に、第2相であるTiAf!相とTfsAIl
相との層状組織部を混在させると、その層状組織部の存
在に起因してT i A l系金属間化合物全体の常温
延性が向上する。
In the second feature, the second phase TiAf! phase and TfsAIl
When a layered structure portion is mixed with the phase, the room temperature ductility of the entire TiAl-based intermetallic compound is improved due to the presence of the layered structure portion.

た\゛し、層状組織部の体積分率L(Vf)が15%未
満ではTiAl系金属間化合物の常温延性が低下する。
However, if the volume fraction L (Vf) of the layered structure portion is less than 15%, the room temperature ductility of the TiAl-based intermetallic compound decreases.

(3)実施例 第1図は、第1実施例であるTiAff系金属間他金属
間化合物第1TiAj!化合物と称す)の金属組織を模
型的に示したもので、この金属組織は、TiAf相γお
よびTi、Afγ相2を交互に析出させた層状組織(ラ
メラ−組織)、図示例では層状組織部りの集合体よりな
る。このような金属組織を得るためには、組成上、Af
fi含有量を35原子%≦、11≦52原子%に設定す
ることが必要である。
(3) Example FIG. 1 shows TiAff-based intermetallic and other intermetallic compounds 1st TiAj! which is the first example. The metal structure is a layered structure (lamellar structure) in which TiAf phase γ and Ti, Afγ phase 2 are alternately precipitated, and in the illustrated example, the layered structure part It consists of a collection of ri. In order to obtain such a metal structure, Af
It is necessary to set the fi content to 35 atomic %≦ and 11 ≦52 atomic %.

第2図はAl含有量を47原子%に設定した第1TiA
j!化合物の顕微鏡写真であり、同図(a)が50倍に
、また同図Φ)が400倍にそれぞれ該当する。第2図
において灰色の層がT i A I! Illであり、
また黒色の層がTi、Afγ相2であって、両相T、α
2が層状をなすように交互に析出していることが判る。
Figure 2 shows the first TiA with an Al content of 47 at%.
j! These are micrographs of the compound, with (a) shown at 50x magnification and Φ) at 400x magnification. In Figure 2, the gray layer is T i A I! Ill,
Moreover, the black layer is Ti and Afγ phase 2, and both phases T and α
It can be seen that 2 is deposited alternately in a layered manner.

また各層の成長方向の相違から各層状組織部りの境界が
判る。
Also, the boundaries of each layered structure can be determined from the difference in the growth direction of each layer.

第3図は、Al含有量を変化させた第1TiAl化合物
におけるTi5Aj2相α2の体積分率α(vBと常温
伸びとの関係を示す。
FIG. 3 shows the relationship between the volume fraction α (vB) of the Ti5Aj two-phase α2 and room-temperature elongation in the first TiAl compounds with varying Al contents.

同図より明らかなように、T 13 A f相α2の体
積分率α!  (Vf)を0.05%以上、80%以下
に設定することにより、1%以上の常温伸びを確保して
第1TiA/!化合物の常温延性を向上させることがで
きる。この場合、Ti5Aj2相α。
As is clear from the figure, the volume fraction α of the T 13 A f phase α2! By setting (Vf) to 0.05% or more and 80% or less, room temperature elongation of 1% or more is ensured and the first TiA/! The room temperature ductility of the compound can be improved. In this case, Ti5Aj two-phase α.

の体積分率α、(Vf)は、好ましくは5%以上、60
%以下である。また層状組織部りの平均粒径は、lum
以上、1000μm以下の範囲において、常温延性向上
効果がある。
The volume fraction α, (Vf) is preferably 5% or more, 60
% or less. In addition, the average grain size of the layered structure is lum
As mentioned above, in the range of 1000 μm or less, there is an effect of improving room temperature ductility.

第4図は、Affi含有量を変化させた第1TiA!化
合物におけるTi、A/!相α2の体積分率α(vr)
と引張強さとの関係を示す。
Figure 4 shows the first TiA! with varying Affi content! Ti, A/! in the compound Volume fraction α (vr) of phase α2
and tensile strength.

同図より、常温伸びを確保すると共に300MPa以上
の引張強さを狙った場合には、Ti3Al相α2の体積
分率α2 (Vf)を30%以上、80%以下に設定す
る必要のあることが判る。
From the same figure, it is found that in order to secure room temperature elongation and aim for a tensile strength of 300 MPa or more, it is necessary to set the volume fraction α2 (Vf) of the Ti3Al phase α2 to 30% or more and 80% or less. I understand.

第1TiAl系金属間化合物の製造に当っては、例えば
A2含有量47原子%の場合、合計量50gの原材料を
アルゴンガス雰囲気下にてボタンアーク溶解を行うこと
によりインゴットを熔製し、次いでそのインゴットに、
アルゴンガス雰囲気下にて1100°C110時間の加
熱、それに次ぐ炉冷よりなる熱処理を施す、といった方
法が採用される。
In producing the first TiAl-based intermetallic compound, for example, when the A2 content is 47 at%, an ingot is produced by button arc melting of a total of 50 g of raw materials in an argon gas atmosphere, and then the ingot is melted. to the ingot,
A heat treatment method is adopted in which heat treatment is performed by heating at 1100° C. for 110 hours in an argon gas atmosphere, followed by furnace cooling.

第5図は、第2実施例であるTiAl1系金属間化合物
(以下、第2TiAl化合物と称す)の金属組織を模型
的に示したもので、この金属組織は、TiAj!相のみ
からなる単相部srと、TiAf相TおよびTi5AI
!相α2を交互に析出させた層状組織部りとより構成さ
れる。このような金属組織を得るためには、組成上、A
2含有量を、45原子%≦AI!、≦60原子%に設定
することが必要である。
FIG. 5 schematically shows the metal structure of the TiAl1-based intermetallic compound (hereinafter referred to as the second TiAl compound) of the second example, and this metal structure is TiAj! Single phase part sr consisting of only phases, TiAf phase T and Ti5AI
! It is composed of a layered structure in which phases α2 are alternately precipitated. In order to obtain such a metal structure, A
2 content, 45 atomic%≦AI! , it is necessary to set it to ≦60 atomic %.

第6図は、A/2含有量を50原子%に設定した第2T
iAi!、化合物の顕微鏡写真であり、同図(a)が2
00倍に、また同図(b)が400倍にそれぞれ該当す
る。第6図において、灰色の島状部分が単相部Sγであ
り、それらの間を埋めている灰色と黒色の層をなす部分
が層状組織部りである。層状組織部りにおいて各層の成
長方向の相違から各層状組織部りの境界が判る。
Figure 6 shows the second T with the A/2 content set at 50 at%.
iAi! , is a microscopic photograph of the compound, and (a) of the same figure is 2
00 times, and the figure (b) corresponds to 400 times. In FIG. 6, the gray island-shaped portion is the single-phase portion Sγ, and the gray and black layered portion filling the space between them is the layered structure portion. The boundaries of each layered structure can be determined from the difference in the growth direction of each layer in the layered structure.

第7図は、AI2含有量を変化させた第2TiAl化合
物における層状組織部りの体積分率L(Vf)と常温伸
びとの関係を示す。図中、線XI は、層状組織部りに
おけるTi、Al相α2の体積分率α、(Vf)が0.
05%の場合に、線x2は、層状組織部りにおけるTi
xAf相α2の体積分率αz  (vr)が5%の場合
に、*xiは、層状組織部りにおけるTi、Af相α2
の体積分率α(Vf)が40%の場合にそれぞれ8亥当
する。
FIG. 7 shows the relationship between the volume fraction L (Vf) of the layered structure portion and the elongation at room temperature in the second TiAl compound with varying AI2 content. In the figure, line XI indicates that the volume fraction α, (Vf) of the Ti and Al phases α2 in the layered structure is 0.
In the case of 05%, the line x2 is Ti in the layered structure part.
When the volume fraction αz (vr) of xAf phase α2 is 5%, *xi is Ti in the layered structure part, Af phase α2
When the volume fraction α (Vf) of

線xlxx、から明らかなように、層状組織部りの体積
分率L (Vf)15%において常温伸びの変曲点が現
われ、したがって、前記体積分率L(Vf)を15%以
上に設定することによって第2 T i A l化合物
の常温伸びを確保することができる。
As is clear from the line xlxx, an inflection point of room temperature elongation appears at a volume fraction L (Vf) of the layered structure portion of 15%, and therefore, the volume fraction L (Vf) is set to 15% or more. By doing so, the room temperature elongation of the second T i A I compound can be ensured.

層状組織部りの体積分率L(Vf)35%において、線
X、では常温伸びが略1.0%、線X2では常温伸びが
略1.5%、線X、では常温伸びが略2%であり、これ
は第3図より金属組織全体が層状組織部りより構成され
た第1TiAi!、化合物におけるT15Al相の体積
分率αt(Vf)がそれぞれ0.05.5.40%の場
合の常温伸びと路間等である。
When the volume fraction L (Vf) of the layered structure is 35%, the elongation at room temperature is approximately 1.0% on line X, the elongation at room temperature is approximately 1.5% on line X2, and the elongation at room temperature is approximately 2 on line X. %, and this is the first TiAi! whose entire metal structure is composed of layered structures, as shown in FIG. , room temperature elongation, track gap, etc. when the volume fraction αt(Vf) of the T15Al phase in the compound is 0.05% and 5.40%, respectively.

したがって第2TiAjl!化合物において、層状組織
部りの体積分率L(Vf)を35%、またはそれ以上に
設定すると、対応する第1TiA/!化合物と路間等の
常温伸びを確保することができる。
Therefore, the second TiAjl! In a compound, when the volume fraction L (Vf) of the layered structure part is set to 35% or more, the corresponding first TiA/! Room temperature elongation between the compound and the track can be ensured.

この場合、層状組織部りの平均粒径は、1μm以上、1
000μm以下の範囲において、常温延性向上効果があ
る。
In this case, the average grain size of the layered structure is 1 μm or more, 1
In the range of 000 μm or less, there is an effect of improving room temperature ductility.

第8図は、第2TiAffi化合物における層状組織部
りの体積分率L(Vf)と引張強さとの関係を示す、こ
の場合、層状組織部りにおけるTj。
FIG. 8 shows the relationship between the volume fraction L (Vf) of the layered structure portion and the tensile strength in the second TiAffi compound, in this case Tj in the layered structure portion.

Af相α2の体積分率αz  (Vf)は40%であり
、また層状組織部りの体積分率L(Vf)の変化は、A
f含有量および熱処理条件を変えることによって行われ
た。
The volume fraction αz (Vf) of the Af phase α2 is 40%, and the change in the volume fraction L (Vf) of the layered structure part is
This was done by varying the f content and heat treatment conditions.

同図より、300MPa以上の引張強さを狙った場合に
は、層状組織部りの体積分率L(Vf)を20%以上に
設定する必要のあることが判る。
From the figure, it can be seen that when aiming at a tensile strength of 300 MPa or more, it is necessary to set the volume fraction L (Vf) of the layered structure portion to 20% or more.

第2TiAj!系金属間化合物の製造に当っては、例え
ば142含有150原子%の場合、合計量50gの原材
料をアルゴンガス雰囲気下にてボタンアーク溶解を行う
ことによりインゴットを溶製し、次いでそのインゴット
に、アルゴンガス雰囲気下にて1000°C115分間
の加熱、それに次ぐ空冷よりなる熱処理を施す、といっ
た方法が採用される。
2nd TiAj! In producing a series intermetallic compound, for example, in the case of 150 at% 142 content, an ingot is produced by button arc melting of a total of 50 g of raw materials in an argon gas atmosphere, and then the ingot is A heat treatment method is adopted in which heat treatment is performed by heating at 1000° C. for 115 minutes in an argon gas atmosphere, followed by air cooling.

C6発明の効果 本発明によれば、金属組織を前記のように特定すること
によって、優れた常温延性を有するT3Affi系金属
間化合金属提供することができる。
C6 Effects of the Invention According to the present invention, by specifying the metal structure as described above, it is possible to provide a T3Affi intermetallic compound metal having excellent room temperature ductility.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜第4図は本発明の一実施例を示し、第1図は金属
組織の説明図、第2図は金属組織の顕微鏡写真、第3図
はTi5A1相の体積分率α2(vBと常温伸びとの関
係を示すグラフ、第4図はTjsAjl!相の体積分率
α!  (Vf)と引張強さとの関係を示すグラフ、第
5〜第8図は本発明の他の実施例を示し、第5図は金属
組織の説明図、第6図は金属組織の顕微鏡写真、第7図
は層状組織部の体積分率L(Vf)と常温伸びとの関係
を示すグラフ、第8図は層状組織部の体積分率L (V
f)、:引張強さとの関係を示すグラフである。 α2・・・T 4 s A f相、γ・・・TjA1相
、L・・・層状組織部、sr・・・単相部
1 to 4 show one embodiment of the present invention, FIG. 1 is an explanatory diagram of the metal structure, FIG. 2 is a micrograph of the metal structure, and FIG. 3 is the volume fraction α2 (vB and FIG. 4 is a graph showing the relationship between the elongation at room temperature and the volume fraction α! (Vf) of the TjsAjl! phase and tensile strength. FIGS. Fig. 5 is an explanatory diagram of the metallographic structure, Fig. 6 is a micrograph of the metallographic structure, Fig. 7 is a graph showing the relationship between the volume fraction L (Vf) of the layered structure part and room temperature elongation, and Fig. 8 is the volume fraction L (V
f): is a graph showing the relationship with tensile strength. α2...T4s A f phase, γ...TjA1 phase, L...layered structure part, sr...single phase part

Claims (2)

【特許請求の範囲】[Claims] (1)金属組織が、TiAl相およびTi_3Al相を
交互に析出させた層状組織よりなり、前記Ti_3Al
相の体積分率α_2(Vf)を0.05%以上、80%
以下に設定したことを特徴とする高延性TiAl系金属
間化合物。
(1) The metal structure consists of a layered structure in which a TiAl phase and a Ti_3Al phase are alternately precipitated, and the Ti_3Al
Phase volume fraction α_2 (Vf) is 0.05% or more, 80%
A highly ductile TiAl-based intermetallic compound characterized by the following settings.
(2)金属組織が、TiAl相のみからなる単相部と、
TiAl相およびTi_3Al相を交互に析出させた層
状組織部とより構成され、その層状組織部の体積分率L
(Vf)を15%以上に設定したことを特徴とする高延
性TiAl系金属間化合物。
(2) a single phase part whose metal structure consists of only a TiAl phase;
It is composed of a layered structure in which TiAl phase and Ti_3Al phase are alternately precipitated, and the volume fraction L of the layered structure is
A highly ductile TiAl-based intermetallic compound characterized in that (Vf) is set to 15% or more.
JP17360890A 1990-06-29 1990-06-29 High ductility ti-al intermetallic compound Pending JPH0463237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17360890A JPH0463237A (en) 1990-06-29 1990-06-29 High ductility ti-al intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17360890A JPH0463237A (en) 1990-06-29 1990-06-29 High ductility ti-al intermetallic compound

Publications (1)

Publication Number Publication Date
JPH0463237A true JPH0463237A (en) 1992-02-28

Family

ID=15963765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17360890A Pending JPH0463237A (en) 1990-06-29 1990-06-29 High ductility ti-al intermetallic compound

Country Status (1)

Country Link
JP (1) JPH0463237A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540792A (en) * 1992-05-12 1996-07-30 Forschungszentrum Julich Gmbh Components based on intermetallic phases of the system titanium-aluminum and process for producing such components
US5580665A (en) * 1992-11-09 1996-12-03 Nhk Spring Co., Ltd. Article made of TI-AL intermetallic compound, and method for fabricating the same
JP2003033979A (en) * 2001-07-23 2003-02-04 Ricoh Co Ltd Easy-opening packing bag and method for printing and processing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540792A (en) * 1992-05-12 1996-07-30 Forschungszentrum Julich Gmbh Components based on intermetallic phases of the system titanium-aluminum and process for producing such components
US5580665A (en) * 1992-11-09 1996-12-03 Nhk Spring Co., Ltd. Article made of TI-AL intermetallic compound, and method for fabricating the same
US5701575A (en) * 1992-11-09 1997-12-23 Nhk Spring Co., Ltd. Article made of a Ti-Al intermetallic compound, and method for fabrication of same
JP2003033979A (en) * 2001-07-23 2003-02-04 Ricoh Co Ltd Easy-opening packing bag and method for printing and processing the same

Similar Documents

Publication Publication Date Title
Knipling et al. Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600 C
US6248453B1 (en) High strength aluminum alloy
CA2645843A1 (en) Titanium aluminide alloys
Ramakrishnan et al. Functionally graded metal matrix composite of Haynes 282 and SiC fabricated by laser metal deposition
JPH0463237A (en) High ductility ti-al intermetallic compound
JPH0593233A (en) Aluminum-modified titanium/titanium alloy microcomposite material
JPH0649567A (en) High strength tial intermetallic compound
KR101614124B1 (en) A Ti-Al base alloy
JP3626507B2 (en) High strength and high ductility TiAl intermetallic compound
JPH0463238A (en) High ductility ti-al intermetallic compound
JP2862494B2 (en) Heat treatment method for TiAl intermetallic compound
JPH06228685A (en) High strength and high ductility tial intermetallic compound and its production
JPS63161137A (en) High tensile aluminum alloy having excellent heat resistance
CN1360074A (en) Ti-Al alloy
JP2813516B2 (en) TiAl-based intermetallic compound and its production method
JPH0551679A (en) Tial intermetallic compound having high toughness and ductility
JPH0565574A (en) High toughness and high ductility tial intermetallic compound
KR100256362B1 (en) Heat resisting alloy for low density and high temperature structure
JPH03193837A (en) High temperature oxidation-resistant intermetallic compound ti-al series alloy
JP2903102B2 (en) High temperature high strength TiAl based alloy
JPH0565575A (en) Structural member made of tial intermetallic compound
JP2684891B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JPH0466642A (en) High strength and high toughness ti-al intermetallic compound
JPH0551678A (en) Tial intermetallic compound having high toughness and ductility
JP2829372B2 (en) Polycrystalline high ductility TiAl-based intermetallic compound