JPH0462874A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0462874A
JPH0462874A JP16622890A JP16622890A JPH0462874A JP H0462874 A JPH0462874 A JP H0462874A JP 16622890 A JP16622890 A JP 16622890A JP 16622890 A JP16622890 A JP 16622890A JP H0462874 A JPH0462874 A JP H0462874A
Authority
JP
Japan
Prior art keywords
oxide film
isolation oxide
gate
gate electrode
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16622890A
Other languages
Japanese (ja)
Inventor
Kazutoshi Ishii
石井 和敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP16622890A priority Critical patent/JPH0462874A/en
Publication of JPH0462874A publication Critical patent/JPH0462874A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To restrain variation of characteristics caused by deviation of a mask produced during a gate electrode formation by flattening and forming a surface of a gate electrode of an MOS type high breakdown strength semiconductor device and a surface of an isolation oxide film. CONSTITUTION:An isolation oxide film 2 is selectively formed in an area near a surface of a P-type semiconductor substrate 1, a gate oxide film 3 is formed in a region enclosed with the isolation oxide film 2, and a gate electrode 4 is formed flush with the isolation oxide film 2 through a gate oxide film 3 in a region enclosed with the isolation oxide film 2. In the process, the gate electrode 4 is formed by depositing n-type polysilicon, for example thicker than a step between the isolation oxide film 2 and the gate oxide film 3, by depositing photoresist, polyimide, etc., flat on the n-type polysilicon and by carrying out etch back as far as a surface of the isolation oxide film 2 by etching selection ratio of one to one. Then, a source 5 and a drain 6 of n-type are formed, and an n-type impurity diffusion region 7 is formed below time isolation oxide film 2 and below the isolation oxide film 2 between the gate oxide film 2 and the drain 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMO3型半導体装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an MO3 type semiconductor device.

〔発明の概要〕[Summary of the invention]

本発明はMO3型高耐圧半導体装置のゲート電極の表面
と、素子分離用酸化膜の表面とを平坦化して形成したた
め、従来ゲート電極形成時に生じたマスクずれによる特
性の変動を抑制することを可能としたものである。
In the present invention, since the surface of the gate electrode of the MO3 type high voltage semiconductor device and the surface of the oxide film for element isolation are flattened, it is possible to suppress the variation in characteristics due to mask misalignment that conventionally occurs when forming the gate electrode. That is.

〔従来の技術〕[Conventional technology]

従来、第2図に示したように、半導体基板1表面付近に
素子分離用酸化膜2を選択的に設け、素子分離用酸化膜
2に囲まれた領域にゲート酸化膜3を設け、ゲート酸化
膜3を介して素子分離用酸化膜2上の一部にまで延在す
るゲート電極4を設け、ゲート酸化膜3に隣接する素子
分離用酸化膜3のチャネル長方向の外側に隣接するソー
ス5、ドレイン6を設け、ゲート酸化膜3とソース5に
挟まれた素子分離用酸化膜2の下側とゲート酸化膜3と
ドレイン6に挟まれた素子分離用酸化膜2の下側にソー
ス5、ドレイン6と同しR電型の不純物拡散領域7を設
けることにより半導体装置を形成していた。
Conventionally, as shown in FIG. 2, an element isolation oxide film 2 is selectively provided near the surface of a semiconductor substrate 1, a gate oxide film 3 is provided in a region surrounded by the element isolation oxide film 2, and gate oxide film 3 is provided in a region surrounded by the element isolation oxide film 2. A gate electrode 4 extending to a part of the element isolation oxide film 2 via the film 3 is provided, and a source 5 adjacent to the outside in the channel length direction of the element isolation oxide film 3 adjacent to the gate oxide film 3 is provided. , a drain 6 is provided below the element isolation oxide film 2 sandwiched between the gate oxide film 3 and the source 5, and on the lower side of the element isolation oxide film 2 sandwiched between the gate oxide film 3 and the drain 6. , a semiconductor device was formed by providing an impurity diffusion region 7 of the same R type as the drain 6.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の技術ではゲート電極と素子分離用酸化膜
とのアライメントずれによる特性の変動という問題点を
有していた。
However, the conventional technology has had the problem of variations in characteristics due to misalignment between the gate electrode and the element isolation oxide film.

〔課題を解決するための手段〕[Means to solve the problem]

以上に述べた問題点を解決するために、本発明では、ゲ
ート電極の表面と素子分離用酸化膜の表面とを平坦化し
て形成した。
In order to solve the above-mentioned problems, in the present invention, the surface of the gate electrode and the surface of the element isolation oxide film are formed by planarizing them.

〔作 用〕[For production]

」1記のごとく形成された半導体装置は、ゲート電極と
選択的に形成する素子分離用酸化膜とがセルフアライメ
ント的に形成できる。
In the semiconductor device formed as described in 1 above, the gate electrode and the selectively formed element isolation oxide film can be formed in a self-aligned manner.

したがって、高面1圧トランジスタのオン抵抗および面
]圧を安定させることを可能とした。
Therefore, it is possible to stabilize the on-resistance and surface pressure of the high-surface single-voltage transistor.

〔実施例〕〔Example〕

本発明の実施例を図面に基づいて詳細に説明する。第1
図は本発明の高11ii(圧MO3型半導体装置の一実
施例をNヂャネル型を例にとってチャネル長方向の断面
図を示したものである。P型半導体基板1表面付近に素
子分離用酸化膜2を選択的に形成し、素子分離用酸化膜
2に囲まれた領域にゲート酸化膜3を形成し、素子分離
用酸化膜2に囲まれた領域にゲート酸化膜3を介して表
面が素子分離用酸化膜2と平坦にゲート電極4を形成す
る。
Embodiments of the present invention will be described in detail based on the drawings. 1st
The figure shows a cross-sectional view in the channel length direction of an embodiment of the high 11ii (pressure MO3) type semiconductor device of the present invention, taking an N channel type as an example. 2 is selectively formed, a gate oxide film 3 is formed in a region surrounded by the oxide film 2 for element isolation, and a gate oxide film 3 is formed in the region surrounded by the oxide film 2 for element isolation so that the surface of the element A gate electrode 4 is formed flat with the isolation oxide film 2.

こごで、ゲート電極4は素子分離用酸化膜2とゲート酸
化膜3との段差より厚く例えばn型ポリシリコンを堆積
し、n型ポリシリコン上に例えばフォトレジスト、ポリ
イミド等を平坦に堆積し、エツチング選択比を1対1で
素子分離用酸化膜2表面までエッチハックすることによ
り形成される。
Here, the gate electrode 4 is made by depositing, for example, n-type polysilicon thicker than the step difference between the element isolation oxide film 2 and the gate oxide film 3, and depositing, for example, photoresist, polyimide, etc., flatly on the n-type polysilicon. , is formed by etching down to the surface of the element isolation oxide film 2 at an etching selectivity of 1:1.

次に、ゲート酸化膜3に隣接する素子分離用酸化膜2の
チャネル長方向の外側に隣接するn型のソース5、ドレ
イン6を形成し、ゲート酸化膜3とソース5に挟まれた
素子分離用酸化膜2の下側とゲート酸化膜2とドレイン
6に挟まれた素子分離用酸化膜2の下側にn型不純物拡
散領域7を形成する。このあとは図示しないが5v系ト
ランジスタ領域にゲート電極、ソース、ドレインを形成
し、全面に中間層を堆積し、選択的にコンタクトホール
を形成し、必要な配線層を形成し、保護を形成して完成
する。
Next, an n-type source 5 and drain 6 are formed adjacent to the outside in the channel length direction of the device isolation oxide film 2 adjacent to the gate oxide film 3, and the device isolation sandwiched between the gate oxide film 3 and the source 5 is formed. An n-type impurity diffusion region 7 is formed under the element isolation oxide film 2 and between the gate oxide film 2 and the drain 6. After this, although not shown, a gate electrode, source, and drain are formed in the 5V transistor region, an intermediate layer is deposited on the entire surface, contact holes are selectively formed, necessary wiring layers are formed, and protection is formed. and complete it.

「発明の効果〕 以」二詳細に説明した本発明の半導体装置は、ゲート電
極と素子分離用酸化膜をセルフアライメントに形成した
ため、”7スクずれによるオン抵抗および耐圧の特性を
安定させることができる。
``Effects of the Invention'' In the semiconductor device of the present invention described in detail below, since the gate electrode and the element isolation oxide film are formed in self-alignment, it is possible to stabilize the on-resistance and withstand voltage characteristics caused by ``7'' misalignment. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のMO3型半導体装置のチャネル長方向
断面図の一例、第2図は従来のMO3型半導体装置のチ
ャネル長方向断面図である。 1・・・P型半導体基板 2・・・素子分離用酸化膜 3・ 、ゲート酸化膜 4・・・ゲート電極 5・・・ソース 6・・・ドレイン 7・・・n型不純物拡散領域 以上
FIG. 1 is an example of a sectional view in the channel length direction of an MO3 type semiconductor device of the present invention, and FIG. 2 is a sectional view in the channel length direction of a conventional MO3 type semiconductor device. 1... P-type semiconductor substrate 2... Element isolation oxide film 3, Gate oxide film 4... Gate electrode 5... Source 6... Drain 7... N-type impurity diffusion region or above

Claims (1)

【特許請求の範囲】[Claims]  第1導電型半導体基板表面付近に選択的に素子分離用
酸化膜を設け、前記素子分離用酸化膜に囲まれた領域に
ゲート酸化膜を設け、前記素子分離用酸化膜に囲まれた
領域に前記ゲート酸化膜を介して表面が前記素子分離用
酸化膜と平坦にゲート電極を設け、前記ゲート酸化膜に
隣接する前記素子分離用酸化膜のチャネル長方向の外側
に隣接するソース・ドレインを設け、前記ゲート酸化膜
と前記ソースに挟まれた前記素子分離用酸化膜の下側と
前記ゲート酸化膜と前記ドレインに挟まれた前記素子分
離用酸化膜の下側に第2導電型の不純物拡散領域を設け
たことを特徴とする半導体装置。
A device isolation oxide film is selectively provided near the surface of a first conductivity type semiconductor substrate, a gate oxide film is provided in a region surrounded by the device isolation oxide film, and a gate oxide film is provided in a region surrounded by the device isolation oxide film. A gate electrode is provided whose surface is flat with the element isolation oxide film through the gate oxide film, and a source/drain is provided adjacent to the outer side in the channel length direction of the element isolation oxide film adjacent to the gate oxide film. , a second conductivity type impurity is diffused into the lower side of the element isolation oxide film sandwiched between the gate oxide film and the source, and the lower side of the element isolation oxide film sandwiched between the gate oxide film and the drain. A semiconductor device characterized by providing a region.
JP16622890A 1990-06-25 1990-06-25 Semiconductor device Pending JPH0462874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16622890A JPH0462874A (en) 1990-06-25 1990-06-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16622890A JPH0462874A (en) 1990-06-25 1990-06-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0462874A true JPH0462874A (en) 1992-02-27

Family

ID=15827489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16622890A Pending JPH0462874A (en) 1990-06-25 1990-06-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0462874A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142708A (en) * 1993-06-21 1995-06-02 Nec Corp Semiconductor device and its manufacture
US6103574A (en) * 1998-07-21 2000-08-15 Nec Corporation Method of manufacturing non-volatile semiconductor memory device having reduced electrical resistance of a source diffusion layer
US6917076B2 (en) 1996-05-28 2005-07-12 United Microelectronics Corporation Semiconductor device, a method of manufacturing the semiconductor device and a method of deleting information from the semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142708A (en) * 1993-06-21 1995-06-02 Nec Corp Semiconductor device and its manufacture
US6917076B2 (en) 1996-05-28 2005-07-12 United Microelectronics Corporation Semiconductor device, a method of manufacturing the semiconductor device and a method of deleting information from the semiconductor device
US6103574A (en) * 1998-07-21 2000-08-15 Nec Corporation Method of manufacturing non-volatile semiconductor memory device having reduced electrical resistance of a source diffusion layer

Similar Documents

Publication Publication Date Title
US6613633B2 (en) Method for manufacturing a high power semiconductor device having a field plate extendedly disposed on a gate
US4306915A (en) Method of making electrode wiring regions and impurity doped regions self-aligned therefrom
US5382532A (en) Method for fabricating CMOS semiconductor devices
JPH05304297A (en) Semiconductor power device and manufacture thereof
JPH02166762A (en) Compact cmos device and
JPH06252359A (en) Manufacture of semiconductor device
JP3326366B2 (en) Semiconductor device and manufacturing method thereof
JPH03222336A (en) Manufacture of semiconductor device
JPH0462874A (en) Semiconductor device
JP2830215B2 (en) Method for manufacturing charge transfer device
JP3162745B2 (en) Method of manufacturing insulated gate field effect transistor
JP2701332B2 (en) Manufacturing method of floating gate type nonvolatile semiconductor memory device
JPH0237778A (en) Manufacture of semiconductor memory device
JPH0521789A (en) Field effect type transistor and its manufacture
JP2695812B2 (en) Semiconductor device
JP2560218B2 (en) Method for manufacturing semiconductor device
JPS5917866B2 (en) hand tai souchi no seizou houhou
JP2722506B2 (en) Semiconductor device and manufacturing method thereof
JPS6294985A (en) Manufacture of mos semiconductor device
KR100247814B1 (en) Semiconductor device and method for manufacturing the same
JPH1098111A (en) Mos semiconductor device and manufacture thereof
JPS59195869A (en) Manufacture of semiconductor device
JP2720509B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPH0621450A (en) Mos transistor and manufacture thereof
JPS6194371A (en) Semiconductor device