JPH0460689B2 - - Google Patents

Info

Publication number
JPH0460689B2
JPH0460689B2 JP62314659A JP31465987A JPH0460689B2 JP H0460689 B2 JPH0460689 B2 JP H0460689B2 JP 62314659 A JP62314659 A JP 62314659A JP 31465987 A JP31465987 A JP 31465987A JP H0460689 B2 JPH0460689 B2 JP H0460689B2
Authority
JP
Japan
Prior art keywords
activated carbon
pressure
gas
solvent
cooling tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62314659A
Other languages
Japanese (ja)
Other versions
JPH01155932A (en
Inventor
Toshio Horimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOTSUKA GIKEN KOGYO KK
Original Assignee
OOTSUKA GIKEN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOTSUKA GIKEN KOGYO KK filed Critical OOTSUKA GIKEN KOGYO KK
Priority to JP62314659A priority Critical patent/JPH01155932A/en
Publication of JPH01155932A publication Critical patent/JPH01155932A/en
Publication of JPH0460689B2 publication Critical patent/JPH0460689B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明は、例えば半導体や電子機器その他の
ワーク洗浄に用いるR113および塩素系溶剤より
発生したガスを回収するような溶剤回収装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a solvent recovery device that recovers gas generated from R113 and chlorine-based solvents used, for example, in cleaning semiconductors, electronic devices, and other workpieces.

(ロ) 従来の技術 従来、上述例の半導体や電子機器その他の各種
ワークの洗浄には、R113(CCl2FCClF2、化学名
は1,1,2−トリクロル−1,2,2−トリフ
ルオルエタン)や塩素系溶剤等が用いられている
が、R113および塩素系溶剤が洗浄中に溶剤ガス
として大気中に流出し、大気汚染の要因となる。
(b) Conventional technology Conventionally, R113 (CCl 2 FCClF 2 , chemical name is 1,1,2-trichloro-1,2,2-trifluor) has been used to clean semiconductors, electronic devices, and other various workpieces as described above. Ethane) and chlorinated solvents are used, but R113 and chlorinated solvents leak into the atmosphere as solvent gas during cleaning, causing air pollution.

このような溶剤ガスの流出を防止し、同溶剤よ
り発生したガスを回収するため、従来においては
活性炭(アクテイブカーボン)による吸着ロータ
を有する活性炭吸着装置などの回収装置が用いら
れていたが、ガス吸着能力が低いため装置が大型
化し、また管理が煩雑なうえ、コスト高となり、
加えてフロン洗浄機とのユニツト化が困難となる
等の諸種の問題点を有していた。
In order to prevent such outflow of solvent gas and recover the gas generated from the same solvent, recovery devices such as activated carbon adsorption devices with adsorption rotors using activated carbon have been used in the past. Due to the low adsorption capacity, the equipment becomes large, the management is complicated, and the cost is high.
In addition, it had various problems such as difficulty in integrating it with a Freon cleaning machine.

(ハ) 発明の目的 この発明は、ガス吸着時に活性炭層を加圧、冷
却することで、活性炭のガス吸着能力を大幅に向
上させて、装置の小型化を図ると共に、減圧・加
熱により活性炭層から脱離したガスを冷却液化し
て回収再利用することができ、しかも吸気ライン
と高圧活性炭吸着塔との間に圧縮機および高圧冷
却塔を介設することで、濃度の薄いガスでも充分
に回収液化することができる溶剤回収装置の提供
を目的とする。
(c) Purpose of the invention This invention greatly improves the gas adsorption capacity of activated carbon by pressurizing and cooling the activated carbon layer during gas adsorption, thereby reducing the size of the device, and reducing the pressure and heating of the activated carbon layer. The gas desorbed from the gas can be cooled and liquefied for recovery and reuse. Moreover, by interposing a compressor and a high-pressure cooling tower between the intake line and the high-pressure activated carbon adsorption tower, even gas with a low concentration can be used efficiently. The purpose of the present invention is to provide a solvent recovery device that can recover and liquefy a solvent.

(ニ) 発明の構成 この発明は、フロン等の溶剤を貯溜した溶剤槽
のガス層に、溶剤ガスを吸引する吸気ラインと、
ガス濃度を高化する圧縮機とを介して高圧活性炭
吸着塔を接続し、この高圧活性炭吸着塔内には、
活性炭層と、ガス吸着時に上記活性炭層を冷却
し、かつガス脱離時に活性炭層を加熱するように
同一部材により冷却、加熱の両機能を有する熱交
換器を配設し、上記高圧活性炭吸着塔の次段に
は、内部に蒸発器が配設されガス投入前に減圧さ
れる減圧冷却塔を接続し、さらに上記圧縮機の吐
出側と高圧活性炭吸着塔との間に、高圧冷却塔を
介設し、上記高圧冷却塔内には溶剤より発生した
ガスを高圧下で冷却液化する蒸発器を配設した溶
剤回収装置であることを特徴とする。
(d) Structure of the Invention This invention includes an intake line for sucking solvent gas into a gas layer of a solvent tank storing a solvent such as fluorocarbon,
A high-pressure activated carbon adsorption tower is connected via a compressor that increases gas concentration, and inside this high-pressure activated carbon adsorption tower,
The high-pressure activated carbon adsorption tower is equipped with an activated carbon layer and a heat exchanger having both cooling and heating functions using the same member so as to cool the activated carbon layer during gas adsorption and heat the activated carbon layer during gas desorption. A vacuum cooling tower is connected to the next stage, which is equipped with an evaporator and is depressurized before gas input, and a high-pressure cooling tower is connected between the discharge side of the compressor and the high-pressure activated carbon adsorption tower. The solvent recovery device is characterized in that the high-pressure cooling tower is provided with an evaporator that cools and liquefies gas generated from the solvent under high pressure.

(ホ) 発明の作用 この発明によれば、溶剤槽から上方に流動して
大気中に流出しようとする溶剤より発生したガス
は、圧縮機の駆動により吸引ラインを介して吸引
され、この圧縮機によりガス濃度が高められた後
に、高圧冷却塔に至る。この高圧冷却塔において
上述のガスは蒸発器の作用により液化されると共
に、未液化のガスは次段の高圧活性炭吸着塔に送
気される。高圧活性炭吸着塔に送気されたガス
は、この加圧作用と、熱交換器の冷却作用との相
乗効果により吸着能力が大幅に向上された活性炭
層に吸着する。
(E) Effect of the Invention According to this invention, gas generated from the solvent flowing upward from the solvent tank and flowing out into the atmosphere is sucked through the suction line by the drive of the compressor, and After the gas concentration is increased, it reaches the high pressure cooling tower. In this high-pressure cooling tower, the above-mentioned gas is liquefied by the action of the evaporator, and the unliquefied gas is sent to the next high-pressure activated carbon adsorption tower. The gas sent to the high-pressure activated carbon adsorption tower is adsorbed by the activated carbon layer, whose adsorption capacity has been greatly improved by the synergistic effect of this pressurizing action and the cooling action of the heat exchanger.

活性炭層に吸着処理させたガスは、高圧活性炭
吸着塔内の減圧および熱交換器の加熱作用により
活性炭層より脱離(脱着ともいう)して次段の減
圧冷却塔に至り、この減圧冷却塔内において、蒸
発器の作用で冷却液化される。
The gas adsorbed on the activated carbon layer is desorbed (also called desorption) from the activated carbon layer by the reduced pressure in the high-pressure activated carbon adsorption tower and the heating action of the heat exchanger, and reaches the next stage vacuum cooling tower. Inside, it is cooled and liquefied by the action of an evaporator.

(ヘ) 発明の効果 このように、ガス吸着時に活性炭層を加圧、冷
却することで、活性炭のガス吸着能力を大幅に向
上させることができるので、装置の小型コンパク
ト化を図ることができ、さらにガス吸着時に活性
炭層を冷却し、ガス脱離時に活性炭層を加熱する
手段は、同一部材の熱交換器により行なうので、
より一層装置を小型コンパクト化することができ
る効果があり、また高圧活性炭吸着塔内の減圧お
よび活性炭層の加熱により該活性炭層から脱離し
たガスを次段の減圧冷却塔で冷却液化して回収再
利用することができる。
(f) Effects of the invention As described above, by pressurizing and cooling the activated carbon layer during gas adsorption, the gas adsorption capacity of activated carbon can be greatly improved, and the device can be made smaller and more compact. Furthermore, since the means for cooling the activated carbon layer during gas adsorption and heating the activated carbon layer during gas desorption are performed by a heat exchanger made of the same member,
This has the effect of making the device even smaller and more compact, and the gas desorbed from the activated carbon layer due to the reduced pressure in the high-pressure activated carbon adsorption tower and the heating of the activated carbon layer is cooled and liquefied in the next-stage vacuum cooling tower and recovered. Can be reused.

したがつて、回収装置全体が小型コンパクトに
なることにより、例えばフロン洗浄装置に対して
容易に取付けて、ユニツト化を図ることができる
のは勿論、溶剤消費量の低減を図ることができ、
また溶剤ガスによる大気汚染を防止することがで
きる効果がある。
Therefore, by making the entire recovery device small and compact, it can be easily attached to, for example, a fluorocarbon cleaning device to form a unit, and it is possible to reduce the amount of solvent consumed.
It also has the effect of preventing air pollution caused by solvent gas.

加えて、減圧冷却塔に対するガス投入前に、該
減圧冷却塔を前述の圧縮機の吸込み側に連通して
この減圧冷却塔内を減圧するので、塔容積が小さ
くても大量のガスを投入することができるので、
この減圧冷却塔の小容積化を図ることができる効
果がある。
In addition, before gas is introduced into the vacuum cooling tower, the vacuum cooling tower is communicated with the suction side of the aforementioned compressor to reduce the pressure inside the vacuum cooling tower, so even if the tower volume is small, a large amount of gas can be injected. Because you can
This has the effect of reducing the volume of the vacuum cooling tower.

しかも吸気ラインと高圧活性炭吸着塔との間に
は、圧縮機および高圧冷却塔を介設したので、こ
の圧縮機により回収した溶剤ガスのガス濃度を圧
縮高化することができ、このガスを高圧冷却塔で
冷却液化するので、濃度の薄いガスでも充分に回
収液化することができ、溶剤回収能力の大幅な向
上を図ることができる効果がある。
In addition, a compressor and a high-pressure cooling tower are installed between the intake line and the high-pressure activated carbon adsorption tower, so the compressor can compress and increase the gas concentration of the recovered solvent gas, and this gas can be compressed to a high pressure. Since the gas is cooled and liquefied in a cooling tower, even gas with a low concentration can be sufficiently recovered and liquefied, which has the effect of significantly improving the solvent recovery ability.

(ト) 実施例 この発明の一実施例を以下図面に基づいて詳述
する。
(g) Embodiment An embodiment of the present invention will be described in detail below based on the drawings.

図面は溶剤回収装置を示し、例えば内部に
R113等の溶剤を貯溜したフロン洗浄機1を設け、
このフロン洗浄機1のフロンガス層上部に張架し
た冷却手段(冷却コイルや冷却ジヤケツト等)の
上側部には、溶剤ガスを吸引する吸気ライン2を
接続している。
The drawing shows a solvent recovery device, e.g.
A Freon cleaning machine 1 that stores solvent such as R113 is installed,
An intake line 2 for sucking solvent gas is connected to the upper side of a cooling means (a cooling coil, a cooling jacket, etc.) extending above the fluorocarbon gas layer of the fluorocarbon washer 1.

この吸気ライン2には吸引ガスを圧縮して、ガ
ス濃度を高化する圧縮機3を介して高圧冷却塔4
を接続すると共に、この高圧冷却塔4内の略中央
には、溶剤より発生したガスを高圧(たとえばプ
ラス圧〜5Kg/cm2)下で冷却液化する第1蒸発器
(エバポレータ)5を配設している。
This intake line 2 is connected to a high-pressure cooling tower 4 through a compressor 3 that compresses the intake gas and increases the gas concentration.
At the same time, a first evaporator (evaporator) 5 is installed approximately in the center of the high-pressure cooling tower 4 to cool and liquefy the gas generated from the solvent under high pressure (for example, positive pressure to 5 kg/cm 2 ). are doing.

この第1蒸発器5は冷凍サイクルの熱交換器
で、R11,R12,R22等の冷媒を用いる冷凍機に
おいて、圧縮機の吐出側に凝縮器、受液器、液電
磁弁、膨張機構(膨張弁やキヤピラリチユーブ)
を介して上述の第1蒸発器5を接続し、この第1
蒸発器5の後位をアキユームレータを介して圧縮
機に接続して冷凍サイクルを構成する。
This first evaporator 5 is a heat exchanger for a refrigeration cycle, and in a refrigerator using refrigerants such as R11, R12, R22, etc., the first evaporator 5 is equipped with a condenser, a liquid receiver, a liquid solenoid valve, and an expansion mechanism (expansion mechanism) on the discharge side of the compressor. valves and capillary tubes)
The above-mentioned first evaporator 5 is connected through the
A refrigeration cycle is constructed by connecting the rear part of the evaporator 5 to a compressor via an accumulator.

上述の冷凍サイクルは周知の如く、圧縮機の駆
動により、同圧縮機で圧縮され高圧となつた冷媒
が、凝縮器(コンデンサ)に送られ、ここで液化
して受液器(レシーバ)に至つた後に、この高圧
冷媒は液電磁弁を介して膨張機構に導びかれ、こ
の膨張機構で絞り膨張されて低圧となつた冷媒は
上述の第1蒸発器(エバポレータ)5に入り、周
囲より熱を奪つて蒸発して蒸発ガスとなり、アキ
ユムレータを介して再び圧縮機に吸い込まれる。
As is well known, in the above-mentioned refrigeration cycle, when the compressor is driven, the compressor compresses the refrigerant, which becomes high pressure, and sends it to the condenser, where it is liquefied and reaches the receiver. After that, this high-pressure refrigerant is guided to an expansion mechanism via a liquid electromagnetic valve, and the refrigerant that is throttled and expanded by this expansion mechanism and has a low pressure enters the first evaporator 5, where it is heated up from the surroundings. It evaporates and becomes vaporized gas, which is sucked into the compressor again via the accumulator.

前述の高圧冷却塔4の液溶剤貯溜部位としての
底部と、フロン洗浄機1内の蒸溜槽(図示せず)
上部との間には、第1電磁弁6および第1液体ポ
ンプ7を介設した第1リターン路8を接続して、
上述の第1蒸発器5で冷却液化された液溶剤をフ
ロン洗浄機1の所定部に還流すべく構成してい
る。
The bottom of the above-mentioned high-pressure cooling tower 4 as a liquid solvent storage part and the distillation tank (not shown) in the fluorocarbon washer 1
A first return path 8 in which a first electromagnetic valve 6 and a first liquid pump 7 are interposed is connected between the upper part and
The liquid solvent cooled and liquefied in the first evaporator 5 described above is configured to be refluxed to a predetermined part of the Freon cleaning machine 1.

上述の高圧冷却塔4の上部には第1送気管9を
介して高圧活性炭吸着塔10を接続している。
A high-pressure activated carbon adsorption tower 10 is connected to the upper part of the above-mentioned high-pressure cooling tower 4 via a first air pipe 9.

この高圧活性炭吸着塔10の内部中央にはアク
テイブカーボン(activated carbon)による吸着
ロータなどの活性炭層11……を上下に離間して
複数層例えば合計3層配設し、かつ、これら活性
炭層11,11間にはヒートポンプ装置(図示せ
ず)に接続した熱交換器12,12を配設してい
る。
In the center of the high-pressure activated carbon adsorption tower 10, a plurality of activated carbon layers 11, such as an adsorption rotor made of activated carbon, are arranged vertically spaced apart, for example, three layers in total, and these activated carbon layers 11, Heat exchangers 12, 12 connected to a heat pump device (not shown) are disposed between the heat exchangers 11 and 11.

上述の熱交換器12,12は上述のヒートポン
プ装置の四路切換弁(図示せず)等の切換制御
で、ガス吸着時には活性炭層11,11を冷却す
るエバポレータ(蒸発器)として作用する一方、
ガス脱離時には活性炭層11,11を加熱するコ
ンデンサ(凝縮器)として作用する。このため、
加熱手段と冷却手段とをそれぞれ別々に配設する
必要がなく、同一部材の熱交換器12により加熱
作用と冷却作用とを奏することができる。
The above-mentioned heat exchangers 12, 12 act as an evaporator (evaporator) to cool the activated carbon layers 11, 11 during gas adsorption by switching control such as a four-way switching valve (not shown) of the above-mentioned heat pump device,
During gas desorption, it acts as a condenser (condenser) that heats the activated carbon layers 11, 11. For this reason,
There is no need to separately arrange the heating means and the cooling means, and the heat exchanger 12 made of the same member can perform the heating action and the cooling action.

また、前述の高圧活性炭吸着塔10の上部塔外
には、この高圧活性炭吸着塔10内を所定高圧に
保持する開閉制御可能な圧力調整弁13を接続
し、この圧力調整弁13の設定圧を圧縮機吐出圧
力と対応する圧力に設定している。
Furthermore, a pressure regulating valve 13 that can be opened and closed to maintain the inside of the high-pressure activated carbon adsorption tower 10 at a predetermined high pressure is connected to the outside of the upper tower of the above-mentioned high-pressure activated carbon adsorption tower 10, and the set pressure of this pressure regulating valve 13 is The pressure is set to correspond to the compressor discharge pressure.

この圧力調整弁13の前位つまり上流側には、
第2電磁弁14を介設した第2送気管15を介し
て、減圧冷却塔16を接続している。
In front of this pressure regulating valve 13, that is, on the upstream side,
A reduced pressure cooling tower 16 is connected via a second air pipe 15 with a second electromagnetic valve 14 interposed therebetween.

そして、この減圧冷却塔16の内部の略中央に
は第2蒸発器(エバポレータ)17を配設する一
方、この減圧冷却塔16の液溶剤貯溜部位として
の底部と、前述のフロン洗浄機1内の蒸溜槽上部
との間には第3電磁弁18および第2液体ポンプ
19を介設した第2リターン路20を接続して、
上述の蒸発器17で冷却液化された液溶剤を還流
すべく構成している。
A second evaporator (evaporator) 17 is disposed approximately in the center of the vacuum cooling tower 16, while the bottom of the vacuum cooling tower 16 as a liquid solvent storage area and the inside of the fluorocarbon washer 1 described above are A second return path 20 in which a third solenoid valve 18 and a second liquid pump 19 are interposed is connected between the top of the distillation tank and the top of the distillation tank.
It is configured to reflux the liquid solvent cooled and liquefied in the evaporator 17 described above.

さらに、上述の減圧冷却塔16と前述の圧縮機
3の吸込み側との間には、第4電磁弁21および
逆止弁22を介設した減圧ライン23を接続し
て、該減圧冷却塔16に対するガス投入前に同減
圧冷却塔16内を負圧に減圧制御することで、こ
の減圧冷却16の塔容積の小型化を図つている。
Further, a pressure reduction line 23 having a fourth solenoid valve 21 and a check valve 22 is connected between the above-mentioned reduced pressure cooling tower 16 and the suction side of the above-mentioned compressor 3. The volume of the vacuum cooling tower 16 is reduced by controlling the pressure inside the vacuum cooling tower 16 to a negative pressure before gas is introduced into the vacuum cooling tower 16.

図示実施例は上記の如く構成するものにして、
以下作用を説明する。
The illustrated embodiment is configured as described above,
The action will be explained below.

フロン洗浄機1でのワーク洗浄に際して、ワー
クの出し入れにともなつて上方へ流動しようとす
る溶剤より発生したガスは、圧縮機3の駆動によ
り前述の吸気ライン2を介して吸引され、この吸
引ガスは圧縮機3で圧縮されて、ガス濃度が高く
なる。
When cleaning a workpiece with the Freon cleaning machine 1, the gas generated from the solvent that tends to flow upward as the workpiece is taken in and out is sucked through the above-mentioned suction line 2 by the drive of the compressor 3, and this suction gas is compressed by the compressor 3, and the gas concentration increases.

上述の圧縮機3により高濃度化されたガスは高
圧冷却塔4内に流入し、第1蒸発器5の作用によ
つて所定高圧下(例えばプラス圧〜5Kg/cm2)で
冷却液化する。
The gas highly concentrated by the compressor 3 described above flows into the high-pressure cooling tower 4, and is cooled and liquefied under a predetermined high pressure (for example, positive pressure to 5 kg/cm 2 ) by the action of the first evaporator 5.

冷却液化された液溶剤は上述の高圧冷却塔4底
部に貯溜し、第1電磁弁6の開弁および第1液体
ポンプ7の駆動時に第1リターン路8を介してフ
ロン洗浄機1の蒸溜槽に還流され、再利用に供さ
れる。
The cooled and liquefied liquid solvent is stored at the bottom of the above-mentioned high-pressure cooling tower 4, and when the first electromagnetic valve 6 is opened and the first liquid pump 7 is driven, it is sent to the distillation tank of the fluorocarbon cleaning machine 1 via the first return path 8. The waste is refluxed and reused.

上述の第1蒸発器5の作用で液化されない比較
的低濃度のガスは、第1送気管9を介して次段の
高圧活性炭吸着塔10内に送気される。
The relatively low concentration gas that is not liquefied by the action of the first evaporator 5 described above is sent through the first air pipe 9 into the high-pressure activated carbon adsorption tower 10 at the next stage.

この高圧活性炭吸着塔10は、複数の活性炭層
11に対するガス吸着時に、塔内を前述の圧力調
整弁13の設定圧に保持すると共に、活性炭層1
1,11間に介設した熱交換器12をエバポレー
タとして作用させ、斯る加圧、冷却の両条件によ
り活性体層11におけるアクテイブカーボンの吸
着能力を大幅に高めるので、前述の低濃度ガスは
その分子がアクテイブカーボンの界面
(interface)部分に高効率で吸着処理される。
This high-pressure activated carbon adsorption tower 10 maintains the inside of the tower at the set pressure of the pressure regulating valve 13 described above during gas adsorption onto the plurality of activated carbon layers 11, and
The heat exchanger 12 interposed between 1 and 11 acts as an evaporator, and the above-mentioned low concentration gas is The molecules are adsorbed to the active carbon interface with high efficiency.

このようにして活性炭層11に吸着
(adsorption)されたガス分子を脱離
(desorption)するには、まず圧力調整弁13を
開弁して高圧活性炭吸着塔10内を減圧し、次に
圧力調整弁13を閉弁する。
In order to desorb the gas molecules adsorbed onto the activated carbon layer 11 in this way, the pressure regulating valve 13 is first opened to reduce the pressure inside the high-pressure activated carbon adsorption tower 10, and then the pressure is adjusted. Valve 13 is closed.

次に減圧ライン23に介設した第4電磁弁21
を開弁して圧縮機3の駆動で予め次段の減圧冷却
塔16内を負圧に減圧処理した後に、第4電磁弁
21を閉弁する。
Next, the fourth solenoid valve 21 installed in the pressure reduction line 23
The fourth electromagnetic valve 21 is closed after the fourth electromagnetic valve 21 is opened and the pressure inside the cooling tower 16 of the next stage is reduced to negative pressure by the drive of the compressor 3.

次に第2送気管15を介設した第2電磁弁15
を開弁すると共に、ヒートポンプ装置に接続した
前述の熱交換器12……を四路切換弁等の切換制
御によりコンデンサとして作用させると、活性炭
層11……は減圧条件下で加熱されるので、この
活性炭層11……に吸着した低濃度ガスはアクテ
イブカーボンから脱離し、第2送気管15を介し
て減圧冷却塔16内に送気される。
Next, a second solenoid valve 15 with a second air pipe 15 interposed therebetween.
When the valve is opened and the aforementioned heat exchanger 12 connected to the heat pump device is operated as a condenser by switching control such as a four-way switching valve, the activated carbon layer 11 is heated under reduced pressure conditions. The low concentration gas adsorbed on the activated carbon layer 11 is desorbed from the active carbon and is sent into the vacuum cooling tower 16 via the second air pipe 15.

この減圧冷却塔16内に流入した低濃度ガスは
第2蒸発器17の作用によつて冷却液化され、冷
却液化された液溶剤は該減圧冷却塔16底部に貯
溜する。
The low concentration gas flowing into the vacuum cooling tower 16 is cooled and liquefied by the action of the second evaporator 17, and the cooled and liquefied liquid solvent is stored at the bottom of the vacuum cooling tower 16.

そして、第3電磁弁18の開弁および第2液体
ポンプ19の駆動時に第2リターン路20を介し
て上述の液溶剤がフロン洗浄機1の蒸溜槽に還流
されて、再利用に供される。
Then, when the third electromagnetic valve 18 is opened and the second liquid pump 19 is driven, the above-mentioned liquid solvent is returned to the distillation tank of the fluorocarbon cleaning machine 1 via the second return path 20 and is used for reuse. .

なお、前述の第1リターン路8と第2リターン
路20並びに第1液体ポンプ7と第2液体ポンプ
19とは何れか一方のみに単一化して各塔4,1
6で共用してもよい。
Note that the first return path 8, the second return path 20, the first liquid pump 7, and the second liquid pump 19 described above are unified into only one of the columns 4, 1.
6 may be shared.

以上要するに、ガス吸着時に活性炭層11……
を加圧、冷却することで、活性炭のガス吸着能力
を大幅に向上させることができ、この結果、装置
の小型コンパクト化を図ることができ、さらにガ
ス吸着時に活性炭層11を冷却し、ガス脱離時に
活性炭層11を加熱する手段は、同一部材の熱交
換器12により行なうので、より一層装置を小型
コンパクト化することができる効果がある。
In summary, the activated carbon layer 11 during gas adsorption...
By pressurizing and cooling the activated carbon, the gas adsorption capacity of the activated carbon can be greatly improved.As a result, the device can be made smaller and more compact.Furthermore, the activated carbon layer 11 is cooled during gas adsorption and gas desorption is performed. Since the means for heating the activated carbon layer 11 at the time of separation is performed by the heat exchanger 12 made of the same member, there is an effect that the apparatus can be made even smaller and more compact.

また、高圧活性炭吸着塔10内の減圧および活
性炭層11……の加熱により該活性炭層11……
から離脱したガスを次段の減圧冷却塔16で冷却
液化して回収再利用することができる効果があ
る。
In addition, by reducing the pressure in the high-pressure activated carbon adsorption tower 10 and heating the activated carbon layer 11..., the activated carbon layer 11...
There is an effect that the gas released from the gas can be cooled and liquefied in the vacuum cooling tower 16 of the next stage, and can be recovered and reused.

したがつて、回収装置全体が小型コンパクト化
になることにより、例えばフロン洗浄装置等に対
して回収装置を容易に取付けて、両装置の一体ユ
ニツト化を図ることができるのは勿論、溶剤消費
量の低減を図ることができ、また溶剤ガスによる
大気汚染を防止することができる効果がある。
Therefore, by making the entire recovery device smaller and more compact, it is possible to easily attach the recovery device to a fluorocarbon cleaning device, for example, and to integrate both devices into an integrated unit, which also reduces solvent consumption. This has the effect of reducing air pollution and preventing air pollution caused by solvent gas.

加えて、減圧冷却塔16に対するガス投入前
に、該減圧冷却塔16を前述の圧縮機3の吸込み
側に連通して減圧冷却塔16内を減圧するので、
この減圧冷却塔16の塔容積が小さくても大量の
ガスを投入することができ、この減圧冷却塔16
の小容積化を図ることができる効果がある。
In addition, before gas is introduced into the vacuum cooling tower 16, the vacuum cooling tower 16 is communicated with the suction side of the compressor 3 described above to reduce the pressure inside the vacuum cooling tower 16.
Even if the tower volume of this vacuum cooling tower 16 is small, a large amount of gas can be input, and this vacuum cooling tower 16
This has the effect of reducing the volume.

しかも、吸気ライン2と高圧活性炭吸着塔10
との間に前述の圧縮機3および高圧冷却塔4を介
設したので、次のような効果がある。
Moreover, the intake line 2 and the high pressure activated carbon adsorption tower 10
Since the above-mentioned compressor 3 and high pressure cooling tower 4 are interposed between the two, the following effects can be obtained.

すなわち、回収した溶剤ガスのガス濃度を圧縮
機3で圧縮高化して、このガスを高圧冷却塔4で
冷却液化することができるので、濃度の薄いガス
でも充分に回収液化することができ、溶剤回収能
力の大幅な向上を図ることができる効果がある。
In other words, the gas concentration of the recovered solvent gas is compressed to a high level by the compressor 3, and this gas can be cooled and liquefied by the high-pressure cooling tower 4. Therefore, even gas with a low concentration can be sufficiently recovered and liquefied, and the solvent This has the effect of significantly improving collection capacity.

この発明の構成と、上述の実施例との対応にお
いて、 この発明のフロン等の溶剤を貯溜した溶剤槽
は、実施例のフロン洗浄機1に対応し、 以下同様に、 減圧冷却塔内の蒸発器は、第2蒸発器17に対
応し、 高圧冷却塔内の蒸発器は、第1蒸発器5に対応
するも、 この発明は、上述の実施例の構成のみに限定さ
れるものではない。
In the correspondence between the structure of this invention and the above-mentioned embodiments, the solvent tank storing the solvent such as chlorofluorocarbon of this invention corresponds to the fluorocarbon cleaning machine 1 of the embodiment, and similarly, the evaporation in the vacuum cooling tower The evaporator in the high-pressure cooling tower corresponds to the second evaporator 17, and the evaporator in the high-pressure cooling tower corresponds to the first evaporator 5. However, the present invention is not limited to the configuration of the above-described embodiment.

例えば被回収溶剤としては、R113単体の他に、
R113をベースにした混合溶剤やその他の塩素系
溶剤であつてもよい。
For example, in addition to R113 alone, the solvents to be recovered include
A mixed solvent based on R113 or other chlorinated solvents may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を示す溶剤回収装置
の系統図である。 1……フロン洗浄機、2……吸気ライン、3…
…圧縮機、4……高圧冷却塔、5……第1蒸発
器、10……高圧活性炭吸着塔、11……活性炭
層、12……熱交換器、16……減圧冷却塔、1
7……第2蒸発器。
The drawing is a system diagram of a solvent recovery device showing an embodiment of the present invention. 1... Freon cleaning machine, 2... Intake line, 3...
... Compressor, 4 ... High pressure cooling tower, 5 ... First evaporator, 10 ... High pressure activated carbon adsorption tower, 11 ... Activated carbon bed, 12 ... Heat exchanger, 16 ... Vacuum cooling tower, 1
7...Second evaporator.

Claims (1)

【特許請求の範囲】 1 フロン等の溶剤を貯溜した溶剤槽1のガス層
に、溶剤ガスを吸引する吸気ライン2と、ガス濃
度を高化する圧縮機3とを介して高圧活性炭吸着
塔10を接続し、この高圧活性炭吸着塔10内に
は、活性炭層11と、ガス吸着時に上記活性炭層
11を冷却し、かつガス脱離時に活性炭層11を
加熱するように同一部材により冷却、加熱の両機
能を有する熱交換器12を配設し、 上記高圧活性炭吸着塔10の次段には、内部に
蒸発器17が配設されガス投入前に減圧される減
圧冷却塔16を接続し、 さらに上記圧縮機3の吐出側と高圧活性炭吸着
塔10との間に、高圧冷却塔4を介設し、 上記高圧冷却塔4内には溶剤より発生したガス
を高圧下で冷却液化する蒸発器5を配設した 溶剤回収装置。
[Claims] 1. A high-pressure activated carbon adsorption tower 10 is connected to a gas layer of a solvent tank 1 storing a solvent such as chlorofluorocarbons through an intake line 2 that sucks the solvent gas and a compressor 3 that increases the gas concentration. In this high-pressure activated carbon adsorption tower 10, there is an activated carbon layer 11, and a cooling and heating system using the same member to cool the activated carbon layer 11 during gas adsorption and heat the activated carbon layer 11 during gas desorption. A heat exchanger 12 having both functions is installed, and a vacuum cooling tower 16 is connected to the next stage of the high-pressure activated carbon adsorption tower 10, which is equipped with an evaporator 17 and is depressurized before gas is introduced. A high-pressure cooling tower 4 is interposed between the discharge side of the compressor 3 and the high-pressure activated carbon adsorption tower 10, and within the high-pressure cooling tower 4 is an evaporator 5 that cools and liquefies the gas generated from the solvent under high pressure. Solvent recovery equipment equipped with
JP62314659A 1987-12-12 1987-12-12 Solvent recovery device Granted JPH01155932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62314659A JPH01155932A (en) 1987-12-12 1987-12-12 Solvent recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62314659A JPH01155932A (en) 1987-12-12 1987-12-12 Solvent recovery device

Publications (2)

Publication Number Publication Date
JPH01155932A JPH01155932A (en) 1989-06-19
JPH0460689B2 true JPH0460689B2 (en) 1992-09-28

Family

ID=18055989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62314659A Granted JPH01155932A (en) 1987-12-12 1987-12-12 Solvent recovery device

Country Status (1)

Country Link
JP (1) JPH01155932A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2971127B2 (en) * 1990-11-19 1999-11-02 三菱重工業株式会社 Dry cleaning method
JP5441485B2 (en) * 2009-04-24 2014-03-12 地方独立行政法人東京都立産業技術研究センター Volatile organic substance processing apparatus and volatile organic substance processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50153773A (en) * 1974-06-04 1975-12-11
JPS51103872A (en) * 1975-03-10 1976-09-14 Kobe Giken Kogyo Kk YOZAIKAISHUHOHOOYOBISOCHI

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50153773A (en) * 1974-06-04 1975-12-11
JPS51103872A (en) * 1975-03-10 1976-09-14 Kobe Giken Kogyo Kk YOZAIKAISHUHOHOOYOBISOCHI

Also Published As

Publication number Publication date
JPH01155932A (en) 1989-06-19

Similar Documents

Publication Publication Date Title
JPH0460689B2 (en)
TW201016300A (en) Gasoline vapor recovery apparatus
JPH07112522B2 (en) Cleaning solvent recovery device
JP3486852B2 (en) Method and apparatus for centrally controlling prevention of air pollution by refrigerant
JP2011133192A (en) Refrigerant recovering device
JP5606714B2 (en) Bleeding recovery device, operation method thereof, and turbo refrigerator equipped with the same
JPH1157394A (en) Device for recovering organic solvent
JP2000146372A (en) Refrigerant recovering apparatus
JPH06109338A (en) Refrigerating machine circuit and gas recovering device employing the circuit
JPH0658640A (en) Freezer circuit using expansion ejector and gas collector using the same
JPH11190566A (en) Refrigerating unit
JPS63129273A (en) Refrigerant recovery device
JPH10238909A (en) Method and apparatus for efficiently recovering refrigerant as well as adsorption tank
JP4106685B2 (en) Supercritical vapor compression cycle
JPH0438466B2 (en)
JP3326998B2 (en) Refrigerant recovery device
JP2000074515A (en) Air conditioner
JPH0792298B2 (en) Refrigerant recovery and regeneration device
JPH06221727A (en) Cleaning device for refrigerant system
JP2011191032A (en) Compression refrigerating cycle
JPH11281207A (en) Vapor compression chiller
JPS6248974A (en) Cryopump
JP2001272129A (en) Refrigerating unit
JP2001108335A (en) Refrigerant recovery unit and unit utilizing it
JP2001272130A (en) Supercritical carbon dioxide supplier, and refrigerating unit