JPH01155932A - Solvent recovery device - Google Patents

Solvent recovery device

Info

Publication number
JPH01155932A
JPH01155932A JP62314659A JP31465987A JPH01155932A JP H01155932 A JPH01155932 A JP H01155932A JP 62314659 A JP62314659 A JP 62314659A JP 31465987 A JP31465987 A JP 31465987A JP H01155932 A JPH01155932 A JP H01155932A
Authority
JP
Japan
Prior art keywords
gas
activated carbon
pressure
tower
cooling tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62314659A
Other languages
Japanese (ja)
Other versions
JPH0460689B2 (en
Inventor
Toshio Horimoto
堀本 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OTSUKA GIKEN KOGYO KK
Original Assignee
OTSUKA GIKEN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OTSUKA GIKEN KOGYO KK filed Critical OTSUKA GIKEN KOGYO KK
Priority to JP62314659A priority Critical patent/JPH01155932A/en
Publication of JPH01155932A publication Critical patent/JPH01155932A/en
Publication of JPH0460689B2 publication Critical patent/JPH0460689B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Coating Apparatus (AREA)

Abstract

PURPOSE:To increase the gas adsorption capacity of activated carbon and to miniaturize the device by pressurizing and cooling the activated carbon layer during gas adsorption and connecting an evacuated cooling tower to the next stage of a high pressure activated carbon adsorption tower, and to recover and reutilize the desorption gas by cooling and liquefying it. CONSTITUTION:A solvent gas is sucked from a gas suction line 2 connected to the upper part of a freon washer 1, and concentrated by a compressor 3, and then, sent to a high pressure cooling tower 4 to be cooled and liquefied. The cooled and liquefied solvent is returned from the bottom part of the cooling tower 4 through a 1st return passage 8 to the washer 1 to be reutilized. Unliquefied low concn. gas is sent to the high pressure activated carbon adsorption tower 10 through a gas sending pipe 9, and the inside of the tower is kept in a set pressure by a pressure control valve 13 and the activated carbon layer 11 is cooled by a heat exchanger 12 to absorb the low concn. gas with high efficiency. Then, after the pressure in the tower 10 is relieved by opening the valve 13, a solenoid valve 21 is opened to evacuate the cooling tower 16 to be in negative pressure by driving the compressor 3, and the heat exchanger 12 is changed over to the heating to desorb the adsorbed gas, and the desorbed gas is introduced to the cooling tower 16. The cooling and liquefied solvent is returned to the washer 1.

Description

【発明の詳細な説明】 (イ)発明の分野 この発明は、例えば半導体や電子機器その他のワーク洗
浄に用いるR113および塩素系溶剤より発生したガス
を回収するような溶剤回収装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of the Invention The present invention relates to a solvent recovery device for recovering gas generated from R113 and chlorine-based solvents used, for example, in cleaning semiconductors, electronic devices, and other workpieces.

(ロ)従来技術 従来、上述例の半導体や電子機器その他の各種ワークの
洗浄には、R113(CCJI 2 FCCJIF2、
化学名は1.1.2−トリクロル−1,2゜2−トリフ
ルオルエタン)や塩素系溶剤等が用いられているが、R
113および塩素系溶剤が洗浄中に溶剤ガスとして大気
中に流出し、大気汚染の要因となる。
(b) Prior Art Conventionally, R113 (CCJI 2 FCCJIF2,
The chemical name is 1.1.2-trichloro-1,2゜2-trifluoroethane) and chlorinated solvents, but R
113 and chlorinated solvents leak into the atmosphere as solvent gas during cleaning, causing air pollution.

このような溶剤ガスの流出を防止し、同溶剤より発生し
たガスを回収するため、従来においては活性炭(アクテ
ィブカーボン)による吸着ロータを有する活性炭吸着装
置などの回収装置が用いられていたが、ガス吸着能力が
低いため装置が大型化し、また管理が煩雑なうえ、コス
ト高となり、加えてフロン洗浄機とのユニット化が困難
となる等の!1lllの問題点を有していた。
In order to prevent such outflow of solvent gas and recover the gas generated from the same solvent, recovery devices such as activated carbon adsorption devices with adsorption rotors using activated carbon have been used in the past. Due to the low adsorption capacity, the equipment becomes large, the management is complicated, the cost is high, and in addition, it is difficult to unitize with a Freon cleaning machine! It had 1llll problems.

(ハ)発明の目的 この発明は、ガス吸着時に活性炭層を加圧、冷却するこ
とで、活性炭のガス吸着能力を大幅に向上させて、装置
の小型化を図ると共に、減圧・加熱により活性炭層から
lB2+mt、、たガスを冷却液化して回収再利用する
ことができる溶剤回収装置の提供を目的とする。
(c) Purpose of the Invention This invention greatly improves the gas adsorption capacity of activated carbon by pressurizing and cooling the activated carbon layer during gas adsorption, thereby reducing the size of the device, and by reducing the pressure and heating the activated carbon layer. The purpose of the present invention is to provide a solvent recovery device capable of cooling and liquefying gas from 1B2+mt and recovering and reusing it.

(ニ)発明の構成 この発明は、フロン等の溶剤を貯溜した溶剤槽のガス層
に、溶剤ガスを吸引する吸気ラインおよび圧縮機を介し
て高圧活性炭吸着塔を接続し、この高圧活性炭吸着塔内
には、活性炭層を配設すると共に、ガス吸着時に活性炭
層を冷却する一方、ガス脱離時に活性炭層を加熱する熱
交換器を配設し、上記高圧活性炭吸着塔の次段には、内
部に蒸発器を配設した減圧冷却塔を接続した溶剤回収装
置であることを特徴とする。
(d) Structure of the invention This invention connects a high-pressure activated carbon adsorption tower to a gas layer of a solvent tank storing solvents such as fluorocarbons through an intake line and a compressor for sucking the solvent gas, and the high-pressure activated carbon adsorption tower In addition to disposing an activated carbon layer, a heat exchanger is disposed to cool the activated carbon layer during gas adsorption and heat the activated carbon layer during gas desorption.The next stage of the high-pressure activated carbon adsorption tower is It is characterized by being a solvent recovery device connected to a vacuum cooling tower with an evaporator inside.

(ホ)発明の作用 この発明によれば、溶剤槽から上方に流動して大気中に
流出しようとする溶剤より発生したガスは、圧縮機の駆
動により吸引ラインを介して高圧活性炭吸着塔に吸引圧
縮され、この加圧作用と、熱交換器の冷却作用との相乗
効果により吸着能力が大幅に向上された活性炭層に吸着
する。
(E) Effect of the Invention According to this invention, the gas generated by the solvent flowing upward from the solvent tank and attempting to flow out into the atmosphere is sucked into the high-pressure activated carbon adsorption tower through the suction line by the drive of the compressor. It is compressed and adsorbed onto the activated carbon layer, whose adsorption capacity is greatly improved due to the synergistic effect of this pressurizing action and the cooling action of the heat exchanger.

活性炭層に吸着処理させたガスは、塔内の減圧および熱
交換器の加熱作用により活性炭層より脱II(脱着とも
いう)して次段の減圧冷却塔に至り、この減圧冷却塔内
において、蒸発器の作用で冷却液化される。
The gas adsorbed onto the activated carbon layer is desorbed (also referred to as desorption) from the activated carbon layer by the reduced pressure in the tower and the heating action of the heat exchanger, and reaches the next stage vacuum cooling tower.In this vacuum cooling tower, It is cooled and liquefied by the action of an evaporator.

(へ)発明の効果 このように、ガス吸着時と活性炭層を加圧、冷却するこ
とで、活性炭のガス吸着能力を大幅に向上させることが
できるので、装置の小型コンパクト化を図ることができ
る効果があり、高圧活性炭吸着塔内の減圧および活性炭
層の加熱により該活性炭層から脱離したガスを次段の減
圧冷却塔で冷却液化して回収再利用することができる。
(f) Effects of the invention As described above, by pressurizing and cooling the activated carbon layer during gas adsorption, the gas adsorption capacity of activated carbon can be greatly improved, making it possible to make the device smaller and more compact. This is effective, and the gas desorbed from the activated carbon layer due to the reduced pressure in the high-pressure activated carbon adsorption tower and the heating of the activated carbon layer can be cooled and liquefied in the next-stage vacuum cooling tower, and then recovered and reused.

したがって、回収装置全体が小型コンパクトになること
により、例えばフロン洗浄装置に対して容易に取付けて
、ユニット化を図ることができるのは勿論、溶剤消費量
の低減を図ることができ、また溶剤ガスによる大気汚染
を防止することができる効果がある。
Therefore, by making the entire recovery device small and compact, it is possible to easily attach it to, for example, a fluorocarbon cleaning device and unitize it, as well as reduce the amount of solvent consumed. It has the effect of preventing air pollution caused by.

加えて、減圧冷却塔に対するガス投入前に、咳塔を前述
の圧縮機の吸込み側に連通して塔内を減圧すると、塔容
積が小さくても大量のガスを投入することができるので
、この減圧冷却塔の小容積化を図ることができる効果が
ある。
In addition, before gas is injected into the vacuum cooling tower, if the pressure inside the tower is reduced by communicating the cough tower with the suction side of the compressor mentioned above, a large amount of gas can be injected even if the tower volume is small. This has the effect of reducing the volume of the vacuum cooling tower.

(ト)発明の実施例 この発明の一実施例を以下図面に基づいて詳述する。(g) Examples of the invention An embodiment of the present invention will be described in detail below based on the drawings.

図面は溶剤回収装置を示し、例えば内部にR113等の
溶剤を貯溜したフロン洗浄機1を設け、このフロン洗浄
機1のフロンガス層上部に張架した冷却手段(冷却コイ
ルや冷却ジャケット等)の上側部には、溶剤ガスを吸引
する吸気ライン2を接続している。
The drawing shows a solvent recovery device, for example, a fluorocarbon washer 1 in which a solvent such as R113 is stored is installed, and the upper side of the cooling means (cooling coil, cooling jacket, etc.) stretched over the fluorocarbon gas layer of this fluorocarbon washer 1. An intake line 2 for sucking solvent gas is connected to the section.

この吸気ライン2には吸引ガスを圧縮して、ガス濃度を
高化する圧縮機3を介して高圧冷却塔4を接続すると共
に、この高圧冷却塔4内の略中夫には、溶剤より発生し
たガスを高圧(たとえばプラス圧〜5に9/ai>下で
冷却液化する第1蒸発器5を配設している。
A high-pressure cooling tower 4 is connected to this intake line 2 via a compressor 3 that compresses the suction gas and increases the gas concentration. A first evaporator 5 is provided which cools and liquefies the gas under high pressure (for example, positive pressure to 5 to 9/ai).

この第1蒸発器5は冷凍サイクルの熱交換器で、R11
、R12、R22等の冷媒を用いる冷凍機に方いて、圧
縮機の吐出側に凝縮器、受液器、液電磁弁1.膨張機構
<m張弁やキャピラリーチューブ)を介して上述の第1
蒸発器5を接続し、この第1蒸発器5の後位をアキュー
ムレータを介して圧縮機に接続して冷凍サイクルを構成
する。
This first evaporator 5 is a heat exchanger of a refrigeration cycle, and R11
For refrigerators using refrigerants such as , R12, R22, etc., a condenser, a liquid receiver, and a liquid solenoid valve 1. The above-mentioned first
An evaporator 5 is connected, and a downstream part of the first evaporator 5 is connected to a compressor via an accumulator to form a refrigeration cycle.

上述の冷凍サイクルは周知の如く、圧縮機の駆動により
、同圧縮機で圧縮され高圧となった冷媒が、凝縮器に送
られ、ここで液化して受液器に至った後に、この高圧冷
媒は液電磁弁を介して膨張機構に導びかれ、この膨張機
構で絞り膨張されて低圧となった冷媒は上述の第1蒸発
器5に入り、周囲より熱を奪って蒸発して蒸発ガスとな
り、アキュムレータを介して再び圧縮機に吸い込まれる
As is well known, in the above-mentioned refrigeration cycle, when the compressor is driven, the compressor compresses the refrigerant, which becomes high-pressure, and sends it to the condenser, where it is liquefied and reaches the receiver, after which the high-pressure refrigerant is The refrigerant is guided to the expansion mechanism via the liquid electromagnetic valve, and the refrigerant, which is throttled and expanded by this expansion mechanism to a low pressure, enters the first evaporator 5 mentioned above, absorbs heat from the surroundings, and evaporates to become evaporated gas. , is sucked into the compressor again via the accumulator.

前述の高圧冷却塔4の液溶側貯溜部位としての底部と、
フロン洗浄Ia1内の蒸溜槽(図示せず)上部との間に
は、第1電磁弁6および第1液体ポンプ7を介設した第
1リターン路8を接続して、上述の第1蒸発器5で冷却
液化された液溶剤をフロン洗浄機1の所定部に還流すべ
く構成している。
The bottom of the above-mentioned high-pressure cooling tower 4 as a storage part on the liquid solution side;
A first return path 8 in which a first electromagnetic valve 6 and a first liquid pump 7 are interposed is connected between the upper part of a distillation tank (not shown) in the Freon cleaning Ia1, and the first return path 8 is connected to the above-mentioned first evaporator. The liquid solvent cooled and liquefied in step 5 is refluxed to a predetermined part of the fluorocarbon washer 1.

上述め高圧冷却塔4の上部には第1送気管9を介して高
圧活性炭吸着塔10を接続している。
A high-pressure activated carbon adsorption tower 10 is connected to the upper part of the above-mentioned high-pressure cooling tower 4 via a first air pipe 9.

この高圧活性炭吸着塔10の内部中央にはアクティブカ
ーボン(act 1vated carbon )によ
る吸着ロータなどの活性炭層11・・・を上下に離間し
て複数層例えば合計3層配設し、かつ、これら活性炭層
11.11間にはヒートポンプ装置(図示せず)に接続
した熱交換器12.12を配設している。
In the center of the high-pressure activated carbon adsorption tower 10, a plurality of activated carbon layers 11, such as an adsorption rotor made of active carbon, are arranged vertically apart, for example, three layers in total, and these activated carbon layers A heat exchanger 12.12 connected to a heat pump device (not shown) is arranged between 11.11 and 11.11.

上述の熱交換器12.12は上述のヒートポンプ装置の
四路切換弁(図示せず)等の切換制御で、ガス吸着時に
は活性炭層11.11を冷却するエバポレータ(蒸発器
)として作用する一方、ガス脱離時には活性炭1121
1.11を加熱するコンデンサ(凝縮器)として作用す
る。
The heat exchanger 12.12 described above is controlled by a four-way switching valve (not shown) of the heat pump device described above, and functions as an evaporator that cools the activated carbon layer 11.11 during gas adsorption. Activated carbon 1121 during gas desorption
Acts as a condenser (condenser) to heat 1.11.

また、前述の高圧活性炭吸着塔10の上部塔外には、こ
の高圧活性炭吸着塔10内を所定高圧に保持する開閉制
御可能な圧力調整弁13を接続し、この圧力調整弁13
の設定圧を圧縮機吐出圧力と対応する圧力に設定してい
る。
Furthermore, a pressure regulating valve 13 that can be opened and closed and that maintains the inside of the high-pressure activated carbon adsorption tower 10 at a predetermined high pressure is connected to the outside of the upper tower of the above-mentioned high-pressure activated carbon adsorption tower 10.
The set pressure of the compressor is set to a pressure corresponding to the compressor discharge pressure.

この圧力調整弁13の前位っまり上流側には、第2N磁
弁14を介設した第2送気管15を介して、減圧冷却塔
16を接続している。
A reduced pressure cooling tower 16 is connected directly upstream of this pressure regulating valve 13 via a second air pipe 15 in which a second N magnetic valve 14 is interposed.

そして、この減圧冷却塔16の内部の略中夫には第2蒸
発器17を配設する一方、この減圧冷却塔16の液溶側
貯溜部位としての底部と、前述のフロン洗浄機1内の蒸
溜槽上部との間には第3電磁弁18および第2液体ポン
プ19を介設した第2リターン路20を接続して、上述
の蒸発器17で冷却液化された液溶剤を還流すべく構成
している。
A second evaporator 17 is disposed approximately inside the vacuum cooling tower 16, while the bottom of the vacuum cooling tower 16 serving as the liquid solution side storage area and the fluorocarbon washing machine 1 described above A second return path 20 having a third solenoid valve 18 and a second liquid pump 19 interposed therebetween is connected to the upper part of the distillation tank, and is configured to return the liquid solvent cooled and liquefied in the evaporator 17. are doing.

さらに、上述の減圧冷却塔16と前述の圧縮機3の吸込
み側との間には、第4電磁弁21および逆止弁22を介
設した減圧ライン23を接続して、該冷却塔16に対す
るガス投入前に同冷却塔16内を負圧に減圧制御するこ
とで、塔容積の小型化を図っている。
Further, a pressure reduction line 23 having a fourth electromagnetic valve 21 and a check valve 22 is connected between the above-mentioned reduced pressure cooling tower 16 and the suction side of the above-mentioned compressor 3. By controlling the pressure inside the cooling tower 16 to be reduced to negative pressure before gas is introduced, the volume of the tower is reduced.

図示実施例は上記の如く構成するものにして、以下作用
を説明する。
The illustrated embodiment is constructed as described above, and its operation will be explained below.

フロン洗浄111でのワーク洗浄に際して、ワークの出
し入れにともなって上方へ流動しようとする溶剤より発
生したガスは、圧縮I13の駆動により前述の吸気ライ
ン2を介して吸引され、この吸引ガスは圧縮1113で
圧縮されて、ガス81度が高くなる。
When cleaning the workpiece in the freon cleaning 111, the gas generated from the solvent that tends to flow upward as the workpiece is taken in and out is sucked through the above-mentioned suction line 2 by the drive of the compression I13, and this suction gas is The temperature of the gas increases to 81 degrees.

上述の圧縮機3により高sri化されたガスは高圧冷却
塔4内に流入し、蒸発器5の作用によって所定高圧下(
例えばプラス圧〜5 Kg / cd )で冷却液化す
る。
The gas made high in sri by the compressor 3 described above flows into the high pressure cooling tower 4, and is heated under a predetermined high pressure by the action of the evaporator 5.
For example, it is cooled and liquefied at a positive pressure of ~5 Kg/cd).

冷却液化された液溶剤は上述の高圧冷却塔4底部に貯溜
し、第1電磁弁6の開弁および第1液体ポンプ7の駆動
時に第1リターン路8を介してフロン洗浄機1の蒸溜槽
に還流され、再利用に供される。
The cooled and liquefied liquid solvent is stored at the bottom of the above-mentioned high-pressure cooling tower 4, and when the first electromagnetic valve 6 is opened and the first liquid pump 7 is driven, it is sent to the distillation tank of the fluorocarbon cleaning machine 1 via the first return path 8. The waste is refluxed and reused.

上述の蒸発器5の作用で液化されない比較的低WJr!
iのガスは、第1送気管9を介して次段の高圧活性炭吸
着塔10内に送気される。
Relatively low WJr that is not liquefied due to the action of the evaporator 5 mentioned above!
The gas i is sent through the first air pipe 9 into the high-pressure activated carbon adsorption tower 10 at the next stage.

この高圧活性炭吸着塔10は、複数の活性炭層11に対
するガス吸着時に、塔内を前述の圧力調整弁13の設定
圧に保持すると共に、活性炭層11.11間に介設した
熱交換器12をエバポレータとして作用させ、斯る加圧
、冷却の両条件により活性体層11におけるアクティブ
カーボンの吸着能力を大幅に高めるので、前述の低濃度
ガスはその分子がアクティブカーボンの界面(1nte
rface)部分に高効率で吸着処理される。
This high-pressure activated carbon adsorption tower 10 maintains the inside of the tower at the set pressure of the above-mentioned pressure regulating valve 13 when gas is adsorbed onto the plurality of activated carbon layers 11, and also uses a heat exchanger 12 interposed between the activated carbon layers 11 and 11. By acting as an evaporator, the adsorption capacity of active carbon in the active layer 11 is greatly increased by both pressurization and cooling conditions.
rface) area with high efficiency.

このようにして活性炭層11に吸@ (adsOrEl
tion)されたガス分子を脱離(desorptio
n)するには、まず圧力調整弁13を開弁して高圧活性
炭吸着塔10内を減圧し、次に圧力調整弁13を閉弁す
る。
In this way, the activated carbon layer 11 is absorbed @ (adsOrEl
desorption of the desorbed gas molecules
n), first, the pressure regulating valve 13 is opened to reduce the pressure inside the high-pressure activated carbon adsorption tower 10, and then the pressure regulating valve 13 is closed.

次に減圧ライン23に介設した第4電磁弁21を開弁じ
て圧縮813の駆動で予め次段の減圧冷却塔16内を負
圧に減圧処理した後に、第4電磁弁21を閉弁する。
Next, the fourth solenoid valve 21 installed in the decompression line 23 is opened and the pressure inside the next stage decompression cooling tower 16 is previously reduced to negative pressure by the drive of the compressor 813, and then the fourth solenoid valve 21 is closed. .

次に第2送気管15を介設した第2N磁弁15を開弁す
ると共に、ヒートポンプ装置に接続した前述の熱交換器
12・・・を四路切換弁等の切換制御によりコンデンサ
として作用させると、活性炭層11・・・は減圧条件下
で加熱されるので、この活性炭ff111・・・に吸着
した低濃度ガスはアクティブカーボンから脱離し、第2
送気管15を介して減圧冷却塔16内に送気される。
Next, the second N magnetic valve 15 with the second air pipe 15 interposed therebetween is opened, and the aforementioned heat exchanger 12 connected to the heat pump device is operated as a condenser by switching control of a four-way switching valve or the like. Since the activated carbon layer 11... is heated under reduced pressure conditions, the low concentration gas adsorbed on the activated carbon ff111... is desorbed from the active carbon and becomes the second layer.
Air is sent into the vacuum cooling tower 16 via the air pipe 15.

この減圧冷却塔16内に流入した低濃度ガスは第2蒸発
器17の作用によって冷却液化され、冷却液化された液
溶剤は該減圧冷却塔16底部に貯溜する。
The low concentration gas flowing into the vacuum cooling tower 16 is cooled and liquefied by the action of the second evaporator 17, and the cooled and liquefied liquid solvent is stored at the bottom of the vacuum cooling tower 16.

そして、第31!!磁弁18の開弁および第2液体ポン
プ19の駆動時に第2リターン路20を介して上述の液
溶剤がフロン洗浄機1の蒸溜槽に還流されて、再利用に
供される。
And the 31st! ! When the magnetic valve 18 is opened and the second liquid pump 19 is driven, the above-described liquid solvent is returned to the distillation tank of the fluorocarbon washer 1 through the second return path 20 and is reused.

なお、前述の第1リターン路8と第2リターン路20並
びに第1液体ポンプ7と、第2液体ポンプ19とは何れ
か一方のみに単一化して多塔4,16で共用してもよい
Note that the first return path 8, the second return path 20, the first liquid pump 7, and the second liquid pump 19 may be unified into one and used in common by the multi-columns 4 and 16. .

以上要するに、ガス吸着時に活性炭層11・・・を加圧
、冷却することで、活性炭のガス吸着能力を大幅に向上
させることができ、この結果、装置の小型コンパクト化
を図ることができる効果がある。
In summary, by pressurizing and cooling the activated carbon layer 11 during gas adsorption, the gas adsorption capacity of activated carbon can be greatly improved, and as a result, the device can be made smaller and more compact. be.

また、^圧活性炭吸着塔10内の減圧および活性炭層1
1・・・の加熱により該活性炭層11・・・からlll
1脱したガスを次段の減圧冷却塔16で冷却液化して回
収再利用することができる効果がある。
In addition, the pressure reduction in the ^ pressure activated carbon adsorption tower 10 and the activated carbon layer 1
1... by heating the activated carbon layer 11... to lll.
There is an effect that the degassed gas can be cooled and liquefied in the vacuum cooling tower 16 of the next stage, and can be recovered and reused.

したがって、回収装置全体が小型コンパクトになること
により、例えばフロン洗浄装置等に対して回収装置を容
易に取付けて、両装置の一体ユニット化を図ることがで
きるのは勿論、溶剤消″f!1の低減を図ることができ
、また溶剤ガスによる大気汚染を防止することができる
効果がある。
Therefore, by making the entire recovery device small and compact, it is possible to easily attach the recovery device to, for example, a fluorocarbon cleaning device, and to integrate both devices into an integrated unit. This has the effect of reducing air pollution and preventing air pollution caused by solvent gas.

加えて、減圧冷却塔16に対するガス投入前に、該塔1
6を前述の圧縮1m13の吸込み側に連通して塔16内
を減圧すると、塔容積が小さくても大量の°ガスを投入
することができるので、この減圧冷却塔16の小容積化
を図ることができる効果がある。
In addition, before gas is introduced into the vacuum cooling tower 16,
6 is connected to the suction side of the above-mentioned compression 1 m 13 to reduce the pressure inside the tower 16, a large amount of gas can be injected even if the tower volume is small, so it is possible to reduce the volume of this vacuum cooling tower 16. It has the effect of

さらに、実tIM!1様項で示したように、圧縮機3の
吐出側に高圧活性炭吸着塔10との間に前述の高圧冷却
塔4を介設すると、上述の各効果と併わ゛せて、次のよ
うな効果がある。
Furthermore, real tIM! As shown in Section 1, when the above-mentioned high-pressure cooling tower 4 is interposed between the discharge side of the compressor 3 and the high-pressure activated carbon adsorption tower 10, in addition to the above-mentioned effects, the following effects are achieved. There is an effect.

すなわち、回収した溶剤ガスのガスa度を圧縮機3で高
めて、このガスを高圧冷却塔4で冷却液化することがで
きるので、濃度の薄いガスでも充分に回収液化すること
ができるので、溶剤回収能力の大幅な向上を図ることが
できる効果がある。
In other words, the gas degree of the recovered solvent gas can be increased by the compressor 3, and this gas can be cooled and liquefied by the high-pressure cooling tower 4, so even gas with a low concentration can be sufficiently recovered and liquefied. This has the effect of significantly improving collection capacity.

この発明の構成と、上述の実施例との対応において、 この発明のフロン等の溶剤を貯溜した溶剤槽は、実施例
のフロン洗浄機1に対応し、 以下同様に、 減圧冷却塔内の蒸発器は、第2蒸発器17に対応し、 高圧冷却塔内の蒸発器は、第1蒸発器5に対応するも、 この発明は、上述の実施例の構成のみに限定されるもの
ではない。
In the correspondence between the structure of this invention and the above-mentioned embodiments, the solvent tank storing the solvent such as chlorofluorocarbon of this invention corresponds to the fluorocarbon cleaning machine 1 of the embodiment, and similarly, the evaporation in the vacuum cooling tower The evaporator in the high-pressure cooling tower corresponds to the second evaporator 17, and the evaporator in the high-pressure cooling tower corresponds to the first evaporator 5. However, the present invention is not limited to the configuration of the above-described embodiment.

例えば被回収溶剤としては、R113単体の他に、R1
13をベースにした混合溶剤やその他の塩素系溶剤であ
ってもよい。
For example, in addition to R113 alone, R1
A mixed solvent based on No. 13 or other chlorinated solvents may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を示す溶剤回収装置の系統図
である。 1・・・フロン洗浄機   2・・・吸気ライン3・・
・圧縮機      4・・・高圧冷却塔5・・・第1
蒸発器 10・・・高圧活性炭吸着塔
The drawing is a system diagram of a solvent recovery device showing an embodiment of the present invention. 1... Freon cleaning machine 2... Intake line 3...
・Compressor 4...High pressure cooling tower 5...1st
Evaporator 10...high pressure activated carbon adsorption tower

Claims (2)

【特許請求の範囲】[Claims] (1)フロン等の溶剤を貯溜した溶剤槽のガス層に、溶
剤ガスを吸引する吸気ラインおよび 圧縮機を介して高圧活性炭吸着塔を接続し、この高圧活
性炭吸着塔内には、活性炭層を 配設すると共に、ガス吸着時に活性炭層を 冷却する一方、ガス脱離時に活性炭層を加 熱する熱交換器を配設し、 上記高圧活性炭吸着塔の次段には、内部に 蒸発器を配設した減圧冷却塔を接続した 溶剤回収装置。
(1) A high-pressure activated carbon adsorption tower is connected to the gas layer of a solvent tank storing solvents such as chlorofluorocarbons via an intake line and a compressor that sucks in the solvent gas, and an activated carbon layer is installed inside this high-pressure activated carbon adsorption tower. At the same time, a heat exchanger is installed to cool the activated carbon layer during gas adsorption and heat the activated carbon layer during gas desorption.The next stage of the high-pressure activated carbon adsorption tower is an internal evaporator. Solvent recovery equipment connected to a vacuum cooling tower.
(2)上記圧縮機の吐出側と高圧活性炭吸着塔との間に
、高圧冷却塔を介設すると共に、 上記高圧冷却塔内には溶剤より発生したガ スを高圧下で冷却液化する蒸発器を配設し た 特許請求の範囲第1項記載の 溶剤回収装置。
(2) A high-pressure cooling tower is interposed between the discharge side of the compressor and the high-pressure activated carbon adsorption tower, and an evaporator is installed in the high-pressure cooling tower to cool and liquefy the gas generated from the solvent under high pressure. A solvent recovery device according to claim 1, wherein a solvent recovery device is provided.
JP62314659A 1987-12-12 1987-12-12 Solvent recovery device Granted JPH01155932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62314659A JPH01155932A (en) 1987-12-12 1987-12-12 Solvent recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62314659A JPH01155932A (en) 1987-12-12 1987-12-12 Solvent recovery device

Publications (2)

Publication Number Publication Date
JPH01155932A true JPH01155932A (en) 1989-06-19
JPH0460689B2 JPH0460689B2 (en) 1992-09-28

Family

ID=18055989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62314659A Granted JPH01155932A (en) 1987-12-12 1987-12-12 Solvent recovery device

Country Status (1)

Country Link
JP (1) JPH01155932A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183496A (en) * 1990-11-19 1992-06-30 Mitsubishi Heavy Ind Ltd Dry cleaner
JP2010253385A (en) * 2009-04-24 2010-11-11 Tokyo Metropolitan Industrial Technology Research Institute Apparatus and method for treating volatile organic compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50153773A (en) * 1974-06-04 1975-12-11
JPS51103872A (en) * 1975-03-10 1976-09-14 Kobe Giken Kogyo Kk YOZAIKAISHUHOHOOYOBISOCHI

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50153773A (en) * 1974-06-04 1975-12-11
JPS51103872A (en) * 1975-03-10 1976-09-14 Kobe Giken Kogyo Kk YOZAIKAISHUHOHOOYOBISOCHI

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183496A (en) * 1990-11-19 1992-06-30 Mitsubishi Heavy Ind Ltd Dry cleaner
JP2010253385A (en) * 2009-04-24 2010-11-11 Tokyo Metropolitan Industrial Technology Research Institute Apparatus and method for treating volatile organic compound

Also Published As

Publication number Publication date
JPH0460689B2 (en) 1992-09-28

Similar Documents

Publication Publication Date Title
JP2000234814A (en) Vapor compressed refrigerating device
JP2008128535A (en) Bleeder for compression type refrigerating machine
JP2000121192A5 (en)
JP2009121725A (en) Refrigerating device and multistage refrigerating device
JPH01155932A (en) Solvent recovery device
JPH1157394A (en) Device for recovering organic solvent
JPH01155901A (en) Solvent recovering apparatus
JP2000146372A (en) Refrigerant recovering apparatus
JP3486852B2 (en) Method and apparatus for centrally controlling prevention of air pollution by refrigerant
JP2004116929A (en) Coolant recovery device and coolant recovery method for refrigerator using combustible coolant
JPH05340619A (en) Low pressure stage refrigerant system in double-pressure type freezer device
JPH04313647A (en) Heat pump type air conditioner
JPH0835736A (en) Compression and absorption type compound refrigerator
JP3550616B2 (en) Method of recovering refrigerant enclosed in refrigeration facility and recovery apparatus
JPH06109338A (en) Refrigerating machine circuit and gas recovering device employing the circuit
CN1782621B (en) Freezing circulation device and its control method
JP4106685B2 (en) Supercritical vapor compression cycle
JP2000074515A (en) Air conditioner
JPH03204569A (en) Refrigerating method using oil injection type screw compressor and heat pump method
JP2001272129A (en) Refrigerating unit
JPH03502358A (en) Preferably a method and apparatus for pumping refrigerant
JPH06323666A (en) Refrigerator
JPH01225874A (en) Refrigerant retrieving device
JPS6248974A (en) Cryopump
CN118565116A (en) Gas-steam separation device, refrigerating system and electronic equipment