JPH01155901A - Solvent recovering apparatus - Google Patents

Solvent recovering apparatus

Info

Publication number
JPH01155901A
JPH01155901A JP62314658A JP31465887A JPH01155901A JP H01155901 A JPH01155901 A JP H01155901A JP 62314658 A JP62314658 A JP 62314658A JP 31465887 A JP31465887 A JP 31465887A JP H01155901 A JPH01155901 A JP H01155901A
Authority
JP
Japan
Prior art keywords
solvent
vapor
gas
pressure
cooling tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62314658A
Other languages
Japanese (ja)
Other versions
JPH07112522B2 (en
Inventor
Toshio Horimoto
堀本 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OTSUKA GIKEN KOGYO KK
Original Assignee
OTSUKA GIKEN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OTSUKA GIKEN KOGYO KK filed Critical OTSUKA GIKEN KOGYO KK
Priority to JP62314658A priority Critical patent/JPH07112522B2/en
Publication of JPH01155901A publication Critical patent/JPH01155901A/en
Publication of JPH07112522B2 publication Critical patent/JPH07112522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Coating Apparatus (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To recover solvent vapor of freon, etc., generated in a work-washing stage without discharging it to atmospheric air by liquefying the vapor by compression through a sucking line of the solvent vapor. CONSTITUTION:A vapor sucking line for solvent vapor is connected to an upper side part of a freon washing machine which performs work-washing with a solvent such as freon, etc. The sucking line 2 is connected to a high pressure cooling tower 4 via a compressor 3, and a first evaporator 5 for cooling and liquefying the solvent vapor is installed to almost a center of the inside of the high pressure cooling tower 4. A first vapor feeding pipe 9 is attached to the top of the high pressure cooling tower 4, and a high pressure adsorption tower 10 contg. active carbon is connected interposing the first vapor feeding pipe 9. A vacuum cooling tower 16 is connected to the top of the adsorption tower contg. the active carbon through a second vapor feeding pipe. By this process, recovered solvent vapor is liquefied by cooling by increasing the concn. of the recovered solvent vapor, so even such solvent vapor having low solvent concn. can be recovered and liquefied satisfactorily.

Description

【発明の詳細な説明】 (イ)発明の分野 この発明は、例えば半導体や電子機器その他のワーク洗
浄に用いるR113および塩素系溶剤より発生したガス
を回収するような溶剤回収装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of the Invention The present invention relates to a solvent recovery device for recovering gas generated from R113 and chlorine-based solvents used, for example, in cleaning semiconductors, electronic devices, and other workpieces.

(ロ)従来技術 従来、上述例の半導体や電子機器その他の各種ワークの
洗浄には、R113(CCJI2FCCjF2、化学名
は1.1.2−トリクロル−1,2゜2−トリフルオル
エタン)や塩素系溶剤等が用いられているが、R113
および塩素系溶剤が洗浄中に溶剤ガスとして大気中に流
出し、大気汚染の要因となる。
(B) Prior Art Conventionally, R113 (CCJI2FCCjF2, chemical name: 1.1.2-trichloro-1,2°2-trifluoroethane) and chlorine have been used to clean semiconductors, electronic devices, and other various workpieces as described above. Although R113-based solvents are used,
Also, chlorinated solvents leak into the atmosphere as solvent gas during cleaning, causing air pollution.

このような溶剤ガスの流出を防止し、同溶剤より発生し
たガスを回収するため、従来においては活性炭(アクテ
ィブカーボン)による吸着ロータを有する活性炭吸着装
置などの回収装置が用いられていたが、ガス吸着能力が
低いため装置が大型化し、また管理が煩雑なうえ、コス
ト高となり、加えてフロン洗浄機とのユニット化が困難
となる等の諸種の問題点を有していた。
In order to prevent such outflow of solvent gas and recover the gas generated from the same solvent, recovery devices such as activated carbon adsorption devices with adsorption rotors using activated carbon have been used in the past. Due to the low adsorption capacity, the device becomes large, the management is complicated, the cost is high, and in addition, it is difficult to unitize with a fluorocarbon cleaning machine.

(ハ)発明の目的 この発明は、回収した溶剤ガスのガス濃度を高めて冷却
液化することで、濃度の薄いガスでも充分回収液化する
ことができて、回収能力の向上を図ると共に、装置の小
型化を図ることができる溶剤回収装置の提供を目的とす
る。
(c) Purpose of the Invention This invention increases the gas concentration of the recovered solvent gas and liquefies it by cooling, thereby making it possible to sufficiently recover and liquefy even gas with a low concentration. The purpose of the present invention is to provide a solvent recovery device that can be downsized.

(ニ)発明の構成 この発明は、フロン等の溶剤を貯溜した溶剤槽のガス層
に、溶剤ガスを吸引する吸気ラインを接続し、この吸気
ラインに圧縮機を介して高圧冷却塔を接続すると共に、
上記平圧冷却塔には、溶剤より発生したガスを高圧下で
冷却液化する蒸発器を配設した溶剤回収装置であること
を特徴とする。
(d) Structure of the Invention This invention connects an intake line for sucking solvent gas to the gas layer of a solvent tank storing solvents such as fluorocarbons, and connects a high-pressure cooling tower to this intake line via a compressor. With,
The flat pressure cooling tower is characterized by being a solvent recovery device equipped with an evaporator that cools and liquefies the gas generated from the solvent under high pressure.

(ホ)発明の作用 この発明によれば、溶剤槽から上方に流動して大気中に
流出しようとする溶剤より発生したガスは、圧縮機の駆
動により吸気ラインを介して吸引圧縮されて高濃度とな
り、このtS濃度となったガスは高圧冷却塔内において
、蒸発器の作用で冷却液化される。
(E) Effect of the Invention According to this invention, the gas generated by the solvent flowing upward from the solvent tank and attempting to flow out into the atmosphere is suctioned and compressed through the intake line by the drive of the compressor, and is concentrated to a high concentration. The gas having this tS concentration is cooled and liquefied by the action of the evaporator in the high-pressure cooling tower.

(へ)発明の効果 この結果、回収した溶剤ガスのガス濃度を高めて冷却液
化することができるので、濃度の薄いガスでも充分回収
液化することができて、回収能力の向上を図ると共に、
装置の小型化を図ることができる効果がある。
(f) Effects of the invention As a result, the gas concentration of the recovered solvent gas can be increased and the gas can be cooled and liquefied, so even gas with a low concentration can be sufficiently recovered and liquefied, improving the recovery capacity and
This has the effect of making the device smaller.

また回収液化した液溶剤は再利用に供することができる
ので、溶剤消費囲の低減を図ることができると共に、溶
剤ガ、スによる大気汚染を防止することができる効果が
ある。
Furthermore, since the recovered and liquefied liquid solvent can be reused, it is possible to reduce the amount of solvent consumed and to prevent air pollution caused by solvent gas and gas.

加えて、簡単な装置および配管を付加することで、例え
ばフロン洗浄装置に対して容易に取付けることができて
、ユニット化が可能となる効果がある。
In addition, by adding a simple device and piping, it can be easily attached to, for example, a fluorocarbon cleaning device, making it possible to unitize the device.

(ト)発明の実施例 この発明の一実施例を以下図面に基づいて詳”rfi=
する。
(G) Embodiment of the Invention An embodiment of the invention will be described in detail below based on the drawings.
do.

図面は溶剤回収装置を示し、例えば内部にR113等の
溶剤を貯溜したフロン洗浄機1を設け、このフロン洗浄
1111のフロンガス層上部に張架した冷却手段(冷u
1コイルや冷却ジャケット等)の上側部には、溶剤ガス
を吸引する吸気ライン2を接続している。
The drawing shows a solvent recovery device, for example, a fluorocarbon cleaning machine 1 that stores a solvent such as R113 inside, and a cooling means (cooling utensil) stretched over the fluorocarbon gas layer of this fluorocarbon cleaning 1111.
1 coil, cooling jacket, etc.) is connected to an intake line 2 for sucking the solvent gas.

この吸気ライン2には吸引ガスを圧縮して、ガス濃度を
高化する圧縮機3を介して高圧冷却塔4を接続すると共
に、この高圧冷却塔4内の略中火には、溶剤より発生し
たガスを高圧(たとえばプラス圧〜5Kg/d)下で冷
却液化する第1蒸発器5を配設している。
A high-pressure cooling tower 4 is connected to this intake line 2 via a compressor 3 that compresses the suction gas and increases the gas concentration. A first evaporator 5 is provided to cool and liquefy the gas under high pressure (for example, positive pressure to 5 kg/d).

この第1蒸発器5は冷凍サイクルの熱交換器で、R11
、R12、R22等の冷媒を用いる冷凍機において、圧
縮機の吐出側に凝縮器、受液器、液if磁弁、膨張機構
(膨張弁やキャピラリーチューブ)を介して上述の第1
蒸発器5を接続し、この第1蒸発器5の後位をアキュー
ムレータを介して圧縮機に接続して冷凍サイクルを構成
する。
This first evaporator 5 is a heat exchanger of a refrigeration cycle, and R11
, R12, R22, etc., the above-mentioned first
An evaporator 5 is connected, and a downstream part of the first evaporator 5 is connected to a compressor via an accumulator to form a refrigeration cycle.

上述の冷凍サイクルは周知の如く、圧縮機の駆動により
、同圧縮機で圧縮され高圧となった冷媒が、凝縮器に送
られ、ここで液化して受液器に至った後に、この高圧冷
媒は液電磁弁を介して膨張機構に尊びかれ、この膨張機
構で絞り膨張されて低圧となった冷媒は上述の第1蒸発
器5に入り、周囲より熱を奪って蒸発して蒸発ガスとな
り、アキュムレータを介して再び圧縮機に吸い込まれる
As is well known, in the above-mentioned refrigeration cycle, when the compressor is driven, the compressor compresses the refrigerant, which becomes high-pressure, and sends it to the condenser, where it is liquefied and reaches the receiver, after which the high-pressure refrigerant is The refrigerant is sent to the expansion mechanism via the liquid electromagnetic valve, and the refrigerant that has been throttled and expanded by the expansion mechanism to a low pressure enters the first evaporator 5, absorbs heat from the surroundings, and evaporates to become evaporated gas. It is sucked back into the compressor via the accumulator.

前述の高圧冷却塔4の液溶剤貯溜部位としての底部と、
フロン洗浄機1内の蒸溜WI(図示せず〉上部との間に
は、第1電磁弁6および第1液体ポンプ7を介設した第
1リターン路8を接続して、上述の第1蒸発器5で冷却
液化された液溶剤をフロン洗浄機1の所定部に還流すべ
く構成している。
the bottom of the aforementioned high-pressure cooling tower 4 as a liquid solvent storage area;
A first return path 8 in which a first solenoid valve 6 and a first liquid pump 7 are interposed is connected between the upper part of the distillation WI (not shown) in the fluorocarbon washer 1, and the above-mentioned first evaporation The system is configured so that the liquid solvent cooled and liquefied in the vessel 5 is returned to a predetermined part of the fluorocarbon cleaning machine 1.

上述の高圧冷却塔4の上部には第1送気管9を介して高
圧活性炭吸着塔10を接続している。
A high-pressure activated carbon adsorption tower 10 is connected to the upper part of the above-mentioned high-pressure cooling tower 4 via a first air pipe 9.

この高圧活性炭吸着塔10の内部中央にはアクティブカ
ーボン(activated carbon)による吸
着ロータなどの活性炭FJII・・・を上下に離間して
複数層例えば合計3層配設し、かつ、これら活性炭層1
1.11間にはヒートポンプ装置(図示せず)に接続し
た熱交換器12.12を配設している。
In the center of the high-pressure activated carbon adsorption tower 10, a plurality of layers of activated carbon FJII, such as an adsorption rotor made of activated carbon, are arranged vertically apart, for example, three layers in total, and these activated carbon layers 1
A heat exchanger 12.12 connected to a heat pump device (not shown) is arranged between 1.11 and 12.11.

上述の熱交換器12.12は上述のじ一トボンプ装置の
四路切換弁(図示せず゛)等の切換制御で、ガス吸着時
には活性炭層11..11を冷却するエバポレータ(蒸
発器)として作用する一方、ガス脱離時には活性炭層1
1.11を加熱するコンデンサ(凝縮器)として作用す
る。
The above-mentioned heat exchanger 12.12 is controlled by switching the four-way switching valve (not shown) of the above-mentioned single pump device, and when gas is adsorbed, the activated carbon layer 11. .. 11, while the activated carbon layer 1 acts as an evaporator to cool the activated carbon layer 1 during gas desorption.
Acts as a condenser (condenser) to heat 1.11.

また、前述の高圧活性炭吸着塔10の上部塔外には、こ
の高圧活性炭吸着塔10内を所定高圧に保持する開弁制
御可能な圧力調整弁13を接続し、この圧力調整弁13
の設定圧を圧縮機吐出圧力と対応する圧力に設定してい
る。
Further, a pressure regulating valve 13 whose opening can be controlled and which maintains the inside of this high pressure activated carbon adsorption tower 10 at a predetermined high pressure is connected to the outside of the upper tower of the above-mentioned high pressure activated carbon adsorption tower 10.
The set pressure of the compressor is set to a pressure corresponding to the compressor discharge pressure.

この圧力調整弁13の前位つまり上流側には、第2電磁
弁14を介設した第2送気管15を介して、減圧冷却塔
16を接続している。
A reduced pressure cooling tower 16 is connected upstream of the pressure regulating valve 13 via a second air pipe 15 in which a second electromagnetic valve 14 is interposed.

そして、この減圧冷却塔16の内部の略中夫には第2蒸
発器17を配設する一方、この減圧冷却塔16の液溶剤
貯溜部位としての底部と、前述のフロン洗浄機1内の熱
温槽上部との間には第3電磁弁18および第2液体ポン
プ19を介設した第2リターン路20を接続して、上述
の蒸発器17で冷W液化された液溶剤を遠流すべく構成
している。
A second evaporator 17 is disposed approximately inside the vacuum cooling tower 16, while the bottom of the vacuum cooling tower 16 as a liquid solvent storage area and the aforementioned fluorocarbon washer 1 are heated. A second return path 20 having a third electromagnetic valve 18 and a second liquid pump 19 interposed therebetween is connected to the upper part of the hot tank, so that the liquid solvent liquefied by the cold water in the evaporator 17 can be far-flowed. It consists of

ざらに、上述の減圧冷却塔16と前述の圧縮機3の吸込
み側との間には、第4電磁弁21および逆止弁22を介
設した減圧ライン23を接続して、該冷却塔16に対す
るガス投入前に同冷却塔16内を負圧に減圧制御するこ
とで、塔容積の小型化を図っている。
Roughly speaking, a pressure reduction line 23 having a fourth electromagnetic valve 21 and a check valve 22 interposed is connected between the above-mentioned reduced pressure cooling tower 16 and the suction side of the above-mentioned compressor 3. By controlling the pressure inside the cooling tower 16 to be reduced to negative pressure before gas is introduced into the cooling tower, the volume of the tower is reduced.

図示実施例は上記の如く構成するものにして、以下作用
を説明する。
The illustrated embodiment is constructed as described above, and its operation will be explained below.

フロン洗浄機1で、のワーク洗浄に際して、ワークの出
し入れにともなって上方へ流動しようとする溶剤より発
生したガスは、圧縮機3の駆動により前述の吸気ライン
2を介して吸引され、この吸引ガスは、圧縮機3で圧縮
されて、ガス濃度が高くなる。
When cleaning a workpiece in the Freon cleaning machine 1, the gas generated from the solvent that tends to flow upward as the workpiece is taken in and out is sucked through the above-mentioned intake line 2 by the drive of the compressor 3, and this suction gas is compressed by the compressor 3, and the gas concentration increases.

上述の圧縮機3により高濃度化されたガスは高圧冷却塔
4内に流入し、蒸発器5の作用によって所定高圧下(例
えばプラス圧〜5ky/cd)で冷却液化する。
The gas highly concentrated by the compressor 3 described above flows into the high-pressure cooling tower 4, and is cooled and liquefied under a predetermined high pressure (for example, positive pressure to 5 ky/cd) by the action of the evaporator 5.

冷却液化された液溶剤は上述の高圧冷却塔4底部に貯溜
し、第1電磁弁6の開弁および第1液体ポンプ7の駆動
時に第1リターン路8を介してフロン洗浄I11の熱温
槽に遠流され、再利用に供される。
The cooled and liquefied liquid solvent is stored at the bottom of the above-mentioned high-pressure cooling tower 4, and when the first electromagnetic valve 6 is opened and the first liquid pump 7 is driven, it is transferred to the thermothermal bath of the Freon cleaning I11 via the first return path 8. The water is sent to a distant place and used for reuse.

上述の蒸発器5の作用で液化されない比較的低濃度のガ
スは、第1送気管9を介して次段の高圧活性炭吸着塔1
0内に送気される。
The relatively low concentration gas that is not liquefied by the action of the evaporator 5 described above is passed through the first air pipe 9 to the high-pressure activated carbon adsorption tower 1 in the next stage.
Air is delivered within 0.

この高圧活性炭吸着塔10は、複数の活性炭層11に対
するガス吸着時に、塔内を前述の圧力調整弁13の設定
圧に保持すると共に、活性炭l!111.11間に介設
した熱交換器12をエバポレータとして作用させ、斯る
加圧、冷却の両条件により活性体層11におけるアクテ
ィブカーボンの吸着能力を大幅に高めるので、前述の低
濃度ガスはその分子がアクティブカーボンの界面(1n
terface)部分に高効率で吸着処理される。
This high-pressure activated carbon adsorption tower 10 maintains the inside of the tower at the set pressure of the pressure regulating valve 13 mentioned above during gas adsorption onto the plurality of activated carbon layers 11, and also maintains the activated carbon l! The heat exchanger 12 interposed between 111 and 11 acts as an evaporator, and the adsorption capacity of active carbon in the active layer 11 is greatly increased by both pressurization and cooling conditions. The molecule is the active carbon interface (1n
The adsorption treatment is carried out with high efficiency on the surface (interface) part.

このようにして活性炭層11に吸着(adsorpti
on)されたガス分子を脱離(aesorptton)
するには、まず圧力調整弁13を開弁じて高圧活性炭吸
着塔10内を減圧し、次に圧力調整弁13を閉弁する。
In this way, the activated carbon layer 11 is adsorbed.
desorbs (aesorptton) gas molecules that are turned on)
To do this, first, the pressure regulating valve 13 is opened to reduce the pressure inside the high-pressure activated carbon adsorption tower 10, and then the pressure regulating valve 13 is closed.

次に減圧ライン23に介設した第4電磁弁21を開弁し
て圧縮機3の駆動で予め次段の減圧冷却塔16内を負圧
に減圧処理した後に、第4電磁弁21を閉弁する。
Next, the fourth solenoid valve 21 installed in the decompression line 23 is opened, and after the compressor 3 is driven to reduce the pressure in the next stage decompression cooling tower 16 to negative pressure, the fourth solenoid valve 21 is closed. speak.

次に第2送気管15を介設した第2電磁弁15を開弁す
ると共に、ヒートポンプ装置に接続した前述の熱交換器
12・・・を四路切換弁等の切換制御によりコンデンサ
として作用させると、活性炭層11・・・は減圧条件下
で加熱されるので、この活性炭層11・・・に吸着した
低濃度ガスはアクティブカーボンから脱離し、第2送気
管15を介して減圧冷却塔16内に送気される。
Next, the second solenoid valve 15 with the second air pipe 15 interposed therebetween is opened, and the aforementioned heat exchanger 12 connected to the heat pump device is operated as a condenser by switching control of a four-way switching valve or the like. Since the activated carbon layer 11 is heated under reduced pressure conditions, the low-concentration gas adsorbed on the activated carbon layer 11 is desorbed from the active carbon and sent to the vacuum cooling tower 16 via the second air pipe 15. Air is blown inside.

この減圧冷却塔16内に流入した低濃度ガスは第2蒸発
S!17の作用によって冷却液化され、冷却液化された
液溶剤は該減圧冷却塔16底部に貯溜する。
The low concentration gas flowing into the vacuum cooling tower 16 is the second evaporator S! 17, and the cooled and liquefied liquid solvent is stored at the bottom of the vacuum cooling tower 16.

そして、第3電磁弁18の開弁および第2液体ポンプ1
9の駆動時に第2リターン路20を介して上述の液溶剤
がフロン洗浄機1の熱温槽に31!流されて、再利用に
供される。
Then, the third solenoid valve 18 is opened and the second liquid pump 1 is opened.
9, the above-mentioned liquid solvent is supplied to the hot bath of the Freon washer 1 through the second return path 20 31! It is washed away and given for reuse.

なお、前述の第1リターン路8と第2リターン路20並
びに第1液体ポンプ7と第2液体ポンプ19とは何れか
一方のみに単一化して8塔4.16′で共用してもよい
Note that the first return path 8, the second return path 20, the first liquid pump 7, and the second liquid pump 19 described above may be unified into only one of them and shared by the eight columns 4.16'. .

以上型するに、回収した溶剤ガスのガスIIr!1を高
めて冷却液化することができるので、濃度の薄いガスで
も充分に回収液化することができて、回収能力の大幅な
向上を図ることができ、また装置の小型化を図ることが
できる効果がある。
In summary, the recovered solvent gas IIr! 1 can be cooled and liquefied, so even gases with low concentrations can be sufficiently recovered and liquefied, greatly improving the recovery capacity and making the equipment more compact. There is.

加えて、回収液化した液溶剤を再利用に供することがで
きるので、溶剤消費量の低減を図ることができると共に
、溶剤ガスによる大気汚染を防止することができる効果
がある。
In addition, since the recovered and liquefied liquid solvent can be reused, the amount of solvent consumed can be reduced and air pollution caused by solvent gas can be prevented.

さらに、構造が簡単かつ小型コンパクトであるから、例
えばフロン洗浄装置に対して容易に取付けることができ
て、洗浄装置と回収装置との一体ユニット化を図ること
が可能となる。
Furthermore, since the structure is simple and compact, it can be easily attached to, for example, a fluorocarbon cleaning device, making it possible to integrate the cleaning device and the recovery device into an integrated unit.

この発明の構成と、上述の実施例との対応において、 この発明のフロン等の溶剤を貯溜した溶剤槽は、実施例
のフロン洗浄機1に対応し、 以下同様に、 蒸発器は、第1蒸発器5に対応するも、この発明は、上
述の実施例の構成のみに限定されるものではない。
In the correspondence between the configuration of this invention and the above-described embodiments, the solvent tank storing a solvent such as fluorocarbon of the present invention corresponds to the fluorocarbon cleaning machine 1 of the embodiment, and similarly, the evaporator is the first evaporator. Although the present invention corresponds to the evaporator 5, it is not limited to the configuration of the above-described embodiment.

例えば、被回収溶剤としては、R113単体の他にR1
13をベースにした混合溶剤やその他の    −塩素
系溶剤であってもよい。
For example, in addition to R113 alone, R1
A mixed solvent based on No. 13 or other -chlorinated solvents may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を示す溶剤回収装置の系統図
である。 1・・・フロン洗浄機   2・・・吸気ライン3・・
・圧縮機      4・・・高圧冷却塔5・・・第1
蒸発器
The drawing is a system diagram of a solvent recovery device showing an embodiment of the present invention. 1... Freon cleaning machine 2... Intake line 3...
・Compressor 4...High pressure cooling tower 5...1st
Evaporator

Claims (1)

【特許請求の範囲】[Claims] (1)フロン等の溶剤を貯溜した溶剤槽のガス層に、溶
剤ガスを吸引する吸気ラインを接続 し、 この吸気ラインに圧縮機を介して高圧冷却 塔を接続すると共に、 上記高圧冷却塔には、溶剤より発生したガ スを高圧下で冷却液化する蒸発器を配設し た 溶剤回収装置。
(1) An intake line for sucking the solvent gas is connected to the gas layer of the solvent tank storing solvents such as fluorocarbons, and a high-pressure cooling tower is connected to this intake line via a compressor. is a solvent recovery device equipped with an evaporator that cools and liquefies the gas generated from the solvent under high pressure.
JP62314658A 1987-12-12 1987-12-12 Cleaning solvent recovery device Expired - Fee Related JPH07112522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62314658A JPH07112522B2 (en) 1987-12-12 1987-12-12 Cleaning solvent recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62314658A JPH07112522B2 (en) 1987-12-12 1987-12-12 Cleaning solvent recovery device

Publications (2)

Publication Number Publication Date
JPH01155901A true JPH01155901A (en) 1989-06-19
JPH07112522B2 JPH07112522B2 (en) 1995-12-06

Family

ID=18055979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62314658A Expired - Fee Related JPH07112522B2 (en) 1987-12-12 1987-12-12 Cleaning solvent recovery device

Country Status (1)

Country Link
JP (1) JPH07112522B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560501U (en) * 1992-01-28 1993-08-10 森川産業株式会社 Solvent recovery device using a compressor in a closed type washing machine
JP2020131068A (en) * 2019-02-14 2020-08-31 アクトファイブ株式会社 Cleaning liquid recovery device
US11871828B2 (en) 2016-03-24 2024-01-16 Dyson Technology Limited Attachment for a handheld appliance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123505A (en) * 1974-08-22 1976-02-25 Chisso Eng Co Ltd Gasorintono kaishuhoho
JPS5134209A (en) * 1974-09-17 1976-03-23 Yoshio Sakai Kihatsuseikanengasu no kaishuhoho
JPS52150379A (en) * 1976-06-10 1977-12-14 Mitsubishi Heavy Ind Ltd Condensation separator for mixed gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123505A (en) * 1974-08-22 1976-02-25 Chisso Eng Co Ltd Gasorintono kaishuhoho
JPS5134209A (en) * 1974-09-17 1976-03-23 Yoshio Sakai Kihatsuseikanengasu no kaishuhoho
JPS52150379A (en) * 1976-06-10 1977-12-14 Mitsubishi Heavy Ind Ltd Condensation separator for mixed gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560501U (en) * 1992-01-28 1993-08-10 森川産業株式会社 Solvent recovery device using a compressor in a closed type washing machine
US11871828B2 (en) 2016-03-24 2024-01-16 Dyson Technology Limited Attachment for a handheld appliance
JP2020131068A (en) * 2019-02-14 2020-08-31 アクトファイブ株式会社 Cleaning liquid recovery device

Also Published As

Publication number Publication date
JPH07112522B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
JPH01155901A (en) Solvent recovering apparatus
JP7308508B2 (en) Cleaning liquid recovery device
TW201016300A (en) Gasoline vapor recovery apparatus
JPH1157394A (en) Device for recovering organic solvent
JPH01155932A (en) Solvent recovery device
JPH06109338A (en) Refrigerating machine circuit and gas recovering device employing the circuit
TWI471167B (en) Recovery device and method for gas - like hydrocarbon
JP2721704B2 (en) Cleaning equipment using organic solvents
JP3486852B2 (en) Method and apparatus for centrally controlling prevention of air pollution by refrigerant
JPH0438466B2 (en)
JPH10238909A (en) Method and apparatus for efficiently recovering refrigerant as well as adsorption tank
JPH0434881Y2 (en)
JPH0792298B2 (en) Refrigerant recovery and regeneration device
JPH02157573A (en) Refrigerant recovery device
JPH06178912A (en) Method for sucking gaseous solvent and solvent recovering device using the method
JPH0429904Y2 (en)
JP3000236U (en) Refrigerant receiver tank
JPH0515934Y2 (en)
CN117029324A (en) Refrigerant recovery system and control method
JP3223253B2 (en) CFC regeneration method and apparatus
JP2001272130A (en) Supercritical carbon dioxide supplier, and refrigerating unit
JPH11132144A (en) Cryopump
JPS62157282A (en) Cryopump
JPH06173855A (en) Air dryer
JPH07937A (en) Cleaner for refrigerating cycle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees