JPH0515934Y2 - - Google Patents

Info

Publication number
JPH0515934Y2
JPH0515934Y2 JP3696089U JP3696089U JPH0515934Y2 JP H0515934 Y2 JPH0515934 Y2 JP H0515934Y2 JP 3696089 U JP3696089 U JP 3696089U JP 3696089 U JP3696089 U JP 3696089U JP H0515934 Y2 JPH0515934 Y2 JP H0515934Y2
Authority
JP
Japan
Prior art keywords
solvent
line
gas
adsorption
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3696089U
Other languages
Japanese (ja)
Other versions
JPH02129240U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3696089U priority Critical patent/JPH0515934Y2/ja
Publication of JPH02129240U publication Critical patent/JPH02129240U/ja
Application granted granted Critical
Publication of JPH0515934Y2 publication Critical patent/JPH0515934Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、洗浄装置、塗装工場、印刷工場、化
学工場、半導体工場やドライクリーニング工場等
から発生する溶剤含有処理ガス中の溶剤を効率的
に吸着し回収する溶剤回収装置に関する。
[Detailed description of the invention] [Industrial application field] This invention efficiently removes solvents from solvent-containing processing gases generated from cleaning equipment, painting plants, printing plants, chemical plants, semiconductor plants, dry cleaning plants, etc. This invention relates to a solvent recovery device that adsorbs and recovers solvents.

[従来の技術] 従来、環境汚染を防止すると共に有機溶剤の有
効利用を図るため、種々の溶剤回収装置が使用さ
れている。第4図は従来の溶剤回収装置の概略構
成図であり、この例では処理ガス中の有機溶剤を
交互に吸脱着する複数の吸着塔が並設されてい
る。
[Prior Art] Conventionally, various solvent recovery devices have been used to prevent environmental pollution and to effectively utilize organic solvents. FIG. 4 is a schematic diagram of a conventional solvent recovery apparatus, in which a plurality of adsorption towers are arranged in parallel to alternately adsorb and desorb organic solvents in a process gas.

複数の吸着塔31a,31bは、その内部に吸
着フイルタ32a,32bを備えた吸着部33
a,33bを有しており、その上部には排出口3
4a,34bが形成されている。有機溶剤含有処
理ガスをブロア35により供給する処理ガス供給
ライン36は分岐し、分岐した処理ガス供給ライ
ン36a,36bが各吸着塔31a,31bに接
続されている。また各処理ガス供給ライン36
a,36bにはそれぞれ第1の電磁弁37a,3
7bが設けられている。
The plurality of adsorption towers 31a and 31b have an adsorption unit 33 equipped with adsorption filters 32a and 32b therein.
a, 33b, and a discharge port 3 at the top.
4a and 34b are formed. A processing gas supply line 36 for supplying an organic solvent-containing processing gas by a blower 35 is branched, and the branched processing gas supply lines 36a, 36b are connected to each adsorption tower 31a, 31b. In addition, each processing gas supply line 36
First electromagnetic valves 37a and 3 are provided in a and 36b, respectively.
7b is provided.

またこの溶剤回収装置は、水蒸気等の脱着用加
熱媒体供給ライン38を有している。この加熱媒
体供給ライン38は分岐し、分岐した加熱媒体供
給ライン38a,38bは、それぞれ各吸着塔3
1a,31bに接続されていると共に、各加熱媒
体供給ライン38a,38bには第2の電磁弁3
9a,39bが設けられている。
This solvent recovery device also has a heating medium supply line 38 for desorption such as water vapor. This heating medium supply line 38 branches, and the branched heating medium supply lines 38a and 38b are connected to each adsorption tower 3, respectively.
1a, 31b, and a second electromagnetic valve 3 is connected to each heating medium supply line 38a, 38b.
9a and 39b are provided.

上記吸着塔31a,31bの上部には、支持ロ
ツド40a,40bを介してエアシリンダ42
a,42bが設けられ、このエアシリンダ42
a,42bには、排出口34a,34bを閉塞す
る弁体41a,41bが固着されている。また装
置の下部は枠体(図示せず)で覆われている。各
吸着塔31a,31bには、それぞれ第3の電磁
弁43a,43bが設けられた回収ライン44
a,44bが接続されている。この回収ライン4
4a,44bは合流し、冷却水等の冷媒で冷却さ
れた凝縮器45に接続されている。凝縮器45で
液化された有機溶剤と前記加熱媒体はセパレータ
46で分離され、有機溶剤が回収される。また凝
縮器45で液化しなかつたガス状の有機溶剤をリ
サイクルライン47を通じて処理ガス供給ライン
36へリサイクルしている。
An air cylinder 42 is connected to the upper part of the adsorption towers 31a and 31b via support rods 40a and 40b.
a, 42b are provided, and this air cylinder 42
Valve bodies 41a and 41b that close the discharge ports 34a and 34b are fixed to a and 42b. Further, the lower part of the device is covered with a frame (not shown). Each adsorption tower 31a, 31b has a recovery line 44 provided with a third electromagnetic valve 43a, 43b, respectively.
a and 44b are connected. This collection line 4
4a and 44b are joined together and connected to a condenser 45 cooled with a refrigerant such as cooling water. The organic solvent liquefied in the condenser 45 and the heating medium are separated by a separator 46, and the organic solvent is recovered. Further, the gaseous organic solvent that has not been liquefied in the condenser 45 is recycled to the processing gas supply line 36 through a recycling line 47.

上記の溶剤回収装置における吸脱着操作は次の
ようにして行なわれる。
The adsorption/desorption operation in the above solvent recovery device is performed as follows.

処理ガスの吸着処理に際しては、前記第1の電
磁弁37a,37bの開閉により、処理ガス供給
ライン36a,36bを通じて、処理ガスを一方
の吸着塔31a,31bに供給し、吸着フイルタ
32a,32bで吸着処理することにより、清浄
化したガスを排出口34a,34bから排出す
る。
During the adsorption treatment of the process gas, the process gas is supplied to one of the adsorption towers 31a, 31b through the process gas supply lines 36a, 36b by opening and closing the first electromagnetic valves 37a, 37b, and then the process gas is supplied to one of the adsorption towers 31a, 31b by the adsorption filters 32a, 32b. The gas purified by the adsorption treatment is discharged from the discharge ports 34a and 34b.

一方、脱着処理に際しては、吸着処理後の他方
の吸着塔31b,31aの排出口34b,34a
をエアシリンダ42b,42aの弁体41b,4
1aで閉塞する。また第2の電磁弁39b,39
aおよび第3の電磁弁43b,43aにより、脱
着用加熱媒体を加熱媒体供給ライン38b,38
aを通じて吸着処理後の他方の吸着塔31b,3
1aへ供給することにより、吸着フイルタ32
b,32aに吸着した有機溶剤を脱着する。そし
て、脱着したガス状の有機溶剤を凝縮器45で液
化してセパレータ46で分離回収する。
On the other hand, in the desorption process, the discharge ports 34b and 34a of the other adsorption tower 31b and 31a after the adsorption process are
The valve bodies 41b, 4 of the air cylinders 42b, 42a
It is occluded at 1a. Also, the second solenoid valves 39b, 39
a and the third solenoid valves 43b, 43a, the heating medium for desorption is supplied to the heating medium supply lines 38b, 38.
The other adsorption tower 31b, 3 after adsorption treatment through a
1a, the adsorption filter 32
The organic solvent adsorbed on b and 32a is desorbed. Then, the desorbed gaseous organic solvent is liquefied in a condenser 45 and separated and recovered in a separator 46.

このように、第1乃至第3の電磁弁37a,3
7b,39a,39b,43a,43bによるラ
インの開閉及び弁体41a,41bによる排出口
34a,34bの開閉を制御することにより、処
理ガスの吸脱着操作を交互に行なつている。
In this way, the first to third solenoid valves 37a, 3
By controlling the opening and closing of the lines 7b, 39a, 39b, 43a, and 43b and the opening and closing of the exhaust ports 34a and 34b by the valve bodies 41a and 41b, adsorption and desorption operations of the process gas are performed alternately.

その際、凝縮器45で液化しなかつたガス状の
有機溶剤を処理ガス供給ライン36へリサイクル
することにより、有機溶剤の回収率を高めてい
る。
At this time, the gaseous organic solvent that has not been liquefied in the condenser 45 is recycled to the process gas supply line 36, thereby increasing the recovery rate of the organic solvent.

[考案が解決しようとする課題] しかしながら、上記の溶剤回収装置では、有機
溶剤の吸着効率及び回収効率が未だ十分でなく、
過剰の吸着剤を必要とする。より詳細には、吸着
フイルタ32a,32bを吸着部33a,33b
に充填しても、その空間内に空気が存在する。特
に繊維状活性炭は、粒状活性炭と比較して有機溶
剤に対する吸着速度が大きく吸着能に優れるもの
の、嵩密度が小さく充填密度を大きくできないた
め、吸着部33a,33b内にかなりの空気が存
在する。従つて、脱着工程で水蒸気等の加熱媒体
を噴霧すると、有機溶剤が脱着し、直ちに吸着部
33a,33b内の空気と共に凝縮器45に排出
される。
[Problems to be solved by the invention] However, the above-mentioned solvent recovery device still has insufficient adsorption efficiency and recovery efficiency for organic solvents.
Requires excess adsorbent. More specifically, the suction filters 32a and 32b are connected to the suction portions 33a and 33b.
Even if the space is filled with air, air still exists within the space. In particular, fibrous activated carbon has a higher adsorption rate for organic solvents than granular activated carbon and has excellent adsorption ability, but its bulk density is small and the packing density cannot be increased, so a considerable amount of air is present in the adsorption parts 33a and 33b. Therefore, when a heating medium such as water vapor is sprayed in the desorption step, the organic solvent is desorbed and immediately discharged to the condenser 45 together with the air in the adsorption sections 33a and 33b.

一方、有機溶剤を含むガスを凝縮器45で冷却
しても、ガス状有機溶剤の液化が冷却温度におけ
る蒸気圧に依存するため、蒸気圧に相当する量の
有機溶剤は液化できない。また凝縮器45及びセ
パレータ46の気相やリサイクルライン47には
飽和蒸気圧に相当する有機溶剤が存在する。この
有機溶剤の濃度は、発生源のガス、すなわち処理
ガスよりも非常に高濃度である。そして、脱着工
程において、処理ガス供給ライン36にリサイク
ルガスが混入すると、処理ガス供給ライン36の
有機溶剤の濃度が一時的に数千乃至一万数千ppm
程度に上昇する。なお、高濃度の処理ガスがリサ
イクルラインに流出するのは、通常、脱着操作開
始後、1〜2分程度の間である。従つて、従来の
溶剤回収装置では、一時的に高濃度となつた有機
溶剤を確実に吸着できず、回収効率が低下する。
また、活性炭の溶剤吸着量は溶剤濃度が高い程大
きいので、初期に高濃度の溶剤含有ガスを吸着さ
せた後、低濃度の溶剤含有ガスを活性炭に通過さ
せる場合、吸着溶剤の再脱着が生じる。また吸着
効率の低下に伴い排気口から排気される浄化ガス
中に有機溶剤が検出され環境を汚染する。一方、
リサイクルライン47からリサイクルされる高濃
度の溶剤含有ガスに対処するには、発生源のガ
ス、すなわち処理ガス中の溶剤濃度が低い場合で
あつても、吸着剤を過剰に充填しなければならな
い。
On the other hand, even if the gas containing the organic solvent is cooled by the condenser 45, the amount of organic solvent corresponding to the vapor pressure cannot be liquefied because the liquefaction of the gaseous organic solvent depends on the vapor pressure at the cooling temperature. Further, an organic solvent corresponding to the saturated vapor pressure is present in the gas phase of the condenser 45 and separator 46 and in the recycle line 47. The concentration of this organic solvent is much higher than that of the source gas, ie the process gas. In the desorption process, when recycled gas mixes into the processing gas supply line 36, the concentration of the organic solvent in the processing gas supply line 36 temporarily increases from several thousand ppm to several thousand ppm.
increase to a certain extent. Note that the highly concentrated process gas flows out into the recycle line usually for about 1 to 2 minutes after the start of the desorption operation. Therefore, conventional solvent recovery devices cannot reliably adsorb organic solvents that have temporarily become highly concentrated, resulting in a decrease in recovery efficiency.
In addition, the amount of solvent adsorbed by activated carbon increases as the solvent concentration increases, so if a gas containing a high concentration of solvent is initially adsorbed and then a gas containing a low concentration of solvent is passed through the activated carbon, the adsorbed solvent will be re-desorbed. . Further, as the adsorption efficiency decreases, organic solvents are detected in the purified gas exhausted from the exhaust port, polluting the environment. on the other hand,
To cope with the high concentration of solvent-containing gas recycled from the recycle line 47, the adsorbent must be overfilled even when the concentration of solvent in the source gas, ie, the process gas, is low.

本考案の目的は、高濃度の有機溶剤を含むリサ
イクルガスが処理ガス供給ラインに混入するのを
防止でき、過剰の吸着剤を用いることなく、処理
ガス中の溶剤を効率的に吸着し回収できる溶剤回
収装置を提供することにある。
The purpose of this invention is to prevent recycled gas containing a high concentration of organic solvent from entering the processing gas supply line, and to efficiently adsorb and recover the solvent in the processing gas without using excessive adsorbent. An object of the present invention is to provide a solvent recovery device.

[課題を解決するための手段] 本考案は、吸着フイルタを収容し、開閉自在な
排出口を有する吸着塔と、該吸着塔に溶剤含有吸
着ガスを供給する処理ガス供給ラインと、吸着塔
に脱着用加熱媒体を供給する加熱媒体供給ライン
と、加熱媒体により脱着した溶剤を凝縮する凝縮
部と、凝縮された溶剤を分離する分離部と、該分
離部の気相を前記処理ガス供給ラインに合流させ
るリサイクルラインとを有する溶剤回収装置にお
いて、上記凝縮部と分離部との間のライン、分離
部又は上記リサイクルラインに、ラインの圧力変
動に対応して容量が可変する圧力緩衝部が設けら
れている溶剤回収装置により、上記課題を解決す
るものである。
[Means for Solving the Problems] The present invention provides an adsorption tower that houses an adsorption filter and has an outlet that can be opened and closed, a processing gas supply line that supplies a solvent-containing adsorption gas to the adsorption tower, and A heating medium supply line that supplies a heating medium for desorption, a condensation section that condenses the solvent desorbed by the heating medium, a separation section that separates the condensed solvent, and a gas phase of the separation section to the processing gas supply line. In the solvent recovery device having a recycle line for merging, a pressure buffer section whose capacity is variable in response to pressure fluctuations in the line is provided in the line between the condensation section and the separation section, the separation section, or the recycle line. The above-mentioned problem is solved by the solvent recovery device.

[作用] 本考案によれば、ラインの圧力変動に対応して
容量が可変する圧力緩衝部で、高濃度の有機溶媒
を含むガスを貯溜でき、ラインの圧力変動を抑制
できる。またリサイクルラインが処理ガスの供給
に伴い負圧となるので、圧力緩衝部に貯溜された
高濃度の有機溶剤を含むガスはラインの圧力に応
じて処理ガス供給ラインに除々に供給される。
[Operation] According to the present invention, gas containing a highly concentrated organic solvent can be stored in the pressure buffer section whose capacity is variable in response to pressure fluctuations in the line, and pressure fluctuations in the line can be suppressed. Furthermore, since the recycle line becomes under negative pressure as the processing gas is supplied, the gas containing a highly concentrated organic solvent stored in the pressure buffer section is gradually supplied to the processing gas supply line in accordance with the line pressure.

[実施例] 以下に、添付図面に基づいて本考案の実施例を
詳細に説明する。
[Example] Hereinafter, an example of the present invention will be described in detail based on the accompanying drawings.

第1図は本考案の一実施例を示す概略構成図で
あり、第2図は第1図に示す溶剤回収装置の一部
切欠概略正面図、第3図は第2図の概略平面図で
ある。なお、以下の説明においては、本考案の特
徴とする部分についてより詳細に説明する。
FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention, FIG. 2 is a partially cutaway schematic front view of the solvent recovery device shown in FIG. 1, and FIG. 3 is a schematic plan view of FIG. 2. be. In the following description, the features of the present invention will be explained in more detail.

本考案の溶剤回収装置の複数の吸着塔1a,1
bは、前記と同様、吸着フイルタ2a,2bを備
えた吸着部3a,3bと、排出口4a,4bとを
有している。ブロア5により有機溶剤含有処理ガ
スを供給する処理ガス供給ライン6は分岐し、吸
着塔1a,1bの下部に接続されている。また分
岐した処理ガス供給ライン6a,6bにはそれぞ
れ第1の電磁弁7a,7bが設けられている。脱
着用の加熱媒体を供給する加熱媒体供給ライン8
は途中部で分岐し、各吸着塔1a,1bの上部に
接続されている。また分岐した加熱媒体供給ライ
ン8a,8bには、それぞれ第2の電磁弁9a,
9bが設けられている。
A plurality of adsorption towers 1a, 1 of the solvent recovery device of the present invention
b has suction parts 3a, 3b provided with suction filters 2a, 2b, and discharge ports 4a, 4b, as described above. A processing gas supply line 6 for supplying the organic solvent-containing processing gas by the blower 5 is branched and connected to the lower portions of the adsorption towers 1a and 1b. Further, the branched processing gas supply lines 6a, 6b are provided with first electromagnetic valves 7a, 7b, respectively. Heating medium supply line 8 that supplies heating medium for desorption
is branched in the middle and connected to the upper part of each adsorption tower 1a, 1b. Further, the branched heating medium supply lines 8a and 8b are provided with second solenoid valves 9a and 8b, respectively.
9b is provided.

上記吸着塔1a,1bの上部には、支持ロツド
10a,10bを介して、開閉操作用アクチユエ
ータとしてのエアシリンダ13a,13bが取付
けられている。またエアシリンダ13a,13b
には排出口4a,4bを閉塞する弁体12a,1
2bが固着されている。また装置の下部は枠体1
1で覆われている。
Air cylinders 13a and 13b as actuators for opening and closing operations are attached to the upper portions of the adsorption towers 1a and 1b via support rods 10a and 10b. Also, air cylinders 13a, 13b
There are valve bodies 12a, 1 that close the discharge ports 4a, 4b.
2b is fixed. Also, the lower part of the device is the frame 1
Covered by 1.

また加熱媒体により脱着したガス状の有機溶剤
を回収するため、各吸着塔1a,1bの下部に
は、それぞれ第3の電磁弁14a,14bが設け
られた回収ライン15a,15bが接続されてい
る。この回収ライン15a,15bは合流し、合
流した回収ライン15は、冷却水等の冷媒で冷却
されたコンデンサ等の凝縮部16に接続されてい
る。該凝縮部16で液化された有機溶剤と前記加
熱媒体はデカンタ等の分離部17で比重分離によ
り分離され、有機溶剤が回収される。また前記と
同様に、上記凝縮部16で液化しなかつたガス状
の有機溶剤と分離部17の気相とをリサイクルラ
イン18を通じて処理ガス供給ライン6へリサイ
クルしている。
In order to recover the gaseous organic solvent desorbed by the heating medium, recovery lines 15a and 15b each provided with a third electromagnetic valve 14a and 14b are connected to the lower part of each adsorption tower 1a and 1b, respectively. . The recovery lines 15a and 15b merge, and the merged recovery line 15 is connected to a condensing section 16 such as a condenser cooled with a refrigerant such as cooling water. The organic solvent liquefied in the condensing section 16 and the heating medium are separated by specific gravity separation in a separating section 17 such as a decanter, and the organic solvent is recovered. Further, in the same manner as described above, the gaseous organic solvent that has not been liquefied in the condensing section 16 and the gas phase in the separating section 17 are recycled to the processing gas supply line 6 through the recycling line 18.

そして、上記リサイクルライン18には、パイ
プ19を介してラインの圧力変動に対応して容量
が可変する圧力緩衝部20が連通接続されてい
る。この圧力緩衝部20は、第2図に示されるよ
うに、ケース22内に収容されたガス溜め用袋体
21で構成されている。
A pressure buffer section 20 whose capacity is variable in response to pressure fluctuations in the line is connected to the recycle line 18 via a pipe 19. As shown in FIG. 2, this pressure buffer section 20 is composed of a gas reservoir bag 21 housed in a case 22.

このような容量可変の圧力緩衝部20を設ける
と、脱着工程等において高濃度の溶剤を含むガス
がリサイクルライン18へ流入しても、該ガスを
袋体21内に貯溜でき、ラインの圧力変動を抑制
できる。また処理ガスの供給に伴いリサイクルラ
イン18が負圧となるので、袋体21内に貯溜し
た高濃度の有機溶剤を含むガスはラインの圧力に
応じて処理ガス供給ライン6に徐々に供給され
る。更には、袋体21がケース22内に収容され
ているので、袋体21が過度に膨張することがな
く袋体21の破損等を防止できると共に、ケース
22の容積を調整することにより袋体21内で貯
溜できるガス量を調整できる。従つて、リサイク
ルライン18へ高濃度の有機溶剤含有ガスが流入
しても、処理ガス供給ライン6での溶剤の濃度を
平均化できると共に、吸着塔1a,1bの吸着フ
イルタ2a,2bで有機溶剤を確実に吸着でき
る。また発生源から連続的に発生する処理ガス
を、複数の吸着塔1a,1bへ交互に供給すこと
により、連続的に吸脱着処理し、溶剤を回収でき
る。
By providing such a variable capacity pressure buffer section 20, even if gas containing a high concentration of solvent flows into the recycle line 18 during the desorption process, etc., the gas can be stored in the bag body 21, and pressure fluctuations in the line can be prevented. can be suppressed. Further, as the processing gas is supplied, the recycle line 18 becomes under negative pressure, so the gas containing the highly concentrated organic solvent stored in the bag body 21 is gradually supplied to the processing gas supply line 6 according to the line pressure. . Furthermore, since the bag body 21 is housed in the case 22, the bag body 21 does not expand excessively and damage to the bag body 21 can be prevented, and by adjusting the volume of the case 22, the bag body The amount of gas that can be stored within 21 can be adjusted. Therefore, even if gas containing a high concentration of organic solvent flows into the recycle line 18, the concentration of the solvent in the treated gas supply line 6 can be averaged, and the organic solvent can be removed by the adsorption filters 2a and 2b of the adsorption towers 1a and 1b. can be reliably absorbed. Further, by alternately supplying the processing gas continuously generated from the generation source to the plurality of adsorption towers 1a and 1b, the adsorption/desorption process can be performed continuously and the solvent can be recovered.

なお、上記袋体はラインの圧力変動、特に脱着
工程での圧力変動に対応して膨張収縮する膨張収
縮性を有していればよい。従つて、袋体は、伸縮
性材料や非伸縮性材料で形成できる。また圧力緩
衝部は、上記袋体に限らず、圧力の変動に対応し
て容量が可変するものであればよい。例えば、シ
リンダと、圧力変動に応じてシリンダ内で摺動す
る摺動部材とで構成してもよい。この場合、シリ
ンダの容積、摺動部材の自重を調整することによ
りシリンダ内に貯溜できるガス量や貯溜されたガ
スの排出速度を調整できる。従つて、摺動部材の
自重により、ライン中の圧力変動を吸収でき、リ
サイクルラインにおけるガス中の有機溶剤濃度を
均一化できる。
Note that the bag only needs to have the ability to expand and contract in response to pressure fluctuations in the line, particularly pressure fluctuations during the attachment/detachment process. Accordingly, the bag can be made of stretchable or non-stretchable materials. Further, the pressure buffer is not limited to the above-mentioned bag, and may be any other material whose capacity can be varied in response to pressure fluctuations. For example, it may be configured with a cylinder and a sliding member that slides within the cylinder in response to pressure fluctuations. In this case, by adjusting the volume of the cylinder and the weight of the sliding member, the amount of gas that can be stored in the cylinder and the discharge speed of the stored gas can be adjusted. Therefore, pressure fluctuations in the line can be absorbed by the sliding member's own weight, and the concentration of organic solvent in the gas in the recycle line can be made uniform.

なお、圧力緩衝部を、シリンダとピストン等の
吸引排出機構で構成し、脱着操作と連動してリサ
イクルラインのガスを吸引排出してもよい。その
際、吸引排出機構の作動と停止とを、圧力センサ
による検出信号に基づいて制御してもよい。また
通常、脱着操作開始の約1〜2分後に高濃度の有
機溶剤を含むガスがリサイクルラインに流入する
ので、脱着操作開始後、所定の時定数をもつて、
吸引排出機構の作動と停止を制御してもよい。
Note that the pressure buffer section may be constituted by a suction and discharge mechanism such as a cylinder and a piston, and the gas in the recycle line may be sucked and discharged in conjunction with the attachment/detachment operation. At this time, the operation and stopping of the suction and discharge mechanism may be controlled based on a detection signal from a pressure sensor. Also, normally, gas containing a high concentration of organic solvent flows into the recycle line about 1 to 2 minutes after the start of the desorption operation, so after the start of the desorption operation, the
Activation and stopping of the suction and discharge mechanism may be controlled.

また上記容量可変の圧力緩衝部は、リサイクル
ライン18に限らず、凝縮部16と分離部17と
の間のライン15cや分離部17に設けてもよ
い。
Further, the variable capacity pressure buffer section may be provided not only in the recycle line 18 but also in the line 15c between the condensation section 16 and the separation section 17 or the separation section 17.

なお、本考案の溶剤回収装置は、複数の吸着塔
に限らず、1つの吸着塔にも適用できる。すなわ
ち、第1図〜第3図において、一方の吸着塔1b
を省略し、他方の吸着塔1aに、電磁弁7aを有
する処理ガス供給ライン6と、電磁弁9aを有す
る加熱媒体供給ライン8と、電磁弁14aを有す
る回収ライン15とを接続した一塔式溶剤回収装
置であつてもよい。この一塔式溶剤回収装置は、
非連続的に発生する溶剤含有ガスを処理できる。
例えば、ドライクリーニング機の場合、脱臭工程
や被洗濯物の出入工程で発生するパークロロエチ
レン等の溶剤含有ガスを、処理ガス供給ライン6
から吸着塔1aへ供給することにより、吸着フイ
ルタ1aで吸着できる。一方、洗浄工程や乾燥工
程のように、溶剤含有ガスが発生しない工程中
に、前記と同様にして、加熱媒体供給ライン8か
ら加熱媒体を吸着塔1aへ供給することにより、
吸着した溶剤を脱着できる。また回収ライン1
5、凝縮部16を経て分離部17で有機溶剤を回
収できる。この一塔式溶剤回収装置でも、前記と
同様に、圧力緩衝部20により、高濃度の溶剤含
有ガスが一時的に貯溜され、処理ガス供給ライン
6に流入するのを防止でき、次の吸着工程におい
て、圧力緩衝部20に貯溜された高濃度の溶剤含
有ガスは、吸着塔1aへ送り出される。このよう
にして、一塔式溶剤回収装置にあつては、吸着剤
を過剰に使用することなく、溶剤を効率的に吸着
させ、回収でき、高濃度の溶剤を含むリサイクル
ガスの機外への漏洩を防止できる。
Note that the solvent recovery device of the present invention can be applied not only to a plurality of adsorption towers but also to one adsorption tower. That is, in FIGS. 1 to 3, one adsorption tower 1b
is omitted, and the other adsorption tower 1a is connected to a process gas supply line 6 having a solenoid valve 7a, a heating medium supply line 8 having a solenoid valve 9a, and a recovery line 15 having a solenoid valve 14a. It may also be a solvent recovery device. This one-column solvent recovery equipment is
Capable of processing discontinuously generated solvent-containing gas.
For example, in the case of a dry cleaning machine, gas containing solvents such as perchlorethylene generated during the deodorizing process and the process of loading and unloading the laundry is transferred to the process gas supply line 6.
By supplying it to the adsorption tower 1a, it can be adsorbed by the adsorption filter 1a. On the other hand, by supplying a heating medium from the heating medium supply line 8 to the adsorption tower 1a in the same manner as described above during a process in which a solvent-containing gas is not generated, such as a washing process or a drying process,
Adsorbed solvent can be desorbed. Also collection line 1
5. The organic solvent can be recovered in the separation section 17 via the condensation section 16. In this one-column solvent recovery device, similarly to the above, the pressure buffer section 20 temporarily stores high-concentration solvent-containing gas and prevents it from flowing into the processing gas supply line 6, allowing it to be used in the next adsorption step. In the pressure buffer section 20, the highly concentrated solvent-containing gas is sent to the adsorption tower 1a. In this way, the single-column solvent recovery equipment can efficiently adsorb and recover solvents without using excessive amounts of adsorbent, and allows recycled gas containing highly concentrated solvents to be discharged outside the equipment. Leakage can be prevented.

本考案の溶剤回収装置は、発生源である各種工
程等で発生する溶剤、例えばフロン、トリクロロ
エチレンや各種の有機溶剤を含有するガスから溶
剤を回収する上で有用である。特に、吸着剤とし
て嵩密度の小さな繊維状活性炭を用いた溶剤回収
装置に好適である。
The solvent recovery device of the present invention is useful for recovering solvents from gases containing solvents such as fluorocarbons, trichlorethylene, and various organic solvents generated in various processes. In particular, it is suitable for a solvent recovery device using fibrous activated carbon with a small bulk density as an adsorbent.

[考案の効果] 以上のように、本考案の溶剤回収装置によれ
ば、ラインの圧力変動に応じて容量が可変する容
量可変の圧力緩衝部が設けられているので、高濃
度の溶剤を含むリサイクルガスが処理ガス供給ラ
インに混入するのを防止できる。また過剰の吸着
剤を用いることなく、処理ガス中の溶剤に対する
吸着効率及び回収効率を高めることができる。
[Effects of the invention] As described above, according to the solvent recovery device of the invention, a pressure buffer section with a variable capacity whose capacity changes according to pressure fluctuations in the line is provided. It is possible to prevent recycled gas from entering the process gas supply line. Moreover, the adsorption efficiency and recovery efficiency for the solvent in the process gas can be increased without using an excessive amount of adsorbent.

[実験例] 以下に、実験例に基づいて本考案をより詳細に
説明する。
[Experimental Examples] The present invention will be described in more detail below based on experimental examples.

比較実験例 第1図に示すように、2つの吸着塔を有し、繊
維状活性炭を吸着塔1塔当り7.5Kg収容し、繊維
状活性炭フイルタの厚み100mmの溶剤回収装置
(大阪ガスエンジニアリング(株)製、ESR−3F)を
用い、溶剤ガスとしてフロンR−113を2000ppm
含む処理ガスを処理風量3m3/分の条件で処理し
た。その結果、リサイクルガスも含めた処理ガス
中のフロン濃度は、脱着サイクルの初期に
7000ppm程度にまで上昇した。そして、吸着塔へ
の入口側の濃度変化に追従して出口側のフロンガ
ス濃度も大きく変動した。この様子を第6図に示
す。
Comparative Experimental Example As shown in Figure 1, a solvent recovery device (Osaka Gas Engineering Co., Ltd. ) manufactured by ESR-3F) and 2000ppm of Freon R-113 as a solvent gas.
The processing gas containing the gas was processed at a processing air flow rate of 3 m 3 /min. As a result, the concentration of CFCs in the process gas, including recycled gas, decreases at the beginning of the desorption cycle.
It rose to around 7000ppm. Following the change in concentration at the entrance to the adsorption tower, the fluorocarbon gas concentration at the outlet also varied greatly. This situation is shown in FIG.

実験例 上記溶剤回収装置のうちリサイクルラインに内
容量20のガス溜め用袋体を設け、上記比較実験
例と同様にして処理ガスを処理した。
Experimental Example A gas storage bag with an internal capacity of 20 was provided in the recycling line of the solvent recovery device, and the treated gas was treated in the same manner as in the comparative experimental example.

その結果、吸着塔への入口側の平均フロン濃度
は3000ppmとなり、濃度の変動を著しく抑制でき
た。また出口側のフロンガス濃度も平均化し、一
時的にフロン濃度が上昇することがなかつた。こ
の様子を第5図に示す。
As a result, the average CFC concentration at the entrance to the adsorption tower was 3000 ppm, and fluctuations in concentration were significantly suppressed. In addition, the fluorocarbon gas concentration on the outlet side was also averaged, and the fluorocarbon concentration did not rise temporarily. This situation is shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す概略構成図、
第2図は第1図に示す溶剤回収装置の一部切欠概
略正面図、第3図は第2図の概略平面図、第4図
は従来の溶剤回収装置の概略構成図、第5図は実
験例の結果を示すグラフ、第6図は比較実験例の
結果を示すグラフである。 1a,1b……吸着塔、2a,2b……吸着フ
イルタ、4a,4b……排出口、6,6a,6b
……処理ガス供給ライン、8,8a,8b……加
熱媒体供給ライン、16……凝縮部、17……分
離部、18……リサイクルライン、20……圧力
緩衝部。
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention;
FIG. 2 is a partially cutaway schematic front view of the solvent recovery device shown in FIG. 1, FIG. 3 is a schematic plan view of FIG. 2, FIG. 4 is a schematic configuration diagram of a conventional solvent recovery device, and FIG. FIG. 6 is a graph showing the results of the experimental example, and FIG. 6 is a graph showing the results of the comparative experimental example. 1a, 1b...Adsorption tower, 2a, 2b...Adsorption filter, 4a, 4b...Discharge port, 6, 6a, 6b
... Processing gas supply line, 8, 8a, 8b ... Heating medium supply line, 16 ... Condensation section, 17 ... Separation section, 18 ... Recycle line, 20 ... Pressure buffer section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 吸着フイルタを収容し、開閉自在な排出口を有
する吸着塔と、該吸着塔に溶剤含有処理ガスを供
給する処理ガス供給ラインと、吸着塔に脱着用加
熱媒体を供給する加熱媒体供給ラインと、加熱媒
体により脱着した溶剤を凝縮する凝縮部と、凝縮
された溶剤を分離する分離部と、該分離部の気相
を前記処理ガス供給ラインに合流させるリサイク
ルラインとを有する溶剤回収装置において、上記
凝縮部と分離部との間のライン、分離部又は上記
リサイクルラインに、ラインの圧力変動に対応し
て容量が可変する圧力緩衝部が設けられているこ
とを特徴とする溶剤回収装置。
an adsorption tower that houses an adsorption filter and has an outlet that can be opened and closed; a processing gas supply line that supplies a solvent-containing processing gas to the adsorption tower; a heating medium supply line that supplies a heating medium for desorption to the adsorption tower; In a solvent recovery device having a condensation section that condenses the solvent desorbed by a heating medium, a separation section that separates the condensed solvent, and a recycle line that joins the gas phase of the separation section to the processing gas supply line, A solvent recovery device characterized in that a line between a condensation section and a separation section, a separation section, or the recycling line is provided with a pressure buffer section whose capacity is variable in response to pressure fluctuations in the line.
JP3696089U 1989-03-29 1989-03-29 Expired - Lifetime JPH0515934Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3696089U JPH0515934Y2 (en) 1989-03-29 1989-03-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3696089U JPH0515934Y2 (en) 1989-03-29 1989-03-29

Publications (2)

Publication Number Publication Date
JPH02129240U JPH02129240U (en) 1990-10-24
JPH0515934Y2 true JPH0515934Y2 (en) 1993-04-27

Family

ID=31543651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3696089U Expired - Lifetime JPH0515934Y2 (en) 1989-03-29 1989-03-29

Country Status (1)

Country Link
JP (1) JPH0515934Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210137480A (en) * 2019-03-29 2021-11-17 도요보 가부시키가이샤 Organic Solvent Recovery System

Also Published As

Publication number Publication date
JPH02129240U (en) 1990-10-24

Similar Documents

Publication Publication Date Title
US5110328A (en) Solvent adsorber and solvent recovery system
EP0791093B1 (en) Method and system for rejuvenating pressurized fluid solvents used in cleaning substrates
KR101926171B1 (en) Apparatus for recovering volatile organic solvent
JPH0515934Y2 (en)
JPH0576618A (en) Purification processing method of earth polluted with organic solvent and purification processing device
JPH03135410A (en) Pressure swing method for separating and recovering volatile organic matter
EP0422463B1 (en) Solvent recovery apparatus
JP2721704B2 (en) Cleaning equipment using organic solvents
JP3631073B2 (en) Organic solvent recovery method
KR101936195B1 (en) Apparatus for recovering volatile organic solvent using adsorption and condensation recovery methods
EP0716874B1 (en) Solvent recovery
CN212214675U (en) Organic solvent dehydration device and organic solvent dehydration system
JPH11276840A (en) Method and device for recovering organic solvent
JPH04137729U (en) Solvent recovery equipment
JPS6168122A (en) Recovering method of dimethylformamide
JPS6320081A (en) Moving type steam wahser
JPS6312146B2 (en)
JP2971127B2 (en) Dry cleaning method
JP5115279B2 (en) Adsorption recovery device
JPH075841Y2 (en) Solvent reclaiming and recovering device using organic solvent
JPH0342013A (en) Solvent recovery appratus
JP3223253B2 (en) CFC regeneration method and apparatus
JPH04118024A (en) Solvent recovering device
JPH0255098A (en) Operation method for device of recovering solvent vapor by using activated coal
JPH0710716Y2 (en) Solvent recovery device for dry cleaning device