JPH0460450A - Detecting apparatus of remaining liquid - Google Patents

Detecting apparatus of remaining liquid

Info

Publication number
JPH0460450A
JPH0460450A JP17171390A JP17171390A JPH0460450A JP H0460450 A JPH0460450 A JP H0460450A JP 17171390 A JP17171390 A JP 17171390A JP 17171390 A JP17171390 A JP 17171390A JP H0460450 A JPH0460450 A JP H0460450A
Authority
JP
Japan
Prior art keywords
light
bottle
photoelectric conversion
sensors
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17171390A
Other languages
Japanese (ja)
Inventor
Hajime Yoshida
肇 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hajime Industries Ltd
Original Assignee
Hajime Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hajime Industries Ltd filed Critical Hajime Industries Ltd
Priority to JP17171390A priority Critical patent/JPH0460450A/en
Publication of JPH0460450A publication Critical patent/JPH0460450A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To facilitate detection of remaining liquid in a very small quantity and to improve the precision in detection by comparing outputs of two photoelectric conver sion sensors and by outputting a signal when a difference between the two outputs exceeds a prescribed value. CONSTITUTION:The bottom 11 of a bottle 1 is irradiated from below and a light passing through the bottom 11 of the bottle and a remaining liquid 2 is sensed by two photoelectric sensors 61 and 62 provided above the mouth of the bottle. The sensor 61 senses a transmitted light including ones in both visible and infrared areas, while the sensor 62 senses a transmitted light only in the infrared area through an optical filter 7. Next, a difference between electric outputs obtained by photoelectric conversion by the sensors 61 and 62 is measured and thereby the presence of the remaining liquid 2 is detected. When the remaining liquid 2 is absent, in other words, lights in virtually the same quantity reach the sensors 61 and 62 and a difference in the quantity of light between them is small. When the remaining liquid 2 is present, only the quantity of the light reaching the sensor 62 diminishes and the difference between the electric outputs obtained by the photoelectric conversion by the two sensors becomes large. By measuring the difference between the electric output of the sensors 61 and 62accord ingly, the presence of the remaining liquid 2 can be detected.

Description

【発明の詳細な説明】 口産業上の利用分野〕 本発明は、ガラス要理の如き透明な壜の壜底に残留する
洗浄液等の液体を検出する残留液体検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a residual liquid detection device for detecting liquid such as cleaning liquid remaining at the bottom of a transparent bottle such as a glass jar.

〔従来の技術〕[Conventional technology]

飲料水或はビール等は、ガラス容器に充填されて販売さ
れているが、ガラス容器(壜)に液を充填する前に容器
の洗浄工程がある。特に、消費者が使用した後に回収し
て再使用するビール壜のような回収壜(リサイクル・ボ
トル)については、ごみや廃棄物が壜の中に混入してい
る場合が多いので、壜の含入すな洗浄が必要となる。こ
の場合、洗浄液と清水によって壜の洗浄が行われるが、
その後の水きりの工程において水きりが不完全で、洗浄
液が混入している水が壜に残る事がある。勿論、人が飲
むものであるから、このような充填前に残留液が壜に残
って存在してることは望ましくない。
BACKGROUND ART Drinking water, beer, etc. are sold in glass containers, but before filling the glass containers (bottles) with liquid, there is a step of cleaning the containers. In particular, regarding recycled bottles such as beer bottles that are collected and reused after being used by consumers, there are many cases where garbage and waste are mixed into the bottles. Cleaning is required. In this case, the bottle is cleaned with cleaning liquid and clean water,
In the subsequent draining process, the water may not be drained completely and water mixed with cleaning liquid may remain in the bottle. Of course, since the bottle is intended for human consumption, it is undesirable for residual liquid to remain in the bottle before filling.

従来から行われている壜の残留液の検出方法としては、
高周波や超音波或は赤外光等の液による吸収の度合いを
調べて残留液を検知するもの、或は電極を液の部分に近
づけ、静電容量の変化により残留液の検知を行う等の方
法があった。現在は、赤外光の利用による検出方法のも
のが多く使用されている。
The conventional method for detecting residual liquid in bottles is as follows:
There are methods that detect residual liquid by examining the degree of absorption by the liquid of high frequency waves, ultrasonic waves, or infrared light, or methods that detect residual liquid by bringing an electrode close to the liquid and detecting changes in capacitance. There was a way. Currently, detection methods that utilize infrared light are often used.

しかし、残留液の量が多い場合には、どの方法でも残留
液の検知が容易であるが、ごく微量な液の存在を検出す
る事は大変難しく、安定して微量な残留液を検出するこ
との出来る装置の実用化が望まれている。
However, when there is a large amount of residual liquid, it is easy to detect the residual liquid using any method, but it is very difficult to detect the presence of a very small amount of liquid, and it is difficult to stably detect a small amount of residual liquid. It is hoped that a device capable of this will be put to practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ある程度の量の残留液の検知には上述した従来の方法で
も可能であるが、問題は微量な残留液の検出にある。検
出を困難にしている理由の一つは、残留液が微量になる
程、光の吸収の度合が少なくなる事にある。二つめには
、液を充填する容器(ガラス壜が多いが)も、光を透過
する際、ある程度光を吸収するので、それぞれの容器の
厚さや着色された色の濃さの違いが光電センサの受光量
に変化をもたらす事が多い事にある。
Although it is possible to detect a certain amount of residual liquid using the conventional method described above, the problem lies in detecting a trace amount of residual liquid. One of the reasons why detection is difficult is that the smaller the amount of residual liquid, the less the degree of light absorption. Second, the containers filled with liquid (often glass bottles) also absorb a certain amount of light when it passes through, so differences in the thickness of each container and the intensity of the colored color can be detected by the photoelectric sensor. This is because it often causes a change in the amount of light received.

微量な残留液を検出する為には、光電(変換)センサの
光電変換電圧エネルギの微少な変化量を増幅拡大しなけ
ればならない。この変化量の増幅拡大は、同時に、前述
の容器の透過光量の変化による受光量の変化も拡大する
ことになり、この影響により真の残留液による光電セン
サの受光量の変化のみを検出する事が難しい。従って、
微量な残留液検出には限度があり、ある程度以上の残留
液の検出をもって良しとしているのが現状である。
In order to detect a small amount of residual liquid, it is necessary to amplify and expand the small amount of change in the photoelectric conversion voltage energy of the photoelectric (conversion) sensor. This amplification of the amount of change also amplifies the change in the amount of light received due to the change in the amount of light transmitted through the container as described above, and due to this effect, it is difficult to detect only the change in the amount of light received by the photoelectric sensor due to the true residual liquid. is difficult. Therefore,
There is a limit to the detection of a trace amount of residual liquid, and the current situation is that it is sufficient to detect a certain amount of residual liquid.

従って、本発明は、上記課題に鑑み、かかる課題を解法
した残留液体検出装置を提供せんとするものである。
Therefore, in view of the above-mentioned problems, the present invention aims to provide a residual liquid detection device that solves the problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、透明な壜(1)の壜底(11)に可視
光及び赤外光領域を含む光を照射する光源〔3)と、こ
の壜底を透過した上記光源よりの光を受講する2個の光
電変換センサ(6,)、 (62)  と、これ等2個
の光電変換センサの一方(6□)の受光面に配置された
赤外光のみを通過させる光学フィルタ〔7)と、これ等
2個の光電変換センサの出力を比較し両出力の差が所定
値を越えた場合に信号を出力する手段(9)、(10)
  とより成り、透明壜の壜底に液体が残留しているか
否かを検出する残留液体検出装置が得られる。
According to the present invention, there is provided a light source [3) that irradiates the bottom (11) of the transparent bottle (1) with light including visible light and infrared light, and a light source [3] that irradiates the bottom (11) of the transparent bottle (1) with light from the light source that passes through the bottom of the bottle. The two photoelectric conversion sensors (6,) and (62) to be attended, and an optical filter that allows only infrared light to pass through, which is placed on the light receiving surface of one of these two photoelectric conversion sensors (6□) [7 ) and means (9), (10) for comparing the outputs of these two photoelectric conversion sensors and outputting a signal when the difference between the two outputs exceeds a predetermined value.
As a result, a residual liquid detection device for detecting whether liquid remains at the bottom of a transparent bottle is obtained.

〔作用〕[Effect]

本発明によれは可視及び赤外の両領域を含む光を、残留
液の存在していると思われる壜(1)の部分、例えばそ
の底(1、)に対して下方から照射し、壜口上方に設け
た2個の光電(変換)センサ(6,)、 (62)によ
り、壜底及び壜底に残留している液(2)を通過した光
を受光する。一方の光電センサ(6I)は可視及び赤外
の両領域を含む透過光をそのまま受光し、他方の光電セ
ンサ(6□)には、例えば受光面に赤外光のみを通過さ
せる光学フィルタ(7)を設ける等の事により、赤外領
域のみの透過光を受光するようにする。
According to the present invention, light including both the visible and infrared regions is irradiated from below to the part of the bottle (1) where residual liquid is thought to exist, for example, the bottom (1), and Two photoelectric (conversion) sensors (6,), (62) provided above the mouth receive the light that has passed through the bottle bottom and the liquid (2) remaining on the bottle bottom. One photoelectric sensor (6I) receives transmitted light including both visible and infrared regions as it is, and the other photoelectric sensor (6□) has an optical filter (7 ) to receive transmitted light only in the infrared region.

この2個の光電センサにより光電変換された電気出力の
差を測定する事により、残留液(2)の存在を検知する
。即ち残留液の存在しない時には、両光型センサにはほ
ぼ同量の光が到達するようになてっているので、両者の
受光量の差が少ないが、残留液が存在する場合には、光
電センサ(6゜)に到達する光の量のみが減少し、両光
型センサの光電変換の電気出力の差が大きくなる。これ
は、赤外光の領域では水溶液による透過光の減衰が甚だ
しく、可視光の領域では大きな変化を生じないからであ
る。そこで、この両光型センサの電気出力の差を測定す
る事により、残留液の存在を検知する事が出来る訳であ
る。
The presence of residual liquid (2) is detected by measuring the difference between the electrical outputs photoelectrically converted by these two photoelectric sensors. In other words, when there is no residual liquid, almost the same amount of light reaches both optical sensors, so there is little difference in the amount of light received between them, but when there is residual liquid, Only the amount of light reaching the photoelectric sensor (6°) decreases, and the difference in the electrical output of photoelectric conversion between both optical sensors increases. This is because in the infrared light region, transmitted light is significantly attenuated by the aqueous solution, whereas in the visible light region, no significant change occurs. Therefore, by measuring the difference in the electrical outputs of both optical sensors, the presence of residual liquid can be detected.

更に本発明では、容器による透過光の減衰量の変化は、
水溶液のそれに比し可視光と赤外光では変化が少ないの
で、これは両光型センサの受光量に同様に影響を及ぼし
、相殺されて両光型センサの電気出力の差の変化として
現れる事が少なく、従って、残留液による透過光の減衰
のみを光電センサ(62)の電気出力の変化として安定
して捕える事が出来る事にある。
Furthermore, in the present invention, the change in the amount of attenuation of transmitted light due to the container is
Since there is less change in visible light and infrared light than in an aqueous solution, this affects the amount of light received by both optical sensors in the same way, cancels out, and appears as a change in the difference in the electrical output of both optical sensors. Therefore, only the attenuation of transmitted light due to the residual liquid can be stably detected as a change in the electrical output of the photoelectric sensor (62).

コ実施例〕 第1図は、本発明の一実施例の一部を断面とする路線図
である。同図に於て、(1]は例えばガラス壜で、その
底(1,)に残留液(2)が存在している。(3)は壜
(1)の下方から壜底(1,)に対して可視光と赤外光
を含む光を照射する光源、(4)は光源(3)の光を壜
底(1,)に対して均等に照射する為、壜底(II)と
光源(3)との間に配置した光拡散板、(5)は壜底(
11)を通過した光を集光する項四の上方に配置した集
光レンズで、その先軸と壜(1)の中心軸とを一致させ
、(OA)で示す。(6,)、 (62)  は集光レ
ンズ(5)の上方で光軸(OA)を挟んで並置した2個
の光電(変換)センサ、(7〕は一方の光電センサ(6
2ンの受光面に設けた赤外光領域の光のみを通過させる
赤外(光学)フィルタ、(8,)、 (82)  は光
電センサ(6,)、 (6,)  の光電変換出力をそ
れぞれ増幅拡大する2個の増幅器、(9)は2個の増幅
器(8,)、(8□)の電位差を調整して零にする例え
ばポテンショメータの如き零調整器、(10)はその中
間タップ(9,)に接続され、後述の如き検知出力信号
を発生させる為の電力増幅器である。
Embodiment] FIG. 1 is a partially sectional route map of an embodiment of the present invention. In the figure, (1) is, for example, a glass bottle, and residual liquid (2) is present at the bottom (1,). (3) is a glass bottle from below the bottle (1,). A light source that irradiates light including visible light and infrared light, and (4) is a light source that irradiates light including visible light and infrared light to the bottle bottom (II) and the light source in order to evenly irradiate the bottle bottom (1,) with the light from light source (3). (3) is the light diffusing plate placed between the bottle bottom (5)
11) is a condensing lens placed above item 4 that condenses the light that has passed through the condenser lens, and its tip axis is aligned with the central axis of the bottle (1), and is indicated by (OA). (6,), (62) are two photoelectric (conversion) sensors arranged above the condenser lens (5) across the optical axis (OA), and (7) is one photoelectric sensor (6,
Infrared (optical) filters (8,) and (82) are provided on the light-receiving surface of the photoelectric sensors (6,) and (6,), which allow only light in the infrared region to pass through. Two amplifiers each amplify the amplification, (9) is a zero adjuster such as a potentiometer that adjusts the potential difference between the two amplifiers (8,) and (8□) to zero, and (10) is its intermediate tap. (9,) is a power amplifier for generating a detection output signal as described below.

光電センサ(6□)、 (6,)  はそれぞれ接近し
て設けられているので、壜底(1,)の透過光を集光す
る集光レンズ(5)によって集光された壜底(1□)の
光像は、両光型センサ(6,)、 (62)  に於て
ほぼ同様な領域を占める(第2図により後述)。光電セ
ンサ(6,)。
Since the photoelectric sensors (6□) and (6,) are provided close to each other, the light transmitted through the bottle bottom (1,) is focused by the condensing lens (5). The optical image of □) occupies approximately the same area in both optical sensors (6,) and (62) (described later with reference to FIG. 2). Photoelectric sensor (6,).

(62)の電気出力は、それぞれ増幅器(8,)、(8
□)により増幅され零調整器(9)に供給される。増幅
器(8,)として正相増幅器を用い、増幅器(82)と
して逆相増幅器を用い、両者の出力を零調整器(9)に
供給すれば、零調整器(9)(ポテンショ・メータ)の
両端の電位は、互いに逆相になるので、この際、壜底(
1,)上に残留液(2)が無い時は、両光型センサ(6
,)、 (62) 等を調整して、ポテンショ・メータ
(9)の中間部タップ(91)の電位を零となす。もし
残留液(2)が存在しない状態で照明光を受光した場合
、ポテンショ・メータ(9)の中間タップ(91)に若
干の電位差が現れる時には、ポテンショ・メータ(9〕
ヲ調整して、その中間タップ(91)の電位を零にすれ
ば良い。
The electrical output of (62) is transmitted through amplifiers (8,) and (8, respectively).
□) and supplied to the zero regulator (9). If a positive phase amplifier is used as the amplifier (8,) and a negative phase amplifier is used as the amplifier (82), and the outputs of both are supplied to the zero regulator (9), the zero regulator (9) (potentiometer) The potentials at both ends are in reverse phase with each other, so at this time, the bottom of the bottle (
When there is no residual liquid (2) on 1,), both optical sensors (6
, ), (62), etc., to make the potential of the middle tap (91) of the potentiometer (9) zero. If the illumination light is received in the absence of residual liquid (2), and a slight potential difference appears at the middle tap (91) of the potentiometer (9), the potentiometer (9)
The potential of the intermediate tap (91) may be set to zero by adjusting the voltage.

光源(3)には可視及び赤外の両領域の光を発するもの
を用いるが、光電センサ(6、)は壜底及び壜底に存在
する残留液(2)を通過した透過光をそのまま受光する
。一方、光電センサ(62)の受光面には赤外光領域の
光のみを通過させる赤外フィルタ(7)を設けであるの
で、赤外領域のみの透過光を受光する。
The light source (3) uses one that emits light in both the visible and infrared regions, but the photoelectric sensor (6) receives the transmitted light that has passed through the bottom of the bottle and the residual liquid (2) present at the bottom of the bottle. do. On the other hand, since the light receiving surface of the photoelectric sensor (62) is provided with an infrared filter (7) that allows only light in the infrared region to pass through, the photoelectric sensor (62) receives transmitted light only in the infrared region.

一般的に、光の波長が1乃至2ミクロン以上の長い波長
の赤外光の場合には、水溶液による透過減衰率が極端に
大きくなるので、残留液(2)が存在する場合には、赤
外領域のみの光を受光する光電センサ(62)の光電変
換出力は、光電センサ(61)の出力に比し著しく小さ
くなる。赤外フィルタ(7)には、上記の範囲のカット
オフ周波数を有する適宜なものを用いれば良い。
Generally, in the case of infrared light with a long wavelength of 1 to 2 microns or more, the transmission attenuation rate due to an aqueous solution becomes extremely large, so if there is residual liquid (2), The photoelectric conversion output of the photoelectric sensor (62) that receives light only in the outer region is significantly smaller than the output of the photoelectric sensor (61). An appropriate infrared filter (7) having a cutoff frequency within the above range may be used.

光電センサ(61)は、可視光領域の光も受光している
が、可視光領域の光は水溶液を通過しても減衰量が少な
いので、残留液(2)の有る無しによって光電センサ(
6I)の受光量に大きな変化を生じない。
The photoelectric sensor (61) also receives light in the visible light range, but since light in the visible light range has a small amount of attenuation even when passing through an aqueous solution, the photoelectric sensor (61)
6I) does not cause a large change in the amount of light received.

上記の事から、残留液(2)の有る無しにより、光電セ
ンサ(61)に接続された増幅器(8,)の電気出力と
光電センサ(62)に接続された増幅器(82)の電気
出力とに大きく差を生じる。従って、残留液(2)が無
い場合に、増幅器(8,)、 (82)  に接続され
た零調整器(9)によりその出力端(91)に電位差が
生じないように調整しておけば、零調整器(9)の出力
端には残留液C〕の有る場合にのみ、差電位が現れる。
From the above, depending on the presence or absence of residual liquid (2), the electrical output of the amplifier (8,) connected to the photoelectric sensor (61) and the electrical output of the amplifier (82) connected to the photoelectric sensor (62) can be determined. It makes a big difference. Therefore, if there is no residual liquid (2), the zero regulator (9) connected to the amplifiers (8,) and (82) should be adjusted so that no potential difference occurs at the output terminal (91). , a potential difference appears at the output end of the zero regulator (9) only when there is residual liquid C].

零調整器(9)の出力は、電力増幅器(10)に供給さ
れる。この電力増幅器(10)は、零調整器(9〕から
の電位があらかじめ設定された一定値を越えた場合には
、残留液(2)が存在することを検知した事を示す電気
出力を発するようにしておく。尚、この電力増幅器(1
0)の電気出力を利用して、図示せずも、光や音による
警報手段を作動させても良いし、壜の排除装置を作動さ
せて残留液(2)の存在が検知され壜を除外しても良い
The output of the zero regulator (9) is supplied to a power amplifier (10). This power amplifier (10) emits an electrical output indicating that the presence of residual liquid (2) has been detected if the potential from the zero regulator (9) exceeds a preset constant value. Please note that this power amplifier (1
Although not shown, the electric output of step 0) may be used to activate a light or sound warning means, or a bottle removal device may be activated to detect the presence of residual liquid (2) and remove the bottle. You may do so.

第2図は光電センサ(61)及び(6□)のそれぞれの
受光領域を拡大して示す平面図である。同図に於て、(
11)は壜底(II)の内径領域、(12,)  と(
122)とは、それぞれ光電センサ(6I)及び(62
)の内径領域(11)に対する受光領域を示す。2個の
光電センサ(6,)、 (62)  は互いに接近して
設けであるが、集光レンズ(5)の光軸(OA)からそ
れぞれが僅かにずれているので、図に示すごとく受光領
域(12,)、 (12,)に僅かのずれを生じる事と
なる。ただし、受光領域にこのように僅かのずれがある
としても、残留液(2)を検知する目的の上では、この
事は実用上、全く問題にならない。例えそれぞさが壜底
(11)の異なった部分の光を受光するような構成にし
たとしても、前項に説明した通りの本発明の作用原理に
より本発明の目的が達せられる事は明らかであろう。
FIG. 2 is an enlarged plan view showing the light receiving areas of the photoelectric sensors (61) and (6□). In the same figure, (
11) is the inner diameter area of the bottle bottom (II), (12,) and (
122) are photoelectric sensors (6I) and (62), respectively.
) shows the light receiving area for the inner diameter area (11). The two photoelectric sensors (6,) and (62) are installed close to each other, but each is slightly offset from the optical axis (OA) of the condenser lens (5), so the light is not received as shown in the figure. A slight shift will occur in the areas (12,) and (12,). However, even if there is such a slight shift in the light receiving area, this does not pose any practical problem for the purpose of detecting the residual liquid (2). Even if the structure is such that each part of the bottle bottom (11) receives light, it is clear that the object of the present invention can be achieved by the principle of operation of the present invention as explained in the previous section. Probably.

第3図は本発明の他の実施例を示す。この例では、両受
光センサ(6,)、(6□)の受光領域に上述の如きず
れが生じない。即ち、同図に示すごと(、集光レンズ(
5)の光軸(OA)上において、集光レンズ(5)と光
電センサ(6,)、 (62)  との間に71−フミ
ラ(13)を設け、片方の光電センサ例えば(6、)は
光軸(OA)に沿ってハーフミラ(13)を通過した光
を受光し、他方の光電センサ(62)はハーフミラ(1
3)によって屈折された光を受光する如く配置する。か
くする事により、光電センサ(6,)、 (62)  
の受光領域を一致させる事が出来る。その他は、第3r
g:iの例は第1図の例と全く同一である。
FIG. 3 shows another embodiment of the invention. In this example, the above-mentioned deviation does not occur in the light receiving areas of both light receiving sensors (6,) and (6□). That is, as shown in the same figure (, condensing lens (
On the optical axis (OA) of 5), a 71-humira (13) is provided between the condenser lens (5) and the photoelectric sensors (6,), (62), and one photoelectric sensor, for example (6,), is provided. receives the light that has passed through the half mirror (13) along the optical axis (OA), and the other photoelectric sensor (62) receives the light that has passed through the half mirror (13) along the optical axis (OA).
3) so as to receive the refracted light. By doing this, the photoelectric sensor (6,), (62)
It is possible to match the light receiving areas of the two. Others are 3rd r.
The example of g:i is exactly the same as the example of FIG.

第4図及び第5図は本発明の更に他の実施例の主要部を
示す路線図である。壜(11のなかには、その底部の側
断面を示す第4図Aのように、壜(1)の壜底(11)
の中央部が凸状に突起しているものがある。この場合、
残留液(2)の量が少ないと、この残留液(2)は、壜
底(11)上でその外周部分にドーナツ状に分布し、中
央の突起部には存在しない状態になる。
FIGS. 4 and 5 are route maps showing the main parts of still another embodiment of the present invention. As shown in Figure 4A, which shows the side cross section of the bottom of the bottle (11), there is a bottle bottom (11) of the bottle (1).
Some have a convex central part. in this case,
When the amount of residual liquid (2) is small, this residual liquid (2) is distributed in a donut shape around the outer circumference of the bottle bottom (11), and is not present in the central protrusion.

このような壜に対して効率良く残留液(2)を検出する
為の本発明の実施例を壜底(1、)の投影図である第4
図B及び実施例の主要部を示す第5図を参照して説明す
る。即ち、第4図已に示すごとく、一方の光電センサ(
61)は、壜底(1,)の中央の突起部(14,)  
の透過光のみを受光する如くなし、他方の光電センサ(
62)は、壜底(1、)の外周近くに沿ったドーナツ状
部(14□)を透過する光のみを受光する如(なす。こ
のようにする事により、光電センサ(62)は、残留液
の有る無しによって透過光の減衰の度合いに対する影響
を大きく拾うので、微量な残留液(2)の存在を効率良
く検出出来る。
The fourth embodiment of the present invention for efficiently detecting residual liquid (2) in such a bottle is shown in the fourth projection view of the bottle bottom (1,).
This will be explained with reference to FIG. B and FIG. 5 showing the main parts of the embodiment. That is, as shown in Figure 4, one photoelectric sensor (
61) is the central protrusion (14,) of the bottle bottom (1,)
The other photoelectric sensor (
The photoelectric sensor (62) receives only the light that passes through the donut-shaped part (14□) along the vicinity of the outer periphery of the bottle bottom (1,).By doing this, the photoelectric sensor (62) Since the presence or absence of liquid greatly affects the degree of attenuation of transmitted light, the presence of a trace amount of residual liquid (2) can be detected efficiently.

即ち、第5図に示す如く、光電センサ(6,)の受光面
に光学マスク(151)、光電センサ(62)の受光面
に光学マスク(15□)を設ける。光学マスク(15,
)は、同図の矢印(A)の平面図の如く、例えば中央に
円形状の透明部(15A)  と、その周囲は不透明1
(15B)  とより成る。他方の光学マスク(152
)  は、同図の矢印(B)の平面図の如く、中央の円
形な不透明部(15C)  、その周囲のドーナツ状の
透明部(150)  及びその外周の不透明部(15E
)  より成る。
That is, as shown in FIG. 5, an optical mask (151) is provided on the light receiving surface of the photoelectric sensor (6,), and an optical mask (15□) is provided on the light receiving surface of the photoelectric sensor (62). Optical mask (15,
), as shown in the plan view of arrow (A) in the same figure, for example, there is a circular transparent part (15A) in the center and an opaque part 1 around it.
(15B) Consists of. The other optical mask (152
), as shown in the plan view of arrow (B) in the same figure, includes a circular opaque part (15C) at the center, a donut-shaped transparent part (150) around it, and an opaque part (15E) at the outer periphery.
).

従って、夫々の光学マスク(15,)  及び(15□
)は前述の第4図Bで述べたような受光領域(14,)
、 (14,)に制限される。尚、光電センサ(6、)
の光学マスク(15,) を省略して、壜底(11)全
体の透過光を受光するようにしても、前述のごとき本発
明の作用に差し支えが無い事は言う迄もない。尚、第5
図に於て図示してないが、その他の構成及び動作は第3
図の例と全く同一である。
Therefore, the respective optical masks (15,) and (15□
) is the light receiving area (14,) as described in Figure 4B above.
, (14,). In addition, photoelectric sensor (6,)
It goes without saying that even if the optical mask (15,) is omitted and the light transmitted through the entire bottle bottom (11) is received, there is no problem with the operation of the present invention as described above. Furthermore, the fifth
Although not shown in the figure, other configurations and operations are explained in the third section.
This is exactly the same as the example in the figure.

第6図は光電センサ(6,)、 (6,)  を特殊な
構成にして、ハーフミラ(13)を使用する事なく、光
軸(OA>上の一箇所で壜底(11)の透過を受光して
本発明の目的を達成出来る本発明の他の実施例の路線図
である。即ち、光電センサ(61)の形状を小形円盤状
、光電センサ(62)の形状を、同図に於てその投影図
に示す如くドーナツ状となし、両者を光軸(OA)に対
し同心状且つ同一平面上に配置したものである。これに
より、光電センサ(6、)は壜底の中央部分のみの透過
光を受光し、光電センサ(6□)は壜底(11)の外周
に亘るドーナツ状の部分のみの透過光を受光する事にな
り、第5図に示す例と同様な作用をなす。ドーナツ状の
光電センサ(6□)の受光面に、同じくドーナツ形状の
赤外フィルタ(7)を設けておく必要がある事は勿論で
ある。
Figure 6 shows a special configuration of photoelectric sensors (6,), (6,) that allows transmission of the bottle bottom (11) at one point on the optical axis (OA>) without using a half mirror (13). It is a route map of another embodiment of the present invention that can receive light and achieve the object of the present invention.That is, the shape of the photoelectric sensor (61) is a small disk shape, and the shape of the photoelectric sensor (62) is in the same figure. As shown in the projection diagram, it has a donut shape, and both are arranged concentrically and on the same plane with respect to the optical axis (OA).Thereby, the photoelectric sensor (6,) is located only in the central part of the bottom of the bottle. The photoelectric sensor (6□) receives the transmitted light only from the donut-shaped part around the outer periphery of the bottle bottom (11), and has the same effect as the example shown in Fig. 5. Of course, it is necessary to provide an infrared filter (7), which is also donut-shaped, on the light-receiving surface of the donut-shaped photoelectric sensor (6□).

以上に述べた各種の実施例は、いずれも壜底(II)を
その下方より照明し増目上方から壜底(1、〉を通過す
る透過光を受光する構成によったが、本発明を実施する
為にはこれにこだわる必要は無く、その他の構成も色々
考えられる。
In the various embodiments described above, the bottle bottom (II) is all illuminated from below and the transmitted light passing through the bottle bottom (1, ) is received from above the opening. In order to implement this, there is no need to stick to this, and various other configurations can be considered.

第7図A及びBはそのような実施例の一つの要部を示す
一部断面とする側面図及び平面図である。
FIGS. 7A and 7B are a side view and a plan view, partially in section, showing essential parts of one such embodiment.

同図に示すように、光電センサ(6、)及び(6□)を
壜底(11)近くの側面に配置したものである。この場
合、照明光源(3)を、(31)と(3□)の二つのビ
ーム状投光型の照明光源に分けて壜底(11)の外側に
配置し、それぞれの光源(3,)、(3□)は光電セン
サ(6,)及び(62)の壜底(11)の直径に関して
反対側の側面の外側に設ける。光源(3,)、 (3,
)  の配置位置は、それ等よりのビーム光が残留液(
2)を通過するような場所とし、効果的に残留液(2)
を検出し易い位置を設定する。その他の構成、動作及び
作用は前述各実施例と同一なので、図示及び説明は省略
する。
As shown in the figure, photoelectric sensors (6,) and (6□) are arranged on the side surface near the bottom (11) of the bottle. In this case, the illumination light source (3) is divided into two beam-shaped projection type illumination light sources (31) and (3□) and placed outside the bottle bottom (11), and each light source (3,) is placed outside the bottle bottom (11). , (3□) are provided on the outer sides of the photoelectric sensors (6,) and (62) opposite to each other with respect to the diameter of the bottle bottom (11). Light source (3,), (3,
) are placed so that the beam light from them will reach the residual liquid (
2), and effectively remove residual liquid (2).
Set a position where it is easy to detect. The other configurations, operations, and effects are the same as those of the previous embodiments, so illustrations and explanations will be omitted.

又、これらの実施例は簡便な光電センサを使用した場合
により説明を行ったが、ビデオカメラ及びCPU等の使
用により、同様に本発明の主たる作用及び動作をロジッ
ク的に行わしめる事が出来ることは当業者として容易な
事であろう。
Furthermore, although these embodiments have been explained using a simple photoelectric sensor, it is possible to logically perform the main functions and operations of the present invention in the same way by using a video camera, a CPU, etc. would be easy for a person skilled in the art.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、今まで困難であった微量な残留液の検
出が容易となり、しかも容器(ガラス壜等)の厚みむら
や色むらの変化の影響による安定な検出精度の向上を阻
害する要因を排除する事が出来る。
According to the present invention, it is now easier to detect trace amounts of residual liquid, which has been difficult until now.Moreover, factors that hinder stable improvement of detection accuracy due to the influence of changes in uneven thickness and color of containers (glass bottles, etc.) can be excluded.

又、本発明の構成は極めて簡単であるので、その実施例
は極めて容易である。更に実施例において説明したごと
く、本発明の主旨に沿って色々な実施方法が採用出来る
ので、応用範囲が広く実用化が容易である。
Furthermore, since the structure of the present invention is extremely simple, its embodiments are extremely easy. Further, as explained in the embodiments, various implementation methods can be adopted in accordance with the gist of the present invention, so the scope of application is wide and practical implementation is easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図はその
動作の説明に供する路線図、第3図は本発明の第2の実
施例のブロック図、第4図A及びBは本発明の第3の実
施例の説明に供する路線図、第5図は本発明の第3の実
施例の主要部の路線図、第6図は本発明の第4の実施例
のブロック図、第7図A及びBは本発明の第5の実施例
の主要部の路線図である。 図に於て、(1)は壜、(2)は残留液、(3)は光源
、(4)は光拡散板、(5)は集光レンズ、(6,)、
(6□)に光電変換センサ、(7)は赤外フィルタ、(
8,)、 (82)  は増幅器、(9)は零調整器、
(10)は電力増幅器、(101)。 (1,12)  は光学マスクを夫々示す。 代  理  人 松  隈  秀  盛 本g明の篤z0霞隠分りの絡線J 第3図 /1g明υ諺3の例の格′献図 第5図 口〜31 本発明め篤5trrflJn略毅m 第7図
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a route map for explaining its operation, Fig. 3 is a block diagram of a second embodiment of the invention, and Fig. 4 A and B are A route map for explaining the third embodiment of the present invention, FIG. 5 is a route map of the main part of the third embodiment of the present invention, FIG. 6 is a block diagram of the fourth embodiment of the present invention, FIGS. 7A and 7B are route maps of the main parts of the fifth embodiment of the present invention. In the figure, (1) is the bottle, (2) is the residual liquid, (3) is the light source, (4) is the light diffuser, (5) is the condenser lens, (6,),
(6□) is a photoelectric conversion sensor, (7) is an infrared filter, (
8,), (82) is an amplifier, (9) is a zero adjuster,
(10) is a power amplifier, (101). (1, 12) indicate optical masks, respectively. Deputy Director Hide Hitomatsu Kuma Morimoto g Mei's Atsushi z0 Kasumi-gakure's connection line J Figure 3 / 1g Mei υ proverb 3 example case diagram Figure 5 mouth ~ 31 This invention Me Atsushi 5 trrfl Jn Abbreviation Takeshi Figure 7

Claims (1)

【特許請求の範囲】 1、透明な壜の壜底に可視光及び赤外光領域を含む光を
照射する光源と、 上記壜底を透過した上記光源よりの光を受光する2個の
光電変換センサと、 上記2個の光電変換センサの一方の受光面に配置された
赤外光のみを通過させる光学フィルタと、 該2個の光電変換センサの出力を比較し両出力の差が所
定値を越えた場合に信号を出力する手段とより成ること
を特徴とする透明壜の壜底に液体が残留しているか否か
を検出する残留液体検出装置。 2、透明な壜の壜底に可視光及び赤外光領域を含む光を
照射する上記壜底の下方に配置した光源と、 該光源と上記壜底との間に配置した光拡散板上記壜底を
透過した上記光源よりの光を受光する上記壜の壜口の上
方に配置した2個の光電変換センサと、 該2個の光電変換センサと上記壜口との間に配置した集
光レンズと、 上記2個の光電変換センサの一方の受光面に配置された
赤外光のみを透過させる光学フィルタと、 該2個の光電変換センサの出力を比較し両出力の差が所
定値を越えた場合に信号を出力する手段とより成ること
を特徴とする透明壜の壜底に液体が残留しているか否か
を検出する残留液体検出装置。 3、透明な壜の壜底に可視光及び赤外光領域を含む光を
照射する上記壜底の下方に配置した光源と、 該光源と上記壜底との間に配置した光拡散板と、 上記壜底を透過した上記光源よりの光を受光する上記壜
の壜口の上方に配置した2個の光電変換センサと、 該2個の光電センサと上記壜口との間に配置した集光レ
ンズと、 上記2個の光電変換センサの一方の受光面に配置された
赤外光のみを通過させる光学フィルタと、 上記集光レンズと上記2個の光電変換センサとの間に配
置したハーフミラと、 該2個の光電変換センサの出力を比較し両出力の差が所
定値を越えた場合に信号を出力する手段とを有し、 上記集光レンズの光軸を上記壜の中心軸とを一致させ、
上記光学フィルタのない光電変換センサを上記光軸に沿
い上記ハーフミラを通過した光を受光するように配置し
、他方の光電変換センサはハーフミラで反射した光を受
光するように配置したことを特徴とする透明壜の壜底に
液体が残留しているか否かを検出する残留液体検出装置
。 4、透明な壜の壜底に可視光及び赤外光領域を含む光を
照射する上記壜底の下方に配置した光源と、 該光源と上記壜底との間に配置した光拡散板と、 上記壜底を透過した上記光源よりの光を受光する上記壜
の壜口の上方に配置した2個の光電変換センサと、 上記2個の光電変換センサの一方の受光面に配置された
赤外光のみを通過させる光学フィルタと、 該2個の光電変換センサの出力を比較し両出力の差が所
定値を越えた場合に信号を出力する手段とを有し、上記
集光レンズの光軸を上記壜の中心軸と一致させ、上記2
個の光電変換センサを上記光軸と同心状且つ同一平面上
に配置したことを特徴とする透明壜の壜底に液体が残留
しているか否かを検出する残留液体検出装置。
[Claims] 1. A light source that irradiates the bottom of a transparent bottle with light including visible light and infrared light, and two photoelectric conversion units that receive light from the light source that passes through the bottom of the bottle. A sensor, an optical filter that allows only infrared light to pass, which is placed on the light receiving surface of one of the two photoelectric conversion sensors, and the outputs of the two photoelectric conversion sensors are compared and the difference between the two outputs is a predetermined value. 1. A residual liquid detection device for detecting whether liquid remains at the bottom of a transparent bottle, comprising means for outputting a signal when the amount exceeds the limit. 2. A light source placed below the bottom of the bottle that irradiates the bottom of the transparent bottle with light including visible light and infrared light, and a light diffuser plate placed between the light source and the bottom of the bottle. two photoelectric conversion sensors placed above the bottle opening of the bottle that receive light from the light source transmitted through the bottom; and a condenser lens placed between the two photoelectric conversion sensors and the bottle opening. and an optical filter that transmits only infrared light, which is placed on the light receiving surface of one of the two photoelectric conversion sensors, and the outputs of the two photoelectric conversion sensors are compared and the difference between the two outputs exceeds a predetermined value. 1. A residual liquid detection device for detecting whether or not liquid remains at the bottom of a transparent bottle, characterized by comprising means for outputting a signal when a liquid is present at the bottom of a transparent bottle. 3. A light source placed below the bottom of the transparent bottle that irradiates the bottom of the bottle with light including visible light and infrared light, and a light diffusion plate placed between the light source and the bottom of the bottle; two photoelectric conversion sensors arranged above the mouth of the bottle that receive light from the light source that has passed through the bottom of the bottle; and a light condensing sensor arranged between the two photoelectric sensors and the mouth of the bottle. a lens; an optical filter disposed on the light receiving surface of one of the two photoelectric conversion sensors that allows only infrared light to pass; and a half mirror disposed between the condenser lens and the two photoelectric conversion sensors; , means for comparing the outputs of the two photoelectric conversion sensors and outputting a signal when the difference between the two outputs exceeds a predetermined value, the optical axis of the condensing lens being aligned with the central axis of the bottle. match,
The photoelectric conversion sensor without an optical filter is arranged along the optical axis so as to receive the light that has passed through the half mirror, and the other photoelectric conversion sensor is arranged so as to receive the light reflected by the half mirror. A residual liquid detection device that detects whether liquid remains at the bottom of a transparent bottle. 4. A light source placed below the bottom of the transparent bottle that irradiates the bottom of the bottle with light including visible light and infrared light, and a light diffusion plate placed between the light source and the bottom of the bottle; two photoelectric conversion sensors placed above the mouth of the bottle that receive light from the light source that has passed through the bottom of the bottle; and an infrared ray placed on the light receiving surface of one of the two photoelectric conversion sensors. It has an optical filter that allows only light to pass through, and means that compares the outputs of the two photoelectric conversion sensors and outputs a signal when the difference between the two outputs exceeds a predetermined value, and the optical axis of the condensing lens is is aligned with the central axis of the bottle, and the above 2
A residual liquid detection device for detecting whether liquid remains at the bottom of a transparent bottle, characterized in that a plurality of photoelectric conversion sensors are arranged concentrically and on the same plane as the optical axis.
JP17171390A 1990-06-29 1990-06-29 Detecting apparatus of remaining liquid Pending JPH0460450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17171390A JPH0460450A (en) 1990-06-29 1990-06-29 Detecting apparatus of remaining liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17171390A JPH0460450A (en) 1990-06-29 1990-06-29 Detecting apparatus of remaining liquid

Publications (1)

Publication Number Publication Date
JPH0460450A true JPH0460450A (en) 1992-02-26

Family

ID=15928299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17171390A Pending JPH0460450A (en) 1990-06-29 1990-06-29 Detecting apparatus of remaining liquid

Country Status (1)

Country Link
JP (1) JPH0460450A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071392A (en) * 2004-09-01 2006-03-16 Hitachi Industries Co Ltd Detector of foreign matter in container
JP2009115580A (en) * 2007-11-06 2009-05-28 Kirin Techno-System Co Ltd Residual liquid inspecting apparatus for bottle
JP2012083245A (en) * 2010-10-13 2012-04-26 Kirin Brewery Co Ltd Residual liquid detection apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131094A (en) * 1977-04-21 1978-11-15 Yamamura Glass Co Ltd Detecting method for oillstained bottle
JPS5517460A (en) * 1978-07-24 1980-02-06 Hitachi Zosen Corp Inspection method for bottle
JPH01141342A (en) * 1987-11-27 1989-06-02 Hajime Sangyo Kk Bottle bottom inspection instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131094A (en) * 1977-04-21 1978-11-15 Yamamura Glass Co Ltd Detecting method for oillstained bottle
JPS5517460A (en) * 1978-07-24 1980-02-06 Hitachi Zosen Corp Inspection method for bottle
JPH01141342A (en) * 1987-11-27 1989-06-02 Hajime Sangyo Kk Bottle bottom inspection instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071392A (en) * 2004-09-01 2006-03-16 Hitachi Industries Co Ltd Detector of foreign matter in container
JP2009115580A (en) * 2007-11-06 2009-05-28 Kirin Techno-System Co Ltd Residual liquid inspecting apparatus for bottle
JP2012083245A (en) * 2010-10-13 2012-04-26 Kirin Brewery Co Ltd Residual liquid detection apparatus

Similar Documents

Publication Publication Date Title
US5216239A (en) Residual fluid detection apparatus for detecting fluid at the bottom of a bottle using both IR and visible light
US4459023A (en) Electro-optic inspection system for transparent or semitransparent containers
JPH0513257B2 (en)
JPH01187437A (en) Defect inspection device
JPH0460450A (en) Detecting apparatus of remaining liquid
JPH04249742A (en) Measuring apparatus of particle size distribution
JPH0634574A (en) Bottle inspector
JPH0472554A (en) Inspecting device for transparent container
JPH01141342A (en) Bottle bottom inspection instrument
CA2049483A1 (en) Residual fluid detection apparatus
JPS58211635A (en) Defective article inspector by 3-wavelength spectrophotometry
JPS6312754U (en)
JPH04301769A (en) Liquid sensor
JPS6288932A (en) Detecting device for liquid leak in container
JPH0734365Y2 (en) Foreign object detection and removal device
JPS6361151A (en) Apparatus for measuring contamination of insulator
JP2002139423A (en) Oil film detector
JPH01259244A (en) Foreign matter detection system
JPS60169743A (en) Defect detecting method of surface of article
JPH038702B2 (en)
JPH061179B2 (en) Defect inspection method and apparatus
JPS63208747A (en) Optical inspecting device
JPS62299749A (en) Defect detecting method for planar body
JPH0714327U (en) Liquid level detector
JPS569717A (en) Optical filter device using liquid crystal