JPS6361151A - Apparatus for measuring contamination of insulator - Google Patents

Apparatus for measuring contamination of insulator

Info

Publication number
JPS6361151A
JPS6361151A JP20527186A JP20527186A JPS6361151A JP S6361151 A JPS6361151 A JP S6361151A JP 20527186 A JP20527186 A JP 20527186A JP 20527186 A JP20527186 A JP 20527186A JP S6361151 A JPS6361151 A JP S6361151A
Authority
JP
Japan
Prior art keywords
insulator
light
ultraviolet
ultraviolet rays
contamination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20527186A
Other languages
Japanese (ja)
Other versions
JPH0466313B2 (en
Inventor
Hideki Ninomiya
英樹 二宮
Hiroshi Inoue
浩 井上
Jiyuue Mizutani
水渓 寿右衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Electric Power Co Inc
Original Assignee
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Electric Power Co Inc filed Critical Shikoku Electric Power Co Inc
Priority to JP20527186A priority Critical patent/JPS6361151A/en
Publication of JPS6361151A publication Critical patent/JPS6361151A/en
Publication of JPH0466313B2 publication Critical patent/JPH0466313B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Insulators (AREA)

Abstract

PURPOSE:To reduce the cost required in the measurement of the contamination of an insulator, in an apparatus irradiating the insulator with ultraviolet rays to receive the reflected light from said insulator, by operating the reflectivity ratio of received lights to the different wavelength of ultraviolet rays to compare the same with that of a normal insulator. CONSTITUTION:The ultraviolet rays from a light source 1 are allowed to pass through a modulator 3 to be separated into ultraviolet rays and disturbance light to irradiate an insulator 4. The reflected light from the insulator 4 is received by a semipermeable mirror 6 and the transmitted light from said mirror 6 is allowed to pass through a filter 7 to be received by a light receiver 9 and the reflected light therefrom is allowed to pass through a filter 8 to be received by a light receiver 10. Wavelength lambda0, lambda1 of ultraviolet rays are received by the filters 7, 8 and converted to electric signals corresponding to the reception of light by the light receivers 9, 10 to be sent to amplifiers 11, 12. Said electric signals are further sent to an arithmetic processor 13 to operate the ratio I0/I1 of light receiving intensities and the reflectivity ratio of the received lights is compared with that of a normal insulator to measure the degree of contamination. Since the reflectivity ratio of the different wavelengths of ultraviolet rays is calculated, the contamination of the actually used insulator can be measured from a long distance and measuring cost can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、塩分、土、すす等の汚損物質の碍子への付着
を測定することのできる碍子汚損測定装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an insulator fouling measuring device that can measure the adhesion of fouling substances such as salt, soil, and soot to insulators.

(従来の技術) 従来から、碍子に塩分、土、すす等の汚損物質が付着す
ると、地絡事故が発生するため、汚損物質の碍子への付
着程度を測定し、その汚損物質が付着した汚損碍子から
汚損物質の除去を行なう等の処理を行なって地絡事故の
発生を未然に防止するようにしている。
(Conventional technology) Conventionally, ground faults occur when fouling substances such as salt, soil, soot, etc. adhere to insulators. Treatments such as removing contaminants from the insulator are carried out to prevent ground faults from occurring.

ところで、その汚損物質の碍子への付着の程度を測定す
る手段としては、従来から、■変電所等にその実運用碍
子とは別個に汚損測定用碍子を設置し、その汚損測定用
碍子に付着した汚損物質を水を流しつつ筆等を用いて洗
い落して、汚損物質を含んだ水溶液を容器に貯え、その
水溶液を分析して碍子の汚損の程度を測定する手段、■
その汚損物質が付着した汚損測定用碍子をその汚損物質
が付着している状態で水蒸気等により湿気を与え、高電
圧をその碍子の電極間に与えてその碍子に流れた電流に
基づいて汚損の程度を測定する手段が知られている。
By the way, as a means to measure the degree of adhesion of the contaminants to the insulator, conventional methods include: (1) Installing an insulator for contamination measurement in a substation, etc., separately from the insulator for actual operation; A means of washing off the contaminants using a brush or the like while running water, storing an aqueous solution containing the contaminants in a container, and analyzing the aqueous solution to measure the degree of contamination of the insulator;
A contamination measurement insulator with the contamination substance attached is moistened with water vapor, etc., and a high voltage is applied between the electrodes of the insulator, and the contamination measurement is detected based on the current flowing through the insulator. Means for measuring the degree are known.

(発明が解決しようとする問題点) しかしながら、従来から知られている■、■の手段は、
いずれも、実運用碍子とは別個の汚損測定用碍子を用い
、その汚損測定用碍子の汚損の程度を実運用碍子の汚損
の程度とみなすものであるので、実運用碍子そのものの
汚損の程度を測定できないという問題点がある。
(Problems to be solved by the invention) However, the conventionally known means of ■ and ■
In both cases, a contamination measurement insulator separate from the actual use insulator is used, and the degree of contamination of the contamination measurement insulator is regarded as the degree of contamination of the actual use insulator. The problem is that it cannot be measured.

また、実運用碍子とは別個に汚損測定に専用の汚損測定
用碍子を各変電所、各発電所、各送電用鉄塔等に設置し
なければならず、多大の費用がかかる問題点、遠隔から
実運用碍子の汚損を測定できない問題点もある。
In addition, separate pollution measurement insulators must be installed at each substation, each power plant, and each power transmission tower, etc., separately from the actual operation insulators, which poses the problem of high costs and remote control. There is also the problem that it is not possible to measure the contamination of actually used insulators.

(発明の目的) そこで、本発明の目的は、実運用碍子の汚損測定に係る
費用の低減を図ることができ、かつ、実運用碍子そのも
のの汚損測定を遠隔からでも行なうことのできる碍子汚
損測定装置を提供することにある。
(Object of the Invention) Therefore, an object of the present invention is to measure insulator contamination, which can reduce the cost of measuring contamination of actually used insulators, and which can also measure contamination of actually used insulators from a distance. The goal is to provide equipment.

(問題点を解決するための手段) 本発明は、碍子に塩分、土、すす等の汚損物質が付着す
ると、その汚損物質が付着した実運用碍子によって反射
された紫外線反射光の反射率曲線がその汚損物質が付着
していない健全碍子によって反射された紫外線反射光の
反射率曲線に対して異なるという現象に着目して為され
たもので、本発明に係る碍子汚損測定装置の特徴とする
ところは、紫外線照射光を碍子に向かって照射する照射
光学系と、その碍子によって反射された紫外線照射光を
受光する受光光学系と、その紫外線照射光の受光結果に
基づいてその紫外線照射光のうち互いに異なる紫外線波
長においての各反射率の比を演算する演算処理部とを有
し、その互いに異なる各紫外線波長を、その演算処理部
の演算結果に基づいて健全碍子であるか汚損碍子である
か否かを判定することができるように選定したところに
ある。
(Means for Solving the Problems) The present invention provides that when contaminants such as salt, soil, and soot adhere to an insulator, the reflectance curve of ultraviolet light reflected by the actually used insulator to which the contaminant has adhered changes. This was done by focusing on the phenomenon that the reflectance curve of ultraviolet light reflected by a sound insulator to which no fouling substances are attached is different, and is a feature of the insulator fouling measuring device according to the present invention. consists of an irradiation optical system that irradiates ultraviolet light toward the insulator, a light receiving optical system that receives the ultraviolet light reflected by the insulator, and a light receiving optical system that receives the ultraviolet light reflected by the insulator. and an arithmetic processing unit that calculates the ratio of each reflectance at different ultraviolet wavelengths, and determines whether each of the mutually different ultraviolet wavelengths is a sound insulator or a contaminated insulator based on the calculation result of the arithmetic processing unit. The location was selected so that it could be determined whether or not.

(作用) 本発明に係る碍子汚損測定装置によれば、その照射光学
系から紫外線照射光を実運用碍子に向かって照射すると
、その紫外線照射光が実運用碍子によって反射されて受
光光学系に受光される。実運用碍子が汚損物質で汚損さ
れている場合には、その紫外線照射光のうち互いに異な
る紫外線波長においての各反射率の比が汚損物質で汚損
されていない実運用碍子の場合の各反射率の比と著しく
異なる。したがって、演算処理部の演算処理結果に基づ
く反射率の比の相違から実運用碍子が汚損物質で汚損さ
れているか否かを判定することができる。
(Function) According to the insulator contamination measuring device according to the present invention, when ultraviolet irradiation light is irradiated toward the actual insulator from the irradiation optical system, the ultraviolet irradiation light is reflected by the actual insulator and is received by the light receiving optical system. be done. If the actual insulator is contaminated with a contaminant, the ratio of each reflectance at different ultraviolet wavelengths of the ultraviolet irradiation light is the ratio of each reflectance of the actual insulator that is not contaminated with the contaminant. significantly different from the ratio. Therefore, it is possible to determine whether or not the actual insulator is contaminated with a contaminating substance from the difference in the reflectance ratio based on the arithmetic processing result of the arithmetic processing section.

(実施例) 以下に、本発明に係る碍子汚損測定装置の実施例を図面
を参照しつつ説明する。
(Example) Hereinafter, an example of the insulator stain measuring device according to the present invention will be described with reference to the drawings.

第2図は本発明に係る碍子汚損測定装置の原理を説明す
るために碍子汚損をパラメータとして、波長に対する反
射率曲線を示した図であり、この第2図において横軸は
光の波長WL、縦軸は反射率Tであり、符号Aは汚損物
質が付着していない健全碍子の反射率曲線、符号Bは汚
損物質として塩分が付着している碍子の反射率曲線、符
号Cは汚損物質として土と塩分とが付着している碍子の
反射率曲線、符号りは汚損物質としてすすが付着してい
る碍子の反射率曲線である。
FIG. 2 is a diagram showing a reflectance curve with respect to wavelength using insulator stain as a parameter in order to explain the principle of the insulator stain measuring device according to the present invention. In FIG. 2, the horizontal axis is the wavelength WL of light, The vertical axis is the reflectance T, where the symbol A is the reflectance curve of a sound insulator with no fouling substances attached, the symbol B is the reflectance curve of an insulator with salt attached as a fouling substance, and the symbol C is the reflectance curve of an insulator with salt attached as a fouling substance. The reflectance curve of an insulator with soil and salt attached to it, and the sign shown is the reflectance curve of an insulator with soot attached as a contaminant.

この第2図から明らかなように、紫外線波長が略320
nm以下では、健全碍子であると汚損碍子であると否と
にかかわらずその紫外線反射率Tが略一定であり、かつ
、塩分、土、すす等の汚損物質が付着している汚損碍子
の場合の紫外線反射率Tが、汚損物質が付着していない
健全碍子の紫外線反射率Tに較べて大きいことが理解で
きる。この紫外線反射率Tの相違は、紫外線反射光の強
度に関係するので、汚損碍子の近傍に健全碍子がある場
合には、波長320nm以下の紫外線照射光をその汚損
碍子と健全碍子とにそれぞれ照射してその汚損碍子から
の紫外線反射光の強度とその健全碍子からの紫外線反射
光の強度とを比較すれば、碍子の汚損測定を行なうこと
ができるのであるが、実運用碍子の汚損測定では、・比
較すべき健全碍子がその実運用碍子の近傍にあるとは限
らないからこの比較によって実運用碍子の汚損測定を行
なうことができない。
As is clear from this Figure 2, the ultraviolet wavelength is approximately 320
nm or less, the ultraviolet reflectance T is approximately constant regardless of whether it is a sound insulator or a contaminated insulator, and in the case of a contaminated insulator that has fouling substances such as salt, soil, and soot attached. It can be seen that the ultraviolet reflectance T of the insulator is larger than that of a sound insulator to which no contaminants are attached. This difference in the ultraviolet reflectance T is related to the intensity of the reflected ultraviolet light, so if there is a healthy insulator near a contaminated insulator, ultraviolet irradiation light with a wavelength of 320 nm or less is applied to the contaminated insulator and the healthy insulator, respectively. By comparing the intensity of the ultraviolet light reflected from the contaminated insulator with the intensity of the ultraviolet light reflected from the sound insulator, it is possible to measure the contamination of the insulator. - Since the sound insulator to be compared is not necessarily located near the actually used insulator, it is not possible to measure the contamination of the actually used insulator through this comparison.

健全碍子との比較を行なわずに、単に実運用碍子に波長
320nm以下の紫外線照射光を照射してその反射光の
強度に基づいてその実運用碍子の汚損測定も考えられる
が、遠隔測定の場合、大気による紫外線照射光の吸収等
があり、碍子の汚損に基づく反射率にこの大気に基づく
吸収が含まれ、測定によって得られた反射率が碍子の汚
損に基づく反射率であると断定できず、したがって、単
に実運用碍子に波長320nm以下の紫外線照射光を照
射してその反射光の強度に基づいてその実運用碍子の汚
損測定を行なうこともできない。
It is conceivable to simply irradiate an actual insulator with ultraviolet light with a wavelength of 320 nm or less and measure the contamination of the actual insulator based on the intensity of the reflected light, without comparing with a healthy insulator, but in the case of remote measurement, There is absorption of ultraviolet irradiation light by the atmosphere, and the reflectance due to the staining of the insulator includes this absorption due to the atmosphere, and it is not possible to conclude that the reflectance obtained by measurement is the reflectance due to the staining of the insulator. Therefore, it is also not possible to simply irradiate a practical insulator with ultraviolet light having a wavelength of 320 nm or less and measure the staining of the practical insulator based on the intensity of the reflected light.

ところで、碍子が汚損している場合、波長320nm〜
400nn+の紫外線領域でも、その反射率曲線B、C
,Dが健全碍子の反射率曲線Aと異なっている。
By the way, if the insulator is contaminated, the wavelength of 320 nm ~
Even in the 400nn+ ultraviolet range, the reflectance curves B and C
, D are different from the reflectance curve A of the sound insulator.

すなわち、健全碍子であるか汚損碍子であるか否かにか
かわらず、紫外線波長が短かくなるに伴って、その反射
率Tが減衰するがその減衰の仕方が健全碍子と汚損碍子
とでは異なっており、紫外線波長320 nm以下での
紫外線波長λ。と紫外線波長320nm〜400nmの
範囲内での紫外線波長λ、とを適宜に選定し、その各紫
外線波長λ。、λ1における反射率をTo、T、として
、その各紫外線波長における反射率の比X=To/T、
を考えると、健全碍子のときと汚損碍子のときとで大き
く異なることが予想される。実際、紫外線照射光の光源
として、水銀ランプを使用し、測定用紫外線波長として
水銀ランプのスペクトル線λ、 = 254r+n+、
λ1=365nmを選定した場合、健全碍子の反射率の
比X=T。
In other words, regardless of whether the insulator is a sound insulator or a contaminated insulator, the reflectance T attenuates as the wavelength of ultraviolet rays becomes shorter, but the manner of attenuation differs between a sound insulator and a soiled insulator. The ultraviolet wavelength λ is below 320 nm. and ultraviolet wavelength λ within the range of ultraviolet wavelength 320 nm to 400 nm, and each ultraviolet wavelength λ. , the reflectance at λ1 is To, T, and the ratio of the reflectance at each ultraviolet wavelength is X=To/T,
Considering this, it is expected that there will be a large difference between the case of a sound insulator and the case of a contaminated insulator. In fact, a mercury lamp is used as a light source for ultraviolet irradiation light, and the spectral line λ of the mercury lamp is λ, = 254r+n+, as the ultraviolet wavelength for measurement.
When λ1=365 nm is selected, the reflectance ratio of the sound insulator is X=T.

/T□が0.16であったのに対し、塩分付着の汚損碍
子の場合にはX=0.30、土と塩分とが付着した汚損
碍子の場合にはX=0.5、すす付着の汚損碍子の場合
にはX=0.63であった。これは、健全碍子であるか
汚損碍子であるかを判定するのに充分に大きな差である
/T□ was 0.16, whereas in the case of a soiled insulator with salt adhesion, X = 0.30, in the case of a soiled insulator with soil and salt adhesion, X = 0.5, and soot adhesion. In the case of the soiled insulator, X=0.63. This is a sufficiently large difference to determine whether the insulator is sound or contaminated.

ここで、紫外線波長λ。は220nm以上に選定するこ
とが大気中の紫外線吸収の波長依存性を極力避けるうえ
で望ましい。
Here, the ultraviolet wavelength λ. It is desirable to select 220 nm or more to avoid wavelength dependence of ultraviolet absorption in the atmosphere as much as possible.

そこで、紫外線波長λ。、λ1の紫外線照射光の照射強
度を80、Sl、紫外線波長λ。、λ、においての各大
気中の紫外線照射光の吸収率を80.alとし、実運用
碍子を距離Yだけ離れた地点から測定するものとすると
、紫外線照射光の反射光の強度I0、■、は、 Io” So ・To ・(1−exp(−aoT y
))2.、、++■I、= S□・T1・(1−exp
(−al・Y))2・・・ ・=■であり、紫外線吸収
率が波長によらず一定であるとすると、a o= a 
1であるから、工。/T□=X−S、/S工・・・・・
・0式が成立する。
Therefore, the ultraviolet wavelength λ. , λ1, the irradiation intensity of the ultraviolet irradiation light is 80, Sl, the ultraviolet wavelength λ. , λ, the absorption rate of ultraviolet light in each atmosphere is 80. al, and the actual insulator is measured from a distance Y apart, the intensity of the reflected light of the ultraviolet irradiation I0,
))2. ,,++■I,=S□・T1・(1-exp
(-al・Y))2... ・=■, and assuming that the ultraviolet absorption rate is constant regardless of the wavelength, a o= a
Since it is 1, it is engineering. /T□=X-S, /S engineering...
・Equation 0 holds true.

したがって、紫外線照射光のうち互いに異なる紫外線波
長を適宜選定し、そのときの紫外線照射光の強度比S、
/S工が既知であれば、紫外線反射光の強度化工。/I
工を測定すれば、互いに異なる紫外線波長においての各
反射率の比Xを求めることができ、そこで、碍子汚損測
定装置を、紫外線照射光を碍子に向かって照射する照射
光学系と、その碍子によって反射された紫外線照射光を
受光する受光光学系と、その紫外線照射光の受光結果に
基づいてその紫外線照射光のうち互いに異なる紫外線波
長λ。、λ1においての各反射率T0、T工の比Xを演
算する演算処理部とから構成し、その互いに異なる各紫
外線波長λ。、λ1を、その演算処理部の演算結果に基
づいて健全碍子であるか汚損碍子であるか否かを判定す
ることができるように選定すれば、実運用碍子の汚損測
定を行なうことができる。
Therefore, by appropriately selecting different ultraviolet wavelengths from the ultraviolet irradiation light, the intensity ratio S of the ultraviolet irradiation light at that time,
/If the S process is known, it is a process to strengthen the reflected ultraviolet light. /I
By measuring the reflectance, it is possible to find the ratio X of each reflectance at different ultraviolet wavelengths. Therefore, the insulator contamination measurement device is connected to an irradiation optical system that irradiates ultraviolet rays toward the insulator and the insulator. A light receiving optical system that receives the reflected ultraviolet irradiation light, and a mutually different ultraviolet wavelength λ of the ultraviolet irradiation light based on the reception result of the ultraviolet irradiation light. , and an arithmetic processing unit that calculates the reflectance T0 at λ1, and the ratio X of T, and the respective ultraviolet wavelengths λ that are different from each other. , λ1 are selected in such a way that it is possible to determine whether the insulator is a sound insulator or a contaminated insulator based on the calculation result of the calculation processing section, it is possible to measure the staining of an actual insulator.

また、工場では、すす、塩分が付着し易く、海岸沿いで
は塩分が付着し易く、採石場では土が付着し易いという
ように場所によって碍子に付着する汚損物質の種類が事
前にわかっているので1反射率の比Xの値によってその
汚損物質の碍子への付着の程度も知ることができること
になる。
In addition, we know in advance the types of contaminants that can adhere to insulators depending on the location, such as soot and salt being more likely to adhere to insulators in factories, salt being more likely to adhere to coastal areas, and soil being more likely to adhere to quarries. The degree of adhesion of the contaminant to the insulator can also be determined by the value of the ratio X of 1 reflectance.

以下に、その汚損測定装置の実施例を第1図を参照しつ
つ説明する。
An embodiment of the contamination measuring device will be described below with reference to FIG.

第1図において、1は紫外線照射光の光源である。ここ
では、この光源1に水銀ランプを用いるが、光源1とし
ては遠隔測定を考慮して指向性の良好なレーザー光源を
用いることもできる。この光源1の光はレンズ2によっ
て平行光束とされ、紫外線照射光として変調器3を介し
て碍子4に向かって照射されるものであり、光源1、レ
ンズ2、変調器3は紫外線照射光を碍子4に向かって照
射する照射光学系として機能する。この紫外線の照射は
、図示を略す望遠鏡等によって測定しようとする碍子に
狙いを定めて行なうものである。なお、ここでは、レン
ズ2により紫外線照射光を平行光束に変換して碍子4に
照射することにしたが、レンズ2を用いて碍子4の表面
に紫外線照射光を結像させるようにしてもよい。
In FIG. 1, 1 is a light source for ultraviolet irradiation light. Here, a mercury lamp is used as the light source 1, but a laser light source with good directivity may also be used as the light source 1 in consideration of remote measurement. The light from this light source 1 is made into a parallel beam by a lens 2, and is irradiated as ultraviolet irradiation light toward an insulator 4 via a modulator 3. The light source 1, lens 2, and modulator 3 It functions as an irradiation optical system that irradiates toward the insulator 4. This ultraviolet ray irradiation is carried out by targeting the insulator to be measured using a telescope or the like (not shown). Note that here, the ultraviolet irradiation light is converted into a parallel light beam using the lens 2 and is irradiated onto the insulator 4, but the ultraviolet irradiation light may be imaged on the surface of the insulator 4 using the lens 2. .

変調器3は外乱光と紫外線照射光とを区別するために、
紫外線照射光を変調する機能を有し、この変調器3には
光チョッパ等を用いる。碍子4によって反射された紫外
線照射光はレンズ5により集光されて、半透鏡6を通過
してフィルタ7に導かれると共に、半透鏡6により反射
されてフィルタ8に導かれるものである。フィルタ7は
紫外線波長λ。の紫外線を選択的に透過させる機能を有
しており、そのフィルタ7に臨ませて受光器9が設けら
れている。フィルタ8は紫外線波長λ1の紫外線を選択
的に透過させる機能を有し、そのフィルタ8に臨ませて
受光器10が設けられている。
In order to distinguish between disturbance light and ultraviolet irradiation light, the modulator 3
It has a function of modulating the ultraviolet irradiation light, and an optical chopper or the like is used as the modulator 3. The ultraviolet light reflected by the insulator 4 is condensed by a lens 5, passes through a semi-transparent mirror 6, is guided to a filter 7, is reflected by the semi-transparent mirror 6, and is guided to a filter 8. Filter 7 has ultraviolet wavelength λ. It has a function of selectively transmitting ultraviolet rays, and a light receiver 9 is provided facing the filter 7. The filter 8 has a function of selectively transmitting ultraviolet light having an ultraviolet wavelength λ1, and a light receiver 10 is provided facing the filter 8.

受光器9.10は、レンズ5.半透鏡6、フィルタ7.
8と共に、碍子4によって反射された紫外線照射光を受
光する受光光学系を構成しており、受光器9は紫外線波
長λ。の紫外線の受光強度に対応する電気信号を出力し
、受光器10は紫外線波長λ、の紫外線の受光強度に対
応する電気信号を出力するものであり、紫外線波長λ。
The receiver 9.10 has a lens 5. Semi-transparent mirror 6, filter 7.
Together with 8, it constitutes a light receiving optical system that receives the ultraviolet irradiation light reflected by the insulator 4, and the light receiver 9 has an ultraviolet light of wavelength λ. The light receiver 10 outputs an electrical signal corresponding to the received intensity of ultraviolet rays having an ultraviolet wavelength λ, and the light receiver 10 outputs an electric signal corresponding to the received intensity of ultraviolet rays having an ultraviolet wavelength λ.

、λ、は紫外線照射光の受光結果に基づいてその各紫外
線波長λ。、λ、の反射率T11. T1の比Xを演算
する演算処理部の演算によって汚損碍子であるか健全碍
子であるか否かを判定できるように選定され、ここでは
、λ。= 254nm、λ1=365nmである。
, λ, is each ultraviolet wavelength λ based on the result of receiving the ultraviolet irradiation light. , λ, reflectance T11. It is selected so that it can be determined whether the insulator is a contaminated insulator or a sound insulator by the calculation of the arithmetic processing unit that calculates the ratio X of T1, and here, λ. = 254 nm, λ1 = 365 nm.

演算処理部は、ここでは、同期増幅器11.12と演算
器13とから構成されており、受光器9,10の電気信
号はその同期増幅器11.12に入力され、同期増幅器
11.12は変調器3に同期してその受光器9.10か
ら出力された電気信号をそれぞれ増幅して、演算器13
に向かって出力するものであり、演算器13はその各増
幅出力に基づいて受光強度の比I0/Lを演算し、紫外
線照射光の強度の比S0/S1が既知であるので、これ
に基づいて反射率の比Xに対応する出力信号を表示部1
4に出力するものである。表示部14は、その演算器1
3の出力に基づいてその実運用碍子の反射率の比Xを表
示する。この反射率の比Xを目視すれば、実運用碍子の
汚損を判定できる。
The arithmetic processing section here consists of a synchronous amplifier 11.12 and an arithmetic unit 13. Electrical signals from the photoreceivers 9 and 10 are input to the synchronous amplifier 11.12, and the synchronous amplifier 11.12 modulates the signal. The electrical signals outputted from the light receivers 9 and 10 are respectively amplified in synchronization with the receiver 3, and the arithmetic unit 13
The arithmetic unit 13 calculates the ratio I0/L of the received light intensity based on each amplified output, and since the ratio S0/S1 of the intensity of the ultraviolet irradiation light is known, based on this The output signal corresponding to the reflectance ratio X is displayed on the display unit 1.
This is what is output to 4. The display unit 14 is the arithmetic unit 1
Based on the output of step 3, the reflectance ratio X of the insulator in actual use is displayed. By visually observing this reflectance ratio X, it is possible to determine whether the actual insulator is contaminated.

なお、光源1の分光特性、レンズ、フィルタ等の光学部
品の分光特性は測定に際してあらかじめ補正しておくも
のである。
Note that the spectral characteristics of the light source 1 and the spectral characteristics of optical components such as lenses and filters are corrected in advance during measurement.

以上、実施例について説明したが、太陽光には紫外線が
含まれているので、紫外線照射光として太陽光を用いる
こともできる。この場合、受光器9.10は変調されて
いない紫外線照射光の反射光を受光することになる。ま
た、受光器9.10として、テレビカメラを用いること
ができ、この場合は、テレビカメラの各画素毎に反射率
の比Xを測定するもので、これによれば、碍子への汚損
物質の付着分布を画像表示することができる。さらに、
実施例においては、照射光学系の光軸に対して受光光学
系の光軸を斜めにする構成としたが、照射光学系の光軸
と受光光学系の光軸とを同一とし、光源1と受光器9.
10とを一体の構成とすることもできる。
Although the embodiments have been described above, since sunlight contains ultraviolet rays, sunlight can also be used as the ultraviolet irradiation light. In this case, the light receiver 9.10 will receive the reflected light of the unmodulated ultraviolet irradiation light. Furthermore, a television camera can be used as the light receiver 9.10, and in this case, the reflectance ratio X is measured for each pixel of the television camera. The adhesion distribution can be displayed as an image. moreover,
In the embodiment, the optical axis of the light-receiving optical system was made oblique to the optical axis of the irradiation optical system, but the optical axis of the irradiation optical system and the optical axis of the light-receiving optical system were made the same, and the light source 1 and Photoreceiver9.
10 may also be integrated.

(発明の効果) 本発明に係る碍子汚損測定装置は、以上説明したように
構成したので、実運用碍子の汚損のそのものを遠隔から
測定できるという効果を奏する。
(Effects of the Invention) Since the insulator contamination measurement device according to the present invention is configured as described above, it has the effect of being able to remotely measure the contamination of an actually used insulator.

また、汚損測定用碍子を専用に設けて置かなくともよい
ので、その測定に要する費用も格段に低減することが可
能である。
Further, since there is no need to provide a dedicated insulator for stain measurement, the cost required for the measurement can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る汚損碍子測定装置の一実施例を示
すブロック図、第2図はその碍子の汚損測定の原理を説
明するための反射率曲線を示す図である。 1・・・光源、       2・・・レンズ、3・・
・変調器、     4・・・碍子、5・・・レンズ、
      7,8・・・フィルタ9.10・・・受光
器、    11.12・・・同期増幅器、13・・・
演算器、      X・・・反射率の比。 T・・・反射率、      λ。、λ□・・・紫外線
波長。 第1図 第2図 WL(nm)
FIG. 1 is a block diagram showing an embodiment of a soiled insulator measuring device according to the present invention, and FIG. 2 is a diagram showing a reflectance curve for explaining the principle of soiling measurement of the insulator. 1...Light source, 2...Lens, 3...
・Modulator, 4...Insulator, 5...Lens,
7, 8...Filter 9.10...Photodetector, 11.12...Synchronous amplifier, 13...
Arithmetic unit, X... Ratio of reflectance. T...Reflectance, λ. , λ□...Ultraviolet wavelength. Figure 1 Figure 2 WL (nm)

Claims (1)

【特許請求の範囲】[Claims] (1)紫外線照射光を碍子に向かって照射する照射光学
系と、前記碍子によって反射された紫外線照射光を受光
する受光光学系と、前記紫外線照射光の受光結果に基づ
いて前記紫外線照射光のうち互いに異なる紫外線波長に
おいての各反射率の比を演算する演算処理部とを有し、
前記互いに異なる各紫外線波長は前記演算処理部の演算
結果に基づいて健全碍子であるか汚損碍子であるか否か
を判定することができるように選定されていること特徴
とする碍子汚損測定装置。
(1) An irradiation optical system that irradiates ultraviolet irradiation light toward the insulator; a light receiving optical system that receives the ultraviolet irradiation light reflected by the insulator; It has an arithmetic processing unit that calculates the ratio of each reflectance at mutually different ultraviolet wavelengths,
An insulator contamination measuring device, wherein each of the mutually different ultraviolet wavelengths is selected such that it is possible to determine whether the insulator is a sound insulator or a contaminated insulator based on the calculation result of the arithmetic processing section.
JP20527186A 1986-09-01 1986-09-01 Apparatus for measuring contamination of insulator Granted JPS6361151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20527186A JPS6361151A (en) 1986-09-01 1986-09-01 Apparatus for measuring contamination of insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20527186A JPS6361151A (en) 1986-09-01 1986-09-01 Apparatus for measuring contamination of insulator

Publications (2)

Publication Number Publication Date
JPS6361151A true JPS6361151A (en) 1988-03-17
JPH0466313B2 JPH0466313B2 (en) 1992-10-22

Family

ID=16504212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20527186A Granted JPS6361151A (en) 1986-09-01 1986-09-01 Apparatus for measuring contamination of insulator

Country Status (1)

Country Link
JP (1) JPS6361151A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204307A (en) * 1992-10-30 1994-07-22 Internatl Business Mach Corp <Ibm> Method and device for making optical inspection
EP1677099A1 (en) * 2004-12-30 2006-07-05 Danmarks Tekniske Universitet Method and apparatus for classification of surfaces
CN103076338A (en) * 2012-05-31 2013-05-01 西南交通大学 Rapid fuzzy matching method for testing bad conditions of high-speed rail catenary rod type insulators
CN103323460A (en) * 2013-06-03 2013-09-25 深圳供电局有限公司 Visible image based insulator detection method and device thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204307A (en) * 1992-10-30 1994-07-22 Internatl Business Mach Corp <Ibm> Method and device for making optical inspection
EP1677099A1 (en) * 2004-12-30 2006-07-05 Danmarks Tekniske Universitet Method and apparatus for classification of surfaces
WO2006069583A1 (en) * 2004-12-30 2006-07-06 Danmarks Tekniske Universitet Method and apparatus for classification of surfaces
CN103076338A (en) * 2012-05-31 2013-05-01 西南交通大学 Rapid fuzzy matching method for testing bad conditions of high-speed rail catenary rod type insulators
CN103076338B (en) * 2012-05-31 2014-11-05 西南交通大学 Rapid fuzzy matching method for testing bad conditions of high-speed rail catenary rod type insulators
CN103323460A (en) * 2013-06-03 2013-09-25 深圳供电局有限公司 Visible image based insulator detection method and device thereof

Also Published As

Publication number Publication date
JPH0466313B2 (en) 1992-10-22

Similar Documents

Publication Publication Date Title
EP0092369B1 (en) Light frequency change detecting method and apparatus
CN108061722B (en) Detection device and detection method for carbon monoxide concentration
CA2285189A1 (en) A system for acquiring an image of a multi-phase fluid by measuring backscattered light
US4800282A (en) Apparatus and method for detecting residual organic compounds
JPH0120371B2 (en)
JPS6361151A (en) Apparatus for measuring contamination of insulator
CN103983341B (en) A kind of high-precision laser speckle microvibration measuring system and measuring method
JP2001033388A (en) Method and device for measuring concentration of chlorophyll a
RU2478192C2 (en) Method for optical remote detection of compounds in medium
JPH07294429A (en) Turbidity meter and turbid chromaticity meter
CA2126387A1 (en) High s/n ratio optical detection apparatus and method
JPH0125017B2 (en)
US8879063B2 (en) Measuring system for measuring absorption or scattering at different wavelengths
JPH061178B2 (en) Defect inspection method and apparatus
Du Burck et al. Frequency-modulated laser beam with highly efficient intensity stabilisation
JPS62122130A (en) Monitoring method for ultraviolet lamp in ultraviolet washer
CN117347323A (en) In-situ non-contact water turbidity on-line detection system and method
RU2116633C1 (en) Pulse photometer
JP3049899B2 (en) Oil concentration meter
JPH0263184B2 (en)
JP2709946B2 (en) Foreign matter inspection method and foreign matter inspection device
JPH11101741A (en) Fiber liquid detector
JPH06258227A (en) Surface contamination degree measuring device
JPS5810609A (en) Optical measurement
WO2015156780A1 (en) Optical detection system including at least one of a modulated source or modulated detector